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Examples of signals

¢ Electrocardiogram 1.0l
(ECG) signal E 0l
g 0.0 .
>
+ Magnetic Resonance -1.0f
Image (MRI) data as %0 275 280 285 290 295 300 305 3.0
2-dimensional signal ' ' ' e G ' ' '

o FTSE 100 index in a day as signal (time series)
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Signals Classification (1)

¢ Signals may be classified into:

. Continuous-time and discrete-time signals
. Analogue and digital signals

. Periodic and aperiodic signals

Energy and power signals

Deterministic and probabilistic signals

. Causal and non-causal

N o o~ W N

. Even and Odd signals
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Signal Classification (2) — Continuous vs Discrete
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¢ Discrete-time (DT),
e.g. UK growth rate
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Signal Classification (3) — Analogue vs Digital

Digital, continuous
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Signal Classification (4) — Periodic vs Aperiodic

¢ A signal x(t) is said to be periodic if for some positive constant T,

x()=x(t+T) for all ¢

¢ The smallest value of T, that satisfies the periodicity condition of this
equation is the fundamental period of x(t).

NEYANE 2 YA

< Ty >
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Signal Classification (§) — Deterministic vs Random

Deterministic
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Signal Classification (6) — Causal/Non-causal, Even/Odd

AN f(t)
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Size of a Signal x(t) as energy

1.0}
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time (s) —>

¢ Measured by signal energy E,:
* 2
E, =f_oox (r) dt
+ Generalize for a complex valued signal to:

E.=[" |x@of di

+ Energy must be finite, which means

signal amplitude — 0 as |t| — o
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Size of a Signal x(t) as power

+ If amplitude of x(t) does not - 0 when t — «, need to measure power Px instead:

. 1 072 2
P, —Th_r&? X (t) dt

¢ Again, generalize for a complex valued signal to:

.1 pT2
Po=lim — [ |x)| di
T—soo T Y -T/2
+ Signal with finite energy + Signal with finite power
(zero power) (infinite energy)

VAN,
7
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Useful Signhal Operations —Time Shifting (1)

x(1)

N
+ Signal may be delayed by time T: /\ \

pE+T)=x () -

1 —

 or advanced by time T: o) =al—1)

$-1)=x () § //"‘\\\\\\\\\N_

0 -

0 I
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Useful Signal Operations —Time Scaling (2)

¢ Signal may be compressed in time
(by a factor of 2):

¢ (t/2)=x()

¢ or expanded in time (by a factor of 2):

¢ (21) = x(¢)
T, | 7T
¢ Same as recording played back |
at twice and half the speed
respectively
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Useful Signal Operations —Time Reversal (3)

¢ Signal may be reflected about the
vertical axis (i.e. time reversed):

¢(t) = x(—1)

+ We can combine these three operations.

+ For example, the signal x(2t - 6) can be
obtained in two ways:

1. Delay x(t) by 6 to obtain x(t - 6), and then
time-compress this signal by factor 2
(replace t with 2t) to obtain x (2t - 6).

2. Alternately, time-compress x (t) by factor 2 to
obtain x (2t), then delay this signal by 3
(replace t with t - 3) to obtain x (2t - 6).

2k x(?)
=2
\ 0 51—~
b —1
(a)
2 d)(t) . )C("t)
%
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Signal Models (1) — Unit Step Function u(t)

¢ Step function defined by:

) 1 t >0
) ponin
0 t <0

¢ Useful to describe a signal that begins
att =0 (i.e. causal signal).

¢ For example, the signal ¢~ %

represents an everlasting exponential
that starts at t = -o.

¢ The causal for of this exponential can
be described as:

e~ u(t)
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Signal Models (2) — Pulse signal

¢ A pulse signal can be presented by two step functions:

x(t) =u(t—2)—u(t—4)

u(t — 2)
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Signal Models (3) — Unit Impulse Function 6(t)

¢ First defined by Dirac as: 8(t) =0 t =0
o0
/ oft)dt = 1
-0
Approximation of
Unit Impulse 1 an Impulse
o(1) =
e—0
0 { — _ElE { —
2 2

PYKC 16 Jan 2025 DESE50002 - Electronics 2 Lecture 2 Slide 16



Multiplying a function ®(t) by an Impulse

¢ Since impulse is non-zero only att =0, and ®(t) att =0 is ®(0), we get:

¢ (1)d(r) = ¢(0)d(r)

¢ We can generalise this fort=T:

@)t —T)=¢(T)(t -T)

PYKC 16 Jan 2025 DESE50002 - Electronics 2 Lecture 2 Slide 17



Sampling Property of Unit Impulse Function

¢ Sincewe have: ¢ (t)5(t) = ¢p(0)5(t)

¢ |t follows that: joo d)(t)5(t)dt — ¢(0) j 5(t)dt
7 = ¢(0)
¢ This is the same as “sampling” ¢(t) att = 0.

¢ I|f we want to sample ¢(t) att =T, we just multiple ¢(t) with 6(t — T)
[ o@at - e = o1y

¢ This is called the “sampling property” of the unit impulse.
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The Exponential Function est (1)

¢ This exponential function is very important in signals & systems, and the
parameter s is a complex variable given by:

S=0+jw
¢ Therefore

st — e(O'+jw)t O'tejwt

e =e = e%“(coswt + jsinwt) [eq 1]

¢ Since s* =0 — jw (the conjugate of s), then

*

eS't = e07JO)t = g0te=Jj0l — o0l(coset — jsinwt) [eq 2]

¢ Eq1+Eq?2qgives: 1
e’tcoswt = > (e5t4+es'h)
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The Exponential Function est (2)

¢ If 6 =0, then we have the function ¢/#*, which has a real
frequency of

¢ Therefore the complex variable s = o + jw is the complex
frequency

¢ The function ¢ can be used to describe a very large class of
signals and functions. Here are a number of example:

1. A constant k = ke" (s =0)

2. A monotonic exponential e’ =0, y=0o)

3. A sinusoid cos wt (o =0, s =Fjw)

4. An exponentially varying sinusoid e’ cos wt (s =0=x jw)
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The Exponential Function est (2)
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The Complex Frequency Plane S =

o+ jw

>+O-

y Ho The s-plane
S on y-axis |
s on right of y-axis
s on left of y-axis \ / VA
/\ N ] [ ~~g<0
i . S on x-axis
A0
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Three Big Ideas (1)

1. The size of a time-limited signal is measured by it energy:
t, N
E, = f x2(t) dt E, = Z x4[n]
t n=1

2. Delaying a signal x(t) by time T can be written as:

y() =x(t—T)
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Three Big Ideas (2)

3. Unit impulse or delta function 6(t) can be use to model
taking a sample from a signal. To take one sample of x(t) at
time T is modelled as

xr(t) = x(t)X6(t —T)

x’T/(t)
/ X 5t-T) = |
_— [ =
T 0 T T '
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