Imperial College
London

Lecture 3

Frequency Domain view
of signals

Peter Y K Cheung

Dyson School of Design Engineering
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2 _EE/
E-mail: p.cheung@imperial.ac.uk

PYKC 16 Jan 2025 DESE50002 - Electronics 2 Lecture 3 Slide 1



Example — Seimic signal measured in Alaska due to
Sumatra Earthquake in 2004
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Three stations recorded data for analysis
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Frequency domain view of signal — more informative
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Prediction of Tides

SPRING TIDE lunar tide solaf tide
ne.w moon full moo'n
third quarter
NEAP TIDE ' b i
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' first quarter
moon

A havntfi indvr rom

¢ Early scientists:
e [saac Newton
e Joseph Fourier
e William Thomson (Lord Kelvin)
e Pierre-Simon Laplace

http://oceanmotion.org/html/background/tides-observing.htm
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Periodicity of the Tides
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Tides decomposed into periodic constituents
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Kelvin’s Tide Prediction Machine

First tide prediction computer

William Thomson (Lord Kelvin)
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Animation of the Tide Prediction Machine

https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3
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Time vs Frequency view of a sinewave

¢ Sinewave (sinusoidal
signal) in time domain
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Two sinewaves

¢ Adding 440Hz to 1kHz 51 f ‘l
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Key idea — Fourier’s theory

¢ Basic idea — any time domain signal can be constructed from weighted
linear sum of sinusoidal signals (sine or cosine signals) at different
frequencies.

¢ For example:

Time
Amplitude — Frequency f
A — Frequency 3f
- Frequency 9f

AAAAAAAAAAAAAAA
\/ v \J \/

Time
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Spectrum - Frequency domain representation

¢ Instead of having to store individual time samples, we only need to store the
amplitude, frequency and phase of each sinusoidal signal.

Time domain

¢ Spectrum of signal in frequency domain is represented by amplitude value
for each frequency. There is also phase vs frequency, which is not shown
here.

Amplitude

A
Frequency domain

I .

f 3f of

frequency
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Amplitude

Amplitude

Another Example

¢ Here is another time domain signal that is constructed with four sine waves:

Example signal and 4 sinusoids shown in lower plot added together
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Periodic Signal & Fourier Series

¢ A periodic signal x(t) with a period of To has the property:
x(t) =x(t+T, forallt

x(t)

A VAN

= 7

+ Fourier series expresses x(t) as a weighted linear sum of sinusoids (or
expontentials) of the fundamental frequency fy = 1/Ty and all it harmonics nfy where
n=2,3,4....

x(t) = ay + Xeq1(a, cosnwyt + b, sinnwyt )  for all integers n

¢ W, is called the fundamental frequency such that (f, in cycles/sec or Hz, wg in radians/sec)
wo=2rwfy=2n/T, and nw, are the harmonic frequencies

¢ a, isthe DC (mean) value of x(t) and a,, , b,, are the Fourier coefficients at the
frequency nw,
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How to find a,?

x(t) = ag + Y1 (a, cosnwyt + b, sinnwgyt )

¢ To determine a,, we multiply both sides by cosmw,t and intergrate over Tj:
Ty

Ty
jx(t)dt = aoj dt
0 0
To
+Z anj cosnwyt dt
n=1 5

To
(0 0]
+Z b,, f sinnwyt dt
n=1
To

¢ 2nd and 31 terms integrates to zero over one period of time. Therefore only the first
term survives:

fOTOx(t)dt = ag fOTO dt =ay T,

¢ Therefore
1

Ag = T,

o x(t)dt
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How to find a, and b, coefficients? (1)

x(t) = ag + Y1 (a, cosnwyt + b, sinnwgyt )

+ To determine a,, we simply intergrate both sides of the equation over one period Ty:

Ty To
j x(t) cosmwyt dt = aOJ cos mwyt dt
0 0

To
(0 0]
+Z anf CoSnwyt cos mwyt dt
n=1
0

To
(00]
+z b, J sinnwyt cosmwyt dt
n=1
To

¢ But:

T, T, .
Jo°cosmwotdt = 0 and [ °cosnwet cosmwotdt=0 if n#m

¢ When n=m,

T, T,
Jo° cosmagt cosmaw,t dt = >
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How to find a, and b, coefficients? (2)

x(t) = ag + Y1 (a, cosnwyt + b, sinnwgyt )

+ Therefore, the ONLY term that survives after multiply by cosmw,t and integration
iS:
To

T,
Jo° x(t) cosmwgt dt = am=,

¢ Hence, a,= TifOT"x(t) cosnwytdt (m=n)
0

+ Similarly to find b ,, multiply x(t) by sinmw,t and integration over T,:

fOTO x(t) sinmwyt dt = bm%

¢ Hence, b, = TifOTO x(t) sinnwyt dt
0
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Compact form of Fourier Series

x(t) = ag + Y1 (a, cosnwyt + b, sinnwgyt )

+ A more compact form of the Fourier Series is derived with the trigonometric identity:
C cos(wot + 8) = C cos B coswyt — Csinf sin wyt
= acos wyt + b sin wyt

x(t) = ayg + Xp-q1(a, cosnwyt + b, sinnwyt )

=Cy+ Xy Cpcos( nwyt + 6,)

.
C, = \/anz n bnz amplitude

9, = tan~! — (Z_n) phase angle

where Co
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Fourier Series of common signals (1)

Time Domain
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Fourier Series of common signals (2)

d. Sawtooth

e. Rectified
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(all other coefficients are zero)
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Fourier series of an even signal

I

- -
| |
l

7'[/2 T 27 3 t =

-3 —27'[. -1 —7T/2
+ The Fourier series for the square-pulse periodic signal shown above is:

(t)—1+2( - L ios3t+ Leos5t— ~cosTt + )
X = 2 - CoS 3COS 5COS 7COS

+ The symmetry of this even signal result in three properties:

1. Such symmetry implies an even even function. Therefore the Fourier series
representation only has cosine terms which are also even functions.

2. This symmetry at t = 0 also result in phase angle at all harmonic frequencies = 0.
3. It only has odd harmonic components — no even harmonic components.
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Fourier coefficiences and waveshaping
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A Vector view of Signal

*

To understand why a signal can be represented by linear sum of sinusoidal
waveforms, it is useful to consider electrical signals as VECTORS.

A vector is specified by its magnitude (or length) and its direction.

Consider two vectors g and x. If we project g onto x,
we get cx, where c is a scalar (i.e. constant with no
direction).

If we approximate g with cx, then
g=Cx+e

e, the error vector, is minimum when it is

perpendicular to x.

cx is known as the projection of g onto x.

Dot product

¢ It can be shown (in the notes below) that:

. g X 1
y — e X . —
X-x |x[2 g g-X = |g||x|cos @
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Orthogonal Set of signals

¢ If vector g is at right angle to vector x, then the projection of g and x is zero.
These two vectors (or signals) are known to be orthogonal.

¢ It can easily be shown that two sinusoidal signals of DIFFERENT
frequencies are orthogonal to each other.

¢ The complete set of sinusoidal signals (i.e. of all possible frequency) forms a
COMPLETE orthogonal set of signals.

¢ What this means is that ALL time domain signals can be formed out of
projects (or components) onto these these sinusoidal set of signals!

¢ This is the foundation of Fourier Series and Fourier Transform, which will
be discussed further at the next Lecture.

PYKC 16 Jan 2025 DESE50002 - Electronics 2 Lecture 3 Slide 25



Three Big Ideas

1. Time domain view of a signal is often insufficient. It is often more
informative to consider how the signal would appear as a function of
frequency, in the frequency domain.

2. Any time varying signal can be decomposed into sinusoidal constituent
components of specific frequencies, phases, and amplitudes, just like the
tidal level. This is the main idea of Fourier.

3. Two sinusoidal signals of different frequencies are orthogonal to each
other, meaning that they have nothing in common, and it is not possible to
“produce” one from the other through any linear methods.
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