Dyson School of Design Engineering

Imperial College London
DE2 Electronics 2
PyBench User’s Manual
Overview

PyBench is a specially designed board to support the Electronics 2 module in the second
year of our MEng degree programme. The board consist of various module and functions as
shown here:

Board Inertial Neopixel UART-WiFi
oar connector i
Setting Measurement R connector

Unit (IMU)

Analogue
1/0 pins

Organic LED
128 x 64 display
= _

= =l
\

| 2720 (
GND - Microphone &
pins Amplifier Motor
for probes

connectors

ovwe

potentiometer

Power Supply

PyBench can be powered either via the MicroUSB connect on the Pyboard, or through the
screw terminal (green). V+ is between 3.6V and 16V. For Electronics 2, you will be provided
with a 9V battery and clip. This will be used when PyBench is used in an untethered,
standