
Lab 7: Self-balancing Segway Imperial College London

V3.3 - PYK Cheung, 6 March 2025 Lab 7 - 1

Dyson School of Design Engineering

Imperial College London

DE2 Electronics 2

Lab 7: Putting Everything Together for the Challenges

(webpage: http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

INTRODUCTION

This lab instruction is intended to help you to put everything that you have
learned together to some of the more advanced challenges. It contains various
tips and guidelines, snippets of Python code, pseudo-code of the top-level
program, related to the different challenges listed.

TIPS 1: FROM IDLE TO RUNNING

Running an embedded programme on the PyBench board can cause problem
because as soon as you press the RESET button, you
usually start the programme (which programme you run
depends on the DIP switch setting). It is often helpful if
the Segway is in an idle mode, and only run your
programme when you press the USER button.

Here we use the OLED display to tell us what the Segway
is doing. Remember that drawing anything on the OLED
is VERY SLOW. Therefore, only do that outside the main
program loop. We also include the print statements to
help debugging. These will show up on the Putty or the
Terminal window on your laptop.

TIPS 2: MODIFY THE main.py FILE

So far, the way I have organized the Pybench system on the Segway is to run Pybench driver
pybench_main.py, with the DIP switches are set to 111, run a self-test program if SW=110 etc. SW = 000
to SW = 010 are reserved to running user’s programs. I recommend that you modify the program
main.py so that you run the various challenges depending on the DIP switch setting. Below is a diagram
showing that SW settings for two example challenges you may want to attempt.

Lab 7: Self-balancing Segway Imperial College London

V3.3 - PYK Cheung, 6 March 2025 Lab 7 - 2

TIPS 3: PSEUDO-CODE FOR DANCING SEGWAY

I assume that by now, you should have completed
milestones 1 and 2. For Challenge 4, your goal is to use your
improved beat-detection routine to synchronous music with
dancing moves with the stabilizer (i.e. no self-balancing). You
should store the dance move in a text file (ASCII format),
read this file at the start of the program and store the moves
in an array BEFORE the main program loop. This is because
reading ASCII characters from a text file is very slow. It is far
better to store information in memory (i.e. an array) and
access this array inside the program loop.

Furthermore, if you have not learned Python Keywords Try
and Finally, you should. Here is the pseudo-code for
Challenge 4.

TIPS 4: PITCH ANGLE ESTIMATION

By now you should be familiar with using the IMU to estimate the pitch angle using Complementary Filter.
Here is a function that estimate the pitch angle, just to help you along a bit quicker. dt is delta time, the
time since the last reading in the program loop. You find dt with tic and pyb.millis(). Don’t forget to adjust
dt to seconds in your equation.

TIPS 5: PID CONTROLLER

The basic PID controller equation is straigthforward:

I recommend you to create a PID controller function (or even better, if you are good in Python coding,
create a class) that do the following:

Input to function: pitch angle, (rate of change of pitch (pitch_dot), target (or set-point), cumulative pitch
error (integral term).

Output of the function: PWM drive value limited to ±100.

You should also limit the set-point to a small value, such as ±3 degrees (say).

Finally, you will find that the IMU may NOT return a pitch angle of zero when it is upright. This is because
the centre of gravity of the Segway may not be dead centre. This depends on the position of the battery
and other factors. You therefore may need to take this into account.

𝑤(𝑡) = 	𝐾!𝑒(𝑡) + 𝐾"�̇�(𝑡) + 𝐾#+𝑒(𝜏)𝑑𝜏

Lab 7: Self-balancing Segway Imperial College London

V3.3 - PYK Cheung, 6 March 2025 Lab 7 - 3

The pseudo-code for the controller function is:

I strongly recommend you to write the PID control code as a Python class.

TIPS 6: TUNING THE PID CONTROLLER

Finally, you would need to tune the PID controller. One way to do this is to modify the program and change
the three gain values: Kp, Ki and Kd in the Python code. A much better way to do this is to use the
potentiometer on the Pybench board together with the USR switch to adjust these gain values live! Here
is the code to do that:

Once you have tuned the PID controller, you can replace the pot.read() statement with the tuned gain value.
Then to start the program, you just press the USR switch few times and the self-balancing program will run.

Based on last two years’ student experience, tuning the PID controller turns out to be a somewhat hit-or-
miss exercise. The suggestion is to provide you with some range of values:

Kp: 4 to 10, Ki: 60 to 100, Kd: 0.3 to 0.9, alpha (complementary filter): 0.93 to 0.97.

Lab 7: Self-balancing Segway Imperial College London

V3.3 - PYK Cheung, 6 March 2025 Lab 7 - 4

TIPS 7: PSEUDO-CODE FOR SELF-BALANCING, DANCING SEGWAY

Now put all these together, here is the
pseudo-code of Challenge 5 and 6 to do both
self-balancing and dancing to music:

Note that this program loop has two
timescales: the controller uses tic1, in
microseconds. The polling loop checks for 5
msec elapse time. This means the control
loop is running at round 200Hz.

The beat detection uses tic2 in milliseconds.
The loop is detecting beats at much lower
frequency.

TIPS 8: READING FROM TEXT FILES IN
PYTHON

You will be using text files to store the dancing
steps. Some other students also use text file
to store the various tuned constants and
calibrated offset pitch angles.

To read from a text file with the name, myfile.txt, you must first open it with:

f = open (‘myfile.txt’, ‘r’) # open myfile.txt and assign to file object f

Thereafter, you can read ASCII text or numbers from the file object f. For example:

value = float (f.read()) # read a floating point number stored as text

for line in f:
 print(line) # print one line at a time in f until end-of-file
f.close() # close the file

