In this lecture, we will examine a very popular feedback controller known as the proportional-integral-derivative (PID) control method. This type of controller is widely used in industry, does not require accurate model of the plant or process being controlled and can be understood by most engineers without being a control expert.
In the last lecture, we studied in some details, how proportional feedback control works. The controller for such a feedback scheme uses a proportional gain element K_p to amplify the error signal $e(t)$ and produces a drive signal $w(t)$ as input to the plant. This type of simple control system is found in many situations such as operational amplifiers you used in the first year, or a simple temperature controller you may find at home.

However, proportional-only (P) controller has a number of limitations. In order to produce the output $y(t)$ to match that of the set-point (desired value) $r(t)$ with minimal error $e(t)$, the gain K_p needs to be high. However having a large K_p can make the system unstable, especially if the plant (or processor) is 2nd order or higher.

Even if the system is not unstable and eventually settle down to the steady-state value, the system output may exhibition large overshoot transient behaviour, similar to what you saw with the Bulb Box system when it is driven by a step signal. Since such a system is prone to oscillation, it may also take a long timer before it reaches the final steady-state condition.

Finally, using P-only control may not give us the tolerance to perturbations required.

These limitations are summarised in the slide above.
The first improvement we can make is to add a derivative term to the controller. This is known as a proportional-derivative (PD) controller: \(w(t) = K_p e(t) + K_d \dot{e}(t) \). In computers, the derivative term \(\dot{e}(t) \) is usually calculated by taking the difference between current error value \(e[n] \) and the previous error value \(e[n-1] \):

\[
\text{differential term at time } n = K_d \left(e[n] - e[n - 1] \right) / \Delta t
\]

The main advantages of the PD controllers are:

1. It can reduce the overshoot of a proportional-only controller response because PD controller takes into account the rate of change in error.
2. It can also improve the system’s tolerance to external disturbances.

The first improvement we can make is to add a derivative term to the controller. The output of the controller is now proportional to the error \(e(t) \) (with a gain of \(K_p \)) and to the derivative of the error, i.e. \(\dot{e}(t) \) (with a gain of \(K_d \)). This is known as a proportional-derivative controller or PD control. The time domain relationship of the controller is:

\[
w(t) = K_p e(t) + K_d \dot{e}(t)
\]

Remember that the Laplace Transform of \((d/dt) \) is \(s \). Therefore the transfer function (in s-domain) of the controller is:

\[
G_c(s) = K_p + K_d s
\]

How can one implement the derivative term on digital hardware (such as a Pyboard or a Raspberry Pi)? The derivative term is implemented as the difference between two successive samples:

\[
\text{differential term at time } n = K_d \left(e[n] - e[n - 1] \right) / \Delta t
\]

Note that the term \(1/\Delta t \) is often “absorbed” into the derivative gain \(K_d \).

What does the derivative term do to the behaviour of the system? The derivative term acts as “brake” to the system. As the error is reducing (rate of error is negative), it reduces the drive to the plant (i.e. braking), and therefore prevents overshoot.

The derivative term can also make the system more tolerant to external disturbances.
Another common improvement to the P-only control is the proportional-integral (PI) control. Here we add another term that is dependent on the integral of the error over time. The time domain description of the controller is:

$$w(t) = K_p e(t) + K_i \int e(\tau) d\tau$$

Again in practical electronics and programming, we implement the integral term as a summation (Δt is the sampling interval):

$$\text{integral term at time } n = K_i \Delta t \sum_{k=0}^{n} e[n - k]$$

The main advantages of the PI controller are:
1. It eliminates steady-state error.
2. It can help with stability of the system, especially if K_p is large.

PI controller accumulates error to produce a constant output $u(t)$ that is sufficient to drive the plant to give the desired output value $y(t)$. When that happens, $e(t) = 0$, and yet the output $y(t) = r(t)$ is maintained. It can be seen that this cannot be achieved with P-only controller. For example, in order to drive a DC motor at a certain speed, we need the input PWM duty cycle to be $w(t) = \text{pwm_value}$. With proportional gain we need an error $e(t) = \text{pwm_value} / K_p$. Unless K_p is infinite, $e(t)$ is NOT 0.

However, with PI controller, the integral term will accumulate to pwm_value and now $e(t) = 0$ and $w(t)$ will stay constant.

