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Lab 3 — Bulb Board
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Bulb Board Circuit Schematic
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Transfer function of an RC circuit

¢ RC low pass filter circuit in Year 1:
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Vin(s) H(s) _Vels)

¢ Transfer function:

3

H(s)= 2% - L  :=RC

Vin(s) " 1+47ts

¢ Remember, for a 1st order system, the output step response reaches the
following percentages of final value after n x 1, n=1,2,3,...:

Time = T

27 37 47

Final value 63.2%

86.5% 95% 98.2%
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Transfer function of a light bulb

¢ In Lab 3, we use the Bulb Board system, and it was known that the light
bulb part of the system has a transfer function as shown:

p(t)
=P |isht bulb

y(t) P(s)
— o

¢ Therefore the light bulb itself has an exponential response with a time
constant T = 38 ms.

B(s) =

1

0.038s+1

Y(s)
-

PYKC 5 Feb 2024

DE2 — Electronics 2

Lecture 8 Slide 5



From Transfer function to Frequency Response

¢ Once you know the transfer function B(s) of a system, you can evaluate its
frequency response by evaluating H(s) at s = jo:

B(jw) = B(s)

S=jw

¢ Therefore, for our light bulb (not including the 2" order electronic circuit,
the frequency response is:

. —_ 1 ‘
B(jw) = (1+ 0.0385)‘S=jw
|IB(jw)| = 1 1

1(1+0.038jw)|  V1+0.0382w>2

¢ From DE1 Electronics 1, you know that this is a low pass filter — gain
drops with increasing frequency.
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Transfer Function of a 2"9 order system

¢ Let us consider a general second order system with a transfer function of
the general form:

Y(s) b,s?+ bis+ b,

X(s) T szt a:s + a,

¢ To simplify the problem a bit, let us assuming that b2 = b1 =0. The above
equation can be rewritten as:

H(s) =

by Wo°
H(s) = - =K — >
s« +a,s +ag s+ 20 wys + wy
¢ Where:
e Wy =./ay, the resonant (or natural) frequency in rad/sec
_ 4 , :
o (= Nk the damping factor (no unit) (pronounced as zeta)
e K= Z—O, gain of the system
0
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Physical meaning of wg, ¢, and K

¢ Let us take the transfer function H(s) of the 2" order system used in Bulb Box as

an example:
. . . t)
x(t) Electronic Circuit to p( X P(s)
=) cmulate a 2" order |—] (5) H(s) = : 1000

oscillatory system s”+5s+1000
e wy=+/a, =31.62, the resonant frequency = 5Hz

_ 41 _ 5 . : _
o = 2ya = 2viooo = 0.079 the damping factor (very small, ideal = 1)

b
° = a—o =1, gain of the system at DC or zero frequency
0

¢ Since the damping factor is very small (much smaller than 1), this system

Is highly oscillatory.
by Wo*
H = =K
() s?+a;s+ag %2 + 2{wys + wy?
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The importance of damping factor

¢ Let us consider the transfer function H(s) again:

H(s) bo K @’
S — —
s?+a;s+ ag S%2 4+ 20wos + wy?

+ The unit step response of the system is (i.e. x(t) = u(t),and X(s) = 1/s):

(1)02

S%2 + 20wys + wg?

Y(s) = :TH(S) = :TK

¢ We want to say something about the dynamic characteristic of this system by
finding the natural frequency w, and the damping factor (.

¢ To do that, we find need to find the root of the quadratic: s2 + 2¢cwys + wy?
_ —2Qwg £ \/(250)0)2 —4w,*
- 2
= —{wo £ wey/{% ~1
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Five cases of behaviour

¢ Depending on the value of the damping factor ¢, there are five cases of
interest, each having a specific behaviour:

H(s) o K Wo”
S) = =
s? 4+ a;s + ag %2 + 2{wys + wy?
¢ Root of denominator: s =—C(wy * wo\/fz —1
Name Value of { Roots of s Characteristics of "s"
Overdamped >1 S =-L® 5 + ")o‘/';z -1 Two real and negative roots
Critically § _ . :
Damped =1 S = -0, A single negative roots
.. . " Complex conjugate
Underdamped 0<<1 5= - . + J®,4 f1 — 52 p(,‘: ‘/_1)1, g
Undamped =0 S== jo)o Pure imaginary (no real part)
Exponential . o2 Roots may be complex or real,
Growth <0 S =—L0y, T 0u\C" =1 |yt the real part of s is always positive
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Step Response for different damping factors
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Step Response at wy, ¢ = 0.2

| 1 A & _
' - coc=0->
02} ol
O — (l)C=2
coc=4
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Frequency response of 2" order system
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Step Response of a 15t order system

¢ Consider what happens to the circuit shown here as ’:\‘v’
the switch is closed att = 0. We are interested in y(z). e
¢ Apply KVL around the loop, we get: A ]
i()R+y(t) =x(t),buti=C ;ll_i, therefore ” Q
RC 4y +y=x ——l T
dt Cmm— |

¢ This is a simple first-order differential equation with W)
constant coefficients.

A
¢ We can model closing the switch at t=0 as: 7 L LT ppee—
x(t) =V u(t)
¢ Then the solution of the differential equation is:
t
y(®) =v{1—e R ) u(®) ) .

¢ You should be familiar with this from Electronics 1 last

year: 1= RC, the time-constant
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Modelling using Laplace Transform

3 —R_
e x(t) = Vu(t) r%+ y=x C:: y@©) =v(1-e xe) u(t)
o Take LT of x(t): L{x(t)}=X(s)=L{Ixu(t)} =VxL{u(t)} = in—

+ Find transfer function H(s) of the circuit by taking the Laplace Transform of the
differential equation: sY(s) + Y(s) = X(s)

Yl 1
=>H(S)_X(S)_Ts+1 . )
o 1c(t) = Vu(t) Y(s) = H(s)i((s) =VX—X——
s-domain analysi
,'IO [ —- '_ o L' y(t) =7
T 1 i) = s+ 1
X(S) = /X ;
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Forward & Inverse Laplace Transform

¢ Remember: the definition of the Laplace Transform L is:

LLx(0)]= X (s) = [ x(n)e™ di

¢ The definition of the Inverse Laplace Transform £l is:

o+jw
L7 [X(5)]=x(0) =L. f X(s)e"ds, w —
27 o

L4.1
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Finding Inverse Laplace Transform via partial fraction

1
¢ Finding inverse Laplace transform of y(s) = %x% (use partial fraction)
s+ -/t

1 1 k k
Y(s) =—X /1 =4 21
S S + /T

s+l s
¢ To find k; which corresponds to the term (s+0) in denominator, cover up (s+0)
in Y(s), and substitute s = 0 (i.e. s+0=0) in the remaining expression:
1o A
ki =—X T
S s+ /T

=1

s=0

+ Similarly for k, cover the (s+1/t) term, and substitute s = -1/t, we get:
1 1
k2 = —X /I
S s+ /T
¢ Therefore ) 1 1
Y(s) =——
s s+ 1/;

=—1

S=_1/T
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From Laplace Domain back to Time Domain

1
0/\3 x(t) = Vu(t) Y(s) = H(s)X(s) =V %Xs +/§/
1 s-domain analysis 1 !
,IO _— — Hes) = 1/ EI mp V(1) =7
T 1 VT s+ 1/;
X(s)=Vx—
S
1
¢ So,weget: Y(s) V(S o 1/T)
L
¢ Use Laplace Transform table, pair 5: ertu(t) < S%

LYY (s)}=VL {%— } =V (u(t) — e_i_ u(t)) =Vx(1 - e_%Xu(t)

S+1/T

¢ Same as results from slide 14 using differential equation.
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Another Examples of Inverse Laplace Transform

¢

/@;2_5

Finding the inverse Laplace transform of
s+ 1))s+ 2)

The partial fraction of this expression js less straight forward. If the
power of numerator polynomial (M)/is the same as that of denominator
polynomial (N), we need to add the coefficient of the highest power in the
numerator to the normal partialfraction form:

ki k>
X(s) LD+ — + ——
{ s+1 s+2
_ _ b 25+ 5 _ 245
Solve for k; and k, via “covering”: N sy
25 +5 8+5

Therefore  x(s) =2+ =~ 713 T G+ DRSS -, -2+ ’
Using pairs 1 & 5: j

x(t) = 28(t) + (Te™" — 13e )u(t) e
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A video demonstrating an underdamped oscillatory system
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The Millennium Bridge
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