
Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  1 

 

Dyson School of Design Engineering 

Imperial College London 

DE2   Electronics 2 

Lab Experiment 5: Motor & Interrupt 

(webpage: http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

Objectives 

By the end of this experiment, you should have achieved the following: 

• Learn how to drive the dc motors using the H-bridge driver chip TB6612 
• Control motor speed with potentiometer via ADC 
• Use hall effect sensors to detect speed of motor using polling and interrupt 
• Characterize the two motors’ speed against PWM duty cycles 

Before you start 

In this lab, you will be using the Pybench board, the motor assembly that you will be using later with the 
Segway Challenge.  You will be issued a dual motor assembly which you need for this lab.  You may want 
to put a tape on the axle of the motors so that you can see it spinning.   

Connect Pybench board and the motors with the cables provided.  Make sure that Pybench configuration 
switch is set at ‘000’ (user mode).  From now on, we will be using the Pybench board on its own without 
tethering it to Matlab. 

The SD card is preloaded a simple user.py code, which is initializes the OLED display with a message.  

Create your own user.py program with this single python instruction: 

execfile(‘lab5task1a.py’) 

Now, pressing reset while the configuration switch is set to ‘000’ will run the ‘lab5task1a.py’ code. 

You can modify the .py file to run other user created programs. 

  



Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  2 

Task 1: DC Motor and H-bridge 

The goal of this task is to remind you how to drive a DC motor using the H-bridge chip TB6612.  You have 
already used a similar chip last year in electronics 1. However, this chip is slightly different and is capable 
to drive a 12V motor if required. 

The task in hand is to use the potentiometer on Pybench to 
control the speed of the two DC motors using the H-bridge.  
The interface connection between the TB6612 and the 
Pyboard module is shown here.  Unlike last year, you don’t 
have to wire up the chip this year.  All necessary 
connections have already been made for you on the 
Pybench board PCB. 

The direction of the motor is controlled according to the 
table shown here. The speed of the motor is determined 
by the duty cycle of the PWM signal.   

Connect Pybench to your PC using a USB cable.  Open a 
terminal window using PuTTY.exe or, if you are using 
Mac, use Mac’s terminal program.  With the VSC editor, 
create a file: lab5task1a.py on the SD card containing 
the following uPy code. Change the user.py file on the 
SD card to the statement: execfile(‘lab5task1a.py’).  

Now do a “soft” reboot by typing CTRL-D if you see >>> 
in the terminal window. One of the two motors should 
now be turning.  Change the speed of the motor. (How?) 

Now modify this program to provide two more motor 
control functions: A_back(value) and A_stop().  Test 
that these functions are working. 

Note that we use an on-chip timer circuit inside the microcontroller to generate a 1000Hz PWM signal to 
drive the motor.  To understand how to programme this timer circuit in uPy, read, the following 
document page: https://docs.micropython.org/en/latest/library/pyb.Timer.html. 

Write a new version of the program to drive BOTH motors (instead of just motor A).  Note that you can 
use channel 2 of Timer 2 to control the second motor.  (See MicroPython manual.) 

Finally, create lab4task1b.py which uses the 10kW potentiometer to control the motors to go forward and 
backward at various speed, up to the maximum.  The potentiometer is connected to pin ‘X11’.  To read 
the potentiometer voltage, you need the following uPy code: 

pot = pyb.ADC(Pin(‘X11’)) # define potentiometer object as ADC conversion on X11 
value = pot.read()        # value = 0 to 4095 for voltage 0v to 3.3v 

Modify your program into lab4task1c.py to display the PWM duty cycle on the OLED display.   

  



Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  3 

Task 2 – Detect the speed of the motor 

Each motor is equipped with two Hall effect sensors, which detect changes in magnetic field strength as 
shown in the photograph.  The circular magnet has 13 pairs of N-S poles. The gear ratio of the motor is 
1:30. This causes the hall effect sensors to produce 13 x 30 = 390 square pulses per revolution of the 
wheel. Since the two sensors are slightly offset from each other, the square waves from the two sensors 
are at different phase angles.   

Appendix A is a summary of the hardware pins on the Pyboard, and how they are used to connect to the 
hardware modules and motors etc.   

The two Hall effect sensors generate two square waves that are offset by 90°.  The frequency of the 
square waves is proportional to the speed of rotation.  The relative phase of the two sensor signals 
provides the direction. 

You can detect the speed of the motor by counting the number of positive transitions (low-to-high) on Y4 
or Y5 in a time period of 100 msec, and divide the count value by 39 to obtain the number of revolutions 
of the wheel per second (rps).   

You can also detect the direction of rotation of the motor by observing whether Y4 is LEADING Y5 in 
phase, or vice versa.  However, since you are driving the motor with your own program, you know which 
direction the motor is turning.  So, this is not so useful. 

To count the pulses on pin Y4 for motor A and Y6 for motor B, you would need to define two Pin objects: 

 
The code segment to detect the speed of motor A is given here: 



Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  4 

 
Note how I have implemented the equivalent of “tic” and “toc” from Matlab using Pyboard’s pyb.millis() 
function.  This function returns the internal real-time clock in millisecond.  By keeping tic and toc variables, 
elapsed time can be calculated as (toc-tic). 

Modify lab5task1c.py to a new program lab5task2a.py to detect the speed of motor A.   

Test the program to check the speed of motor A (in rev/sec).  Note that the reported speed is very “noisy”. 
Why? 

Further, add the following statement to add a delay of 1ms to the loop and see what happens. You will 
find that the speed reading is all wrong. Why? 

 

Explanation 

The while-loop is continuously looking for a low-to-high transition on motor A sensor signal on pin Y4. 
Within the loop, you also continuously check to see if 100msec has elapsed.  If yes, you save the transition 
count (in A_speed) and reset the counter.  The continual checking program loop is known as “polling”.  It 
is analogous to owning a telephone that has NO ringer.  To see if anyone is calling, you need to “poll” the 
phone by picking it up and check to see if someone is one the line! This is a simple way to check, but it is 
extremely inefficient.  

Adding just 1msec delay in the loop results in many rising edges being missed. This is the reason why the 
speed measurements are wrong. 

Remove this spurious statement, and modify your program into lab5task2b.py so that you measure and 
display the speed of both motor A and motor B.   

 

  



Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  5 

Task 3 – Speed measurement using interrupt  

Instead of using polling as a method to check the status of the Y4 pin, you could install a “ringer” in the 
form of interrupts.  Interrupt is a hardware feature on the microprocessor, which forces the processor to 
do something for you when an event occurs.  For example, you can set up the Y4 pin in such a way that 
when a low-to-high transition occurs, a special function known as the “interrupt service routine” or ISR 
will be executed.  The ISR runs the program code that deals with whatever the interrupt demands. When 
the ISR is completed, the processor returns to the original code and continues its execution.  This is like 
having a ringer on your telephone.  You may be in the middle of a meal and the phone rings.  This 
interrupts you eating your meal and forces you to answer the phone.  When you finish that, you return to 
your meal.  This is far more efficient than you having to check if someone is calling you at regular 
intervals!  AND you are will NOT miss a call. 

You will now learn to program Pybench to work with interrupts.  Modify your program lab5task2a.py to 
lab5task3a.py, replacing the section after all the motor control functions (i.e. B_forward(value), 
B_back(value)) with the code segment shown on the next page. 

This code is rather complicated.  I will explain how this works at a future tutorial.  For now, I want you to 
focus on the following interesting points: 

1. The while-loop is almost the same as that in lab5task1c, where the potentiometer is read, and its 
value is used to drive the motors.  There is NO polling function: the sensor signal on Y4 is not used 
here.  There is no checking of elapsed time either. 

2. The loop assumes that the variable “A_speed” magically contains the number of transitions on Y4 
and reports the rotational speed for motor A. 

3. The magic is occurring in the “INTERRUPT” section immediately above. 
4. There are two interrupt service routines: 1) isr_motorA(.)  and  2) isr_speed_timer(.).   
5. isr_motorA(.)  increments “A_count” each time an interrupt occurs on the Y4 sensor signal. 
6. isr_speed_timer(.) is called when Timer 4 period is over. Timer 4 is programmed to run at 10Hz, 

therefore a timer_4 interrupt occurs every 100msec. When this happens, the ISR saves the count 
value in “A_count” to “A_speed” and reset the counter. 

7. A_count and A_speed are declared as global variable inside the ISRs (otherwise it is not visible in 
the ISRs). 

8. The line: micropython.alloc_emergency_exception_buf(100)  is required by MicroPython. 



Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  6 

 
 
Modify lab5task2a.py to lab5task3a.py so that you sense the speed of both motors and report them on 
the OLED display.  Make sure you understand how the entire program works. 
 
 
Modify lab5task3a.py to lab5task3b.py so that you sense and display the speed of both motors A and B 
using interrupts. 

 

Use the program lab5task3b.py to find out the rev/sec of motors A and B for different PWM duty cycles.  
Plot the characteristics of motor speed vs duty cycle for the two motors.  What can you say about these 
two motors?  



Lab 5: Motor & Interrupt Imperial College London 

V3.4 - PYK Cheung, 27 Feb 2025    Lab 5  -  7 

Appendix A – Pin Assignment on Pybench 

 

 


