
Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  1 

Dyson School of Design Engineering 

Imperial College London 

DE2   Electronics 2 

Lab 6: Beat Detection 

(webpage: http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

Introduction 

In this lab, you will experiment with moving average filter and learn how to perform beat detection to live 
music. 

Task 1: Moving Average filter 

Task 1 will be conducted using Matlab alone. The goal is for you to explore the lowpass filtering effect of 
the moving average filter. 

Download the music file: bgs.wav from the course webpage. This is a short segment of music from “Staying 
Alive”. 

Create the following Matlab script as lab6task1a.m. 

 

When you compare the noise-corrupted music with the filtered version, you should notice a slight reduction 
in the noise. 

Modify lab6task1a.m to lab6task1b.m so that you can use a variable number of taps.  Change this to 10, 
20 and 50. Comment on how the filtered change the music.  

  



Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  2 

Task 2 – Exploring MICROPHONE Class 

Download from the course webpage the file ‘audio.py.zip’ and unzip this onto the SD Card.  This package 
defines a MICROPHONE class. Its function is to capture 160 samples of audio signal from the microphone 
using interrupt, put it in a buffer, and at the same time computes the instantaneous energy E. 

Study the code in this file carefully and make sure you know how to write a class.  Here are some 
explanations. 

 

Line 14: required by uPy when using interrupts 

Line 17: This class takes three parameters: a timer object, a microphone object and number of samples 

Line 20:  Reserve memory for s_buf array which is signed short integer (‘h’) of length N and initialize it to 
0.  Always re-allocate storage if you know its size – much faster. 

Lines 21 to 26: Define and initialize variable used within this class and its methods. 

Line 29: Make the timer generate interrupts and specify isr_sampling is the ISR. 

 

  



Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  3 

 

This is the interrupt service routine.  We need a dummy variable ‘dummy’ (you can give it any name). 

Line 33: MIC_OFFSET  is the value when microphone has no signal.  It is around 1523.  

Line 34 to 37: fill the buffer, increment the pointer ‘count’ and compute the sum-of-square 

Line 38 to 42: When we have 160 sample values, we save a the instantaneous energy in E, reset 
everything, set the buffer_full flag, and finish the interrupt. 

 

The rest of the code define four methods used externally: 

inst_energy – return the instantaneous energy value for 160 sample values. 

buffer_is_filled – the flag (semaphore) to indicate that the latest instanteneous energy value is available. 

reset_buffer – lower the flag for another instantaneous energy value to be read. 

data – return the address of the data buffer 

  



Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  4 

Create the file lab6task2a.py with following uPy code. It demonstrates how the MICROPHONE class can 
be used.  Modify user.py to execute this script.  In the terminal window, type CTRL-D to restart PyBench. 

 

You should see the REPL >>> because this code snippet only creates the microphone object ‘audio’.  It 
looks as if nothing is happening, because it hands back control to you with >>>. 

Now try typing:  audio.data().  You will see the data buffer contents printed on the terminal.  Use the up-
arrow key to recall the last command and type RETURN.  You can see that the contents of the data buffer 
is changed. 

Similarly, try audio.inst_energy() and change the volume of music you play on your phone to the 
microphone and see the difference. 

LESSON HERE:  Once you create the MICROPHONE Class object ‘audio’, the timer interrupt will 
continuously capturing new audio samples at 8kHz rate, filling the buffer and updating the instantaneous 
energy reading.  The main program can do something else, or, in this case NOTHING!  

 

Optional exploration: 

lab6task2b.py is provided in the solution folder.  This adds a small piece of code to lab6task2a.py and plot 
the contents of the captured data on the OLED display.  It serves no other purpose than to reassure you 
that indeed the timer interrupt is working proper. A new block of 160 data values is being captured 
continuously and is being displayed.  Note that OLED display is very slow.  So only some of the data is 
being displayed. 

  



Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  5 

Task 3 – Basic Beat Detection 

In this lab, you are provided with a skeleton program “beat_detect_0.py” for detecting beats in real-time 
running on Pybench (in MicroPython).  This program works reasonably well for the music “Staying Alive”.  
Your job is to try to improve this basic program to obtain a better performing one.   

CONTEXT 

Our goal is to run real-time code in MicroPython using Pybench to detect when a beat occurs.   In this 
version, the blue LED is flashed whenever a beat is detected.  You can substitute flashing the LED with a 
dancing step (or do both!) in one of the later challenges.  

