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The first lecture is an introduction to signals from the time domain perspective.  
This lecture will be slightly longer than 50 minutes.  The main focus is a revision of 
some of the materials covered last year, but I am taking a more mathematical 
modeling approach to signals with voltages expressed as a function of time.

In the next lecture, I will take an alternative view, where signals will be considered 
not as functions of time, but of frequency.

Lecture 2 Slide 1PYKC  16 Jan 2025 DESE50002 -  Electronics 2

Lecture 2

Signals in Time Domain

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

Peter Y K Cheung

Dyson School of Design Engineering
Imperial College London



2

Here are three examples of signals that we often encounter, and require some form 
of “processing”.  Firstly is the cardiac signal that your doctor may acquire.  This is a 
continuous time signal, which is almost (but not exactly) periodic.  The importance 
of this signal lies in the detail features appearing in the voltage vs time curve.

Another type of signal is actually NOT a real signal.  For example, the plot of FTSE 
100 index as it varies throughout the day is essentially numbers that are man-
made, and it is discrete in nature, expressed as a sequence known as a time series.  
However, we often treat such a time series as a signal and apply the conventional 
processing techniques to perform prediction, analysis and the like!
Finally, shown here is a 2-dimensional MRI scan image of a brain.  This is actually a 
function of intensity (of the image as pixels) in 2-D space .  Therefore the 
independent variables are the x and y coordinate, and NOT time.  However, signal 
processing techniques are applicable to such signals, not only as a function of 
distance (space), but also in 2 or more dimensions.
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Examples of signals

 Electrocardiogram 
(ECG) signal

 FTSE 100 index in a day as signal (time series)

 Magnetic Resonance 
Image (MRI) data as 
2-dimensional signal
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Here is 7 separate classifications of signals.  Often such classification does not 
appear that useful.  However, they are actually very important in signal processing 
because each class of signal has its own unique set of properties, significance and 
implications. 
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Signals Classification (1)

 Signals may be classified into:
1. Continuous-time and discrete-time signals
2. Analogue and digital signals
3. Periodic and aperiodic signals
4. Energy and power signals
5. Deterministic and probabilistic signals
6. Causal and non-causal 
7. Even and Odd signals
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We have already looked at continuous time signal such as the ECG signal, and 
discrete time signal such as the stock market or the UK growth rate in the last few 
years.

Although real physical signals (such as ECG) are generally continuous in nature, we 
almost always process such as signal using computers.  Therefore, in practice, signal 
processing are usually perform in the discrete time domain.  The process of turning 
a continuous time signal to a discrete time signal is known as sampling.  We will 
consider the mathematics relating to sampling in a later lecture.
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Signal Classification (2) – Continuous vs Discrete
 Continuous-time (CT), 

e.g. ECG signal

 Discrete-time (DT), 
e.g. UK growth rate
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Signals can be analogue or digital. Again most real signals are analogue in nature, 
but digital computers need to process this as numbers with discrete levels.  The 
process of turning an analogue signal to a digital signal is through A-to-D 
converters.

It is important to note that digitising an analogue signal introduces error (or 
distortion) and therefore it inherently a “corrupting” process.  Digitizing a signal 
introduce quantization noise.  In contrast, the process of sampling, done properly, 
will not corrupt the signal.  We can always recover the original continuous time 
signal from the discrete time version perfectly. (At least this is theoretically 
possible).
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Signal Classification (3) – Analogue vs Digital

Analogue, continuous

Digital, continuous

Analogue, discrete Digital, discrete
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Signals can be periodic or not.  ECG is approximately periodic, and speech signal is 
definitely NOT periodic.  

If a signal is periodic with period To, then it has a fundamental frequency 1/To.  An 
example of this is the note from a tuning fork – which is almost a perfect sinewave 
of a known frequency.
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Signal Classification (4) – Periodic vs Aperiodic

 A signal x(t) is said to be periodic if for some positive constant To

 The smallest value of To that satisfies the periodicity condition of this 
equation is the fundamental period of x(t).
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A signal can be deterministic or random.  