A PI controller will work with the P term gain $K_p = 0$ (i.e. I-only control), but its response to a step input would be slower. The integral action will take time to reach the desired value. However, PD controller WILL NOT work with D-only!
Finally, we can combine all three terms (P, I and D) together to make a PID controller. This has all the benefits of proportional control, integral control and derivative control. Not that PID control is a generalised version of all the other forms with the appropriate gains set to some constant or 0.

The time domain formulation of a PID controller is:

\[u(t) = K_p e(t) + K_i \int e(\tau) d\tau + K_d \dot{e}(t) \]
In practical implementations, we can compute the three terms separately and then add them together as shown in the block diagram here.
Here is a nice video explaining the idea of PID control without mathematics. The example used is that of driving a car by stepping on the accelerator pedal. The control variable is speed of the car. The actuation variable w(t) is the rate of change of angle of the pedal.

You can watch this video via this link:

https://www.youtube.com/watch?v=XfAt6hNV8XM
PID control structure is therefore very general. Designing a controller for a given plant or process requires us to determine the correct value for K_p, K_i and K_d. This process is known as "tuning" the controller.

Impact of various gains on step response of a system:

<table>
<thead>
<tr>
<th>PID Gain</th>
<th>Percent Overshoot</th>
<th>Settling Time</th>
<th>Steady-State Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing K_p</td>
<td>Increases</td>
<td>Minimal impact</td>
<td>Decreases</td>
</tr>
<tr>
<td>Increasing K_i</td>
<td>Increases</td>
<td>Increases</td>
<td>Zero steady-state error</td>
</tr>
<tr>
<td>Increasing K_d</td>
<td>Decreases</td>
<td>Decreases</td>
<td>No impact</td>
</tr>
</tbody>
</table>

We will now consider two approaches to tuning the PID controller:

1. Ziegler-Nichols method
2. Trial-and-error manual tuning

PID control structure is therefore very general. Designing a controller for a given plant or process requires us to determine the correct value for K_p, K_i and K_d. This process is known as "tuning".

Before we consider how to tune a PID controller, you should know the effect of each of increasing K_p, K_i and K_d on the feedback system behaviour in terms of overshoot, settling time and steady-state error (i.e. $e(t)$ value after the system settle to final condition).

This is shown in the table above.

We will next consider two common approaches to tuning a PID controller.
The first method was introduced by J. G. Ziegler & N. B. Nichols back in 1942. The steps are explained in the slide above.

Note that the Z-N tuning method may not provide you with the optimum performance or best disturbance tolerance. It however does provide a guide on how to set the different gain values for a reasonably good control system.

Also, in this formulation, the gain terms are all expressed in terms of Ku (Kp is factorised to outside the brackets), and the oscillation period Tu (Ti and Td are specified in terms of Tu).
A good alternative to the Z-N tuning method is one described here. This does not involved measuring the oscillation period, or just setting gain values based on measured parameters.

Instead it uses a trial-and-error approach: in turn pushing Kp, then Kd and Ki to the limit until the system becomes unstable, and dial each back to half way or smaller.
Finally, let me relate what you have learned in feedback control to the team project. The task at hand is to balance the Segway so that it can stand upright without falling over. The system (the plant) is inherently unstable (i.e. will NOT balance on its own). Feedback control is necessary for the Segway to self balance.

The variable under control is NOT speed of the Segway, but its pitch angle. To do that, we will use a PID controller.

The pitch angle is measured and is compared to the set-point, which is zero if the Segway is upright. This error is multiplied by Kp and used as part of the PWM value to drive the motors in the direction that corrects the error.

The derivative control is NOT achieved by differentiating the error e(t). Instead we will use the gyroscope reading for \(y \)-axis, which measures the rate of change of the pitch angle (i.e. \(\dot{\theta} \)). We multiple \(\dot{\theta} \) with Kd to get the derivative term. Finally we integrate the value \(\theta \) and multiply this with Ki to get the integral term. Now we add these together to provide the drive to the motors. Remember that we need to limit this value to +/- 100 (duty cycle cannot exceed 100, and +/- indicates direction of motor).

To move the Segway forward or backward, all you need is to change the set-point (target pitch angle). This is actually how it works on a real Segway.

Finally turning can be achieved by changing the ratio of the PWM values driving the left and the right motor. Having the two wheels at different speed will make the Segway turn.