Debugging interrupt driven program is difficult.  In the past, I found that some students are struggling to 
get a basic version of the code running without error on Pybench.  Given the number of deadlines you 
have, I decided to provide you with this “basic” version of code from which you can learn.  Your challenge 
is to make my implementation better. 

You can download this program from the course webpage. 

EXPLANATION 

You should be able to work out the code up to line 75.  Lines 76 onward is where beat detection occurs.  

Line 66: M is the number of 
instantaneous energy values to average 
over to obtain the average local energy. 

Line 67: BEAT_THRESHOLD is the ratio of 
instantaneous energy / local average energy 
beyond which a beat is detected. 

Line 71: e_ptr is the index for a buffer storing M 
instant energy values. 

Line 72: e_buf is the instant energy buffer of 
length M. Data format is a regular unsigned 
integer. ‘L’ is normal integer, i.e. 32-bits, 
uppercase is unsigned. 

Lines 77 – 97: Main program loop.  This is what 
all real-time program would look like.  It loops 
around forever.  

Line 78: The time it takes to go around the loop 
once is determined by the 
audio.buffer_is_filled() flag, which is set in the 
sampling interrupt service routine once the 
buffer is full.  The buffer has N=160 locations, 
and the sampling period is 1/8000 = 125 µsec.   
Therefore, the loop goes around once every 
20msec. 

Line 81: Fetch energy in sample buffer – one 
epoch. This returns the instantaneous energy E. 



Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  6 

Line 85: This is a clever trick!  We want to find the average energy of the past M instant energy values.  We could 
do this by summing up what’s stored in e_buf[0] to e_buf[M-1].   That takes M-1 adds.  However, we can also 
keep a running sum of instant energy sum_energy, take away the earliest instant energy value, and then add the 
current E.  This takes only two adds (or subtract) – much quicker! 

Line 86: Overwrite the earliest sample in buffer with this new instantaneous energy E.  e_ptr is pointing to (i.e. 
providing the index for) the oldest sample in e_buf[]. 

Line 87: Update e_ptr to move to the next oldest sample, soon to be overwritten.  The “% M” operation is 
modulo M (divide by M and get the remainder).  It is a method to increment the index value, make sure that this 
value stay within 0 to M-1, and wrap it around whenever it reaches M.  In that way, e_buf[ ] will always have the 
past M instant energy values, and this buffer get updated each echo (20msec) period. 

Line 91: Calculate the ratio c, instantaneous energy / average energy.  sum_energy has the total energy over 50 
epochs.  sum_energy/M is the average. 

Line 93: Check that the elapsed time is 500msec or more since detecting the last beat.  We know that “Staying 
Alive” has a beat period of around 570msec from your MATLAB analysis.  So we only expect the next beat 
500msec or later. 

Line 94: Beat is detected only if c > some threshold. Change the threshold will affect accuracy of detection. 

Line 97: Reset the buffer_full status flag, ready for another 20msec period 

 

After understanding the beat_detect_0.py file, you should explore the various values such and music, to see how 
robust this beat detection algorithm is.  Feel free to improve upon this. 

 

WHAT NEXT? 

Some of the challenges you may choose to attempt is to make the mini-Segway dance to music, you would need 
to have created the dance routine in the form of steps encoded in ASCII characters.  The dance routine can be 
created manually or automatically.  You can then replace “flash()” with the appropriate function to move the 
mini-Segway.   

You will also need to make your own improvised stabilizer for the mini-Segway.  With the stabilizer installed, your 
Segway will be able to dance to the music in real-time. 

For a different song, the beat period would be different.  You would need to change the program so that it looks 
for a beat earlier or later than 500msec in the current basic program.   

Experiment your beat detection algorithm on different songs. 

  



Lab 6:  Beat Detection Imperial College London 

V3.4 - PYK Cheung, 6 March 2025    Lab 6  -  7 

Task 4 - First Challenge: the Dancing light show 

If you have time, try Challenge 1 now.  You are provided with the Neopixel 
strip.  Plug this into the 4-way socket as shown below. 

The following code snippet demonstrates how you can use the Neopixel 
Class to control the LEDs: 

 

The challenge is for you to program the neopixel strip to “dance” to live music, and synchronized to the beats of 
the music. 

 

 

 