Real signals are generally not completely deterministic, but many signals can be 
approximated by the sum of a deterministic component with random noise added.  
Often, the deterministic part of the signal is what you want to retain, and the 
random part is what you want to get rid of.
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Signal Classification (5) – Deterministic vs Random

Deterministic

Random
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Causal and non-causal simply refers to whether the signal has zero amplitude at 
time ≤ 0. If a signal x(t) = 0 for all t ≤ 0, it is known as causal.  Otherwise, it is non-
causal.
All real physical signals has a definite start and therefore it is causal. However, with 
the help of digital circuits and delay components, we actually can now processing 
signals and “pretend” that they are non-causal.  We will see more of this later on in 
the course.
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Signal Classification (6) – Causal/Non-causal, Even/Odd

Causal Non-causal
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The first issue to consider when encountering a signal is to ask “how big is it?”  

What is meant by “size” of a signal?

One useful measure of a signal size is its energy measure as defined here in the 
slide.

The square term (of voltage, say) ensures that the sign of the signal x(t) does not 
matter.  (Otherwise, there is a danger that positive and negative parts of the signal 
cancel out each other.)  The integration is over the duration of ±∞.

To be more general, the signal x(t) could be complex (i.e. with real and imaginary 
parts).  What does a complex value mean?  It means that the signal not only have 
magnitude, but also has phase information.  For example if you are dealing with a 
sinusoidal signal, then the magnitude determines the signal amplitude (or peak 
value), and the phase determines the starting position at time 0.

Since the definition of energy of a signal requires integral over infinite time, this 
measure is only useful if the energy is finite.  That is, as |t| à infinite, the signal 
amplitude must à 0.
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Size of a Signal x(t) as energy

 Measured by signal energy Ex:

 Generalize for a complex valued signal to:

 Energy must be finite, which means

Ex = x2(t)  dt
−∞

∞
∫

Ex = x(t) 2  dt
−∞

∞
∫

signal amplitude → 0  as t →∞

x(t)

t
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What happens if the signal does not have finite energy?   What does this mean 
anyway? 

For example, if you are considering the signal of the power mains from your 
household power socket. For all intend and purposes, the mains signal (50 Hz at 
230V RMS) is continuous (i.e. goes on forever).  Therefore when we consider the 
size of such as signal, we don’t use energy – we use POWER instead as define 
above.

In other words, 
 POWER = ENERGY / TIME,  and

 ENERGY = POWER x TIME
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Size of a Signal x(t) as power
 If amplitude of x(t) does not ® 0 when t ® ¥, need to measure power Px instead:

 Again, generalize for a complex valued signal to:

Px = lim
T→∞

1
T

x2(t)  dt
−T /2
T /2
∫

Px = lim
T→∞

1
T

x(t) 2  dt
−T /2
T /2
∫

 Signal with finite energy 
(zero power)

 Signal with finite power 
(infinite energy)
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When we consider signals as a function of time, there are a number of useful 
mathematical models that are being used very often.

Perhaps the most common is to express a signal with a certain time delay as shown 
above.  Note that advancement in time is simply a delay of –T.
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Useful Signal Operations –Time Shifting (1)

 Signal may be delayed by time T:

 or advanced by time T:   
f (t – T) = x (t)

f (t + T) = x (t)
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Another mathematical model we often use is the stretching and compression of a 
signal in time. 
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Useful Signal Operations –Time Scaling (2)

 Signal may be compressed in time 
(by a factor of 2):

 or expanded in time (by a factor of 2):

 Same as recording played back 
at twice and half the speed 
respectively

φ (2t) = x(t)

φ (t / 2) = x(t)
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The third common operation on a signal is time reversal.  This may not appears that 
practical. (Who would play a tape back to front?)

However, as you will find out later on the course when we consider a common 
signal processing operation known as “convolution”, time-reversal plays a very 
important part.

Time reversal is achieved by simply reversing the sign of the time variable.
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Useful Signal Operations –Time Reversal (3)
 Signal may be reflected about the 

vertical axis (i.e. time reversed):

 We can combine these three operations.

 For example, the signal x(2t - 6) can be 
obtained in two ways:

1. Delay x(t) by 6 to obtain x(t - 6), and then 
time-compress this signal by factor 2 
(replace t with 2t) to obtain x (2t - 6). 

2. Alternately, time-compress x (t) by factor 2 to 
obtain x (2t), then delay this signal by 3 
(replace t with t - 3) to obtain x (2t - 6).
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Next let us consider  a number of important time domain signals that will be use 
throughout this course.

