Objectives

By the end of this experiment, you should have achieved the following:

- Have Matlab running on your personal laptop;
- Able to plot signals with Matlab;
- Understand basic Matlab syntax and language;
- Use functions within Matlab;
- Analyse simple signals such as ECG signal;
- Extract useful information from signals.

Before you start

This Lab Experiment should be undertaken by yourself outside schedule Lab hours BEFORE the first Lab Session next Wednesday (15 January).

As in the first year, you are required to keep an electronic logbook for all the laboratory sessions for this module. You will find a useful instruction on how to keep an electronic logbook on the course webpage. While your logbook will not be formally marked, you are expected to answer some questions during your oral examination by referring to the electronic logbook.

Getting started with Matlab

For the rest of this Experiment, make sure that your laptop computer has Matlab running properly. Furthermore, you will also investigate the ideas covered in Lectures 1 and 2.

Before you start, I strongly recommend that you to create a directory structure for all the Matlab codes you will be writing for this module. A possible structure may looks something like this. Trust me – a little effort now will save you lots of time later.

Exercise 1: Sinusoidal signal generation

Enter the following Matlab function to generate a sinusoidal signal using the filename: `sine_gen.m`. Test the function to produce the plot as shown.
Exercise 2: Spectrum of the signal

Enter the following function using the filename: plot_spec.m. This function uses the Matlab built-in function “fft” to compute the frequency spectrum of the signal. Don’t worry about exactly how this works for now. (I deliberately want you to type the code into Matlab instead of doing cut-and-paste. In this way, there is a higher chance that you will remember some of the syntax of Matlab.)

Test this function in the interactive mode of Matlab and you should see the following frequency spectrum plot. You can zoom onto the peak frequency at 400Hz using the button.

```matlab
function plot_spec(sig, fs)
% Function to plot frequency spectrum of sig
% usage: plot_spec(sig, 1000)
% author: Peter Y.K Cheung, 9 Jan 2019

magnitude = abs(fft(sig));
N = length(sig);
df = fs/N;
f = 0:df:fs/2;
Y = magnitude(1:length(f));
plot(f, 2*Y/N);
xlabel('ontsize{14}frequency (Hz)');
ylabel('ontsize{14}Magnitude');
title('ontsize{16}Amplitude Spectrum');
end
```

```matlab
>> s1 = sine_gen(1.0, 400, 10000, 1);
>> plot_spec(s1,10000);
>> title('ontsize{16}Amplitude Spectrum');
```
Exercise 3: Two tones

Now generate two sinewaves, s_1 at 400Hz (amplitude 1.0V) and s_2 at 1000Hz (amplitude 0.5V), using a sampling frequency of 10kHz and each having a duration of 1.0 second. Add these together as “sig” and plot the waveform.

Plot the spectrum of the combined signal.

Exercise 4: Two tones + noise

Assume that your two-tone signal is called “sig”, create a noisy version of this signal using:

```matlab
noisy = sig + randn(size(sig));
```

The function `randn(.)` produces a set of random numbers. How many samples? That is decided by the number of data samples in “sig” with the function `size(.)`. Now, plot noisy and its spectrum.

What have you learned from this exercise?

Exercise 5: Projection using dot product

Let us now treat the two sinusoid signals s_1 (400Hz) and s_2 (1000Hz) as two vectors. You can find the projection of s_1 on s_2 by computing their dot product (also known as inner product) in Matlab:

```matlab
dot_product = s1*s2';
```

What value do you get? Now create another sinewave s_3 at 401Hz, and find the dot product of s_1 on s_3. What do you get?

Sometime, dot product is called cross-correlation coefficient, or projection of s_1 onto s_2. It is a measure of how much of the s_1 signal can be found in s_2 signal.

Finally, find the dot product of $(s_1 + s_2)$ on s_1. What do you get?

I will be explaining all the Matlab code and the ideas behind this laboratory session during the next lecture/tutorial.