Most important is the step function as shown here.  Step signal is common – an 
instruction to a robot arm moving from A to B can be model as a step signal.  As will 
be seen later on this course, the response of a system to a step signal input (known 
as the “step response”) will characterise the entire system.

We often use the step function u(t) in modelling a causal signal.  Here is a decay 
exponential that is causal.  We simply multiply the exponential function with the 
step function!
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Signal Models (1) – Unit Step Function u(t)

 Step function defined by:

 Useful to describe a signal that begins 
at t = 0 (i.e. causal signal).

 For example, the signal            
represents an everlasting exponential 
that starts at t = -¥.  

 The causal for of this exponential can 
be described as:  
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Pulse signals are obvious.  Less obvious is how to model this as the sum of two step 
functions with two different delays, one by 2 time units, and another by 4 time 
units:
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Signal Models (2) – Pulse signal
 A pulse signal can be presented by two step functions:
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Impulse function is one of the most important functions in signal processing.  It is 
sometimes known as the Dirac function, after the mathematician Paul Dirac.

It is also known as the delta function and is written as d(t).

Unit impulse is a spike at t=0, and that its area is exactly = 1. 

An impulse function can take on many other forms.  For example, it can also be a 
pulse with with ±e/2,  and the amplitude of the pulse is 1/e.  It is centred at t = 0, 
and the area of the pulse (i.e. under the curve)  is again exactly 1.
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Signal Models (3) – Unit Impulse Function d(t)

 First defined by Dirac as:

Unit Impulse
Approximation of 

an Impulse
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If we have a time domain function  f(t) and multiply this with the impulse d(t), we 
basically extract or sample the signal f(t)  at t = 0.

Therefore if we now delay the impulse function by T, then what we get is the value 
of f(t) at t = T.  In otherwise, we are sampling the function f(t) at T.  Therefore 
impulse function has a SAMPLING property.
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Multiplying a function F(t) by an Impulse
 Since impulse is non-zero only at t = 0, and F(t) at t = 0 is F(0), we get:

 We can generalise this for t = T:
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Let us consider what happens when we multiply the unit impulse 𝛿 𝑡  by a function 
𝜙(𝑡) that is continues at t = 0.  Since the impulse has nonzero value only at t=0, and 
the value of 𝜙(𝑡) at t=0 is 𝜙(0), we obtain:

𝜙 𝑡 𝛿 𝑡 = 𝜙 0 𝛿 𝑡

In order words, multiplying a continuous function 𝜙(𝑡) with a unit impulse at t = 0 
results in an impulse, also located at t=0 and has strength of 𝜙 0 .

We can now generalise this results by time-shifting the impulse function by 
delaying it by T.  If you multiple 𝜙(𝑡) 𝛿 𝑡 − 𝑇 , which is an impulse located at t=T, 
we get:

𝜙 𝑡 𝛿 𝑡 − 𝑇 = 𝜙 𝑇 𝛿 𝑡 − 𝑇

Let us integrate this for t from −∞ to +∞, we get:

,
!"

"
𝜙 𝑡 𝛿 𝑡 − 𝑇 𝑑𝑡 = 𝜙(𝑇)

This result means that    the area under the product of a function with an impulse 
𝛿(𝑡) is equal to the value of that function at the instant at which the unit impulse is 
located.  This property is known as the sampling property of the unit impulse.
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Sampling Property of Unit Impulse Function
 Since we have: 

 It follows that:

 This is the same as “sampling” 𝜙(𝑡) at t = 0.

 If we want to sample 𝜙(𝑡) at t = T, we just multiple 𝜙(𝑡) with 𝛿(𝑡 − 𝑇)   

 This is called the “sampling property” of the unit impulse.

!
!"

"
𝜙 𝑡 𝛿 𝑡 − 𝑇 𝑑𝑡 = 𝜙(𝑇)

𝜙 𝑡 𝛿 𝑡 = 𝜙 0 𝛿 𝑡

!
!"

" 𝜙 𝑡 𝛿 𝑡 𝑑𝑡 = 𝜙 0 !
!"

"
𝛿 𝑡 𝑑𝑡

= 𝜙(0)
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Another important function in the area of signals and systems is the exponential 
signal  𝑒#$, where 𝑠 is complex in general, given by:

Substituting this provides the following important equation:

We can compare this exponential function  𝑒#$ to the of the Euler’s formula:

Here the frequency variable 𝑗𝜔 is genearlised to a complex variable 𝑠 = 𝜎 + 𝑗𝜔.  
For this reason, we designate the variable 𝑠 as the complex frequency.

𝑠 = 𝜎 + 𝑗𝜔

𝑒!" = 𝑒($%&')" = 𝑒$"𝑒&'" = 𝑒$"(𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡)

𝑒&'" = 	 (𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡)
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The Exponential Function est  (1) 
 This exponential function is very important in signals & systems, and the 

parameter s is a complex variable given by:

𝑠 = 𝜎 + 𝑗𝜔
 Therefore

𝑒#$ = 𝑒(&'())$ = 𝑒&$𝑒()$ = 𝑒&$(𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡)    [eq 1]

 Since  𝑠∗ = 𝜎 − 𝑗𝜔 (the conjugate of s), then

𝑒#∗$ = 𝑒(&!())$ = 𝑒&$𝑒!()$ = 𝑒&$(𝑐𝑜𝑠𝜔𝑡 − 𝑗𝑠𝑖𝑛𝜔𝑡)    [eq 2]

𝑒&$𝑐𝑜𝑠𝜔𝑡 =
1
2 (𝑒

#$+𝑒#∗$)
 Eq 1 + Eq 2 gives:
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This function  is a very important.  If s = 0, then est is a sinusoidal function.  It is 
used to represent steady state signal with a frequency w. 
If s ≠ 0, then the signal either grows or decay exponentially.
Laplace and Fourier transform, which we will study in later lectures, are based on 
this exponential function.
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The Exponential Function est  (2) 

 If s = 0, then we have the function       , which has a real 
frequency of w

 Therefore the complex variable s = s + jw is the complex 
frequency

 The function est can be used to describe a very large class of 
signals and functions.  Here are a number of example:
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This four plots shows the four different possible signals represented by such an 
exponential function.
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The Exponential Function est  (2) 
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Finally, one can express the value s (which is also known as “complex frequency”, in 
a complex plane as shown here.  We call this the s-plane.  The location of the 
complex frequency of a signal will then take on the four different forms depending 
where s lies.
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The Complex Frequency Plane s = s + jw

The s-plane+jw

-jw

+s-s

s on y-axis

s on left of y-axis

s on right of y-axis

s on x-axis
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Every session, I will try to identify three things that you MUST know if you forget 
everything else.  I will call these the Big Ideas.
For today, these are:
1. Trying to determine the size of a signal is not as easy as you might think.  You 

are probably familiar with using peak amplitude to measure the size.  In the 
past, you have been exposed to the idea of “root-mean-square” or rms voltage.  
Here we define a term “energy” to measure the size of a signal.  It is similar to 
rms, but defined for signal with finite duration.
The definition shown in the slice provide two versions: one for continuous time 
signal, and the second of discrete (or sampled) time signal.  Since we will be 
doing computation on a microprocessor, the discrete time version is actually 
more useful.

2. Time-shift property of signal is very important.  We model this simply by 
changing the variable t to t-T where T is the delay time.
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Three Big Ideas (1)

1. The size of a time-limited signal is measured by it energy:

𝐸+ = !
$"

$#
𝑥, 𝑡 	𝑑𝑡 𝐸+ =	;

-./

0

𝑥,[𝑛]

2. Delaying a signal x(t) by time T can be written as:

𝑦 𝑡 = 𝑥(𝑡 − 𝑇)
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2. Unit impulse or delta function or Dirac function 𝛿 𝑡  is one of the most 
important signal.  Combining with idea 2), we can time shift this to any instance 
as 𝛿 𝑡 − 𝑇  and then use multiply operator to take a sample of a signal x(t) at 
time T.  This is called the sampling property of the unit impulse.  You will find 
this very useful to derive what happens to a continue time signal when we 
sample it at regular interval.
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Three Big Ideas (2)

3. Unit impulse or delta function 𝛿 𝑡  can be use to model 
taking a sample from a signal.  To take one sample of x(t) at 
time T is modelled as

𝑥1(𝑡) = 𝑥 𝑡 ×𝛿(𝑡 − 𝑇)

T

𝛿(𝑡 − 𝑇)

0

× =

T

𝑥$(𝑡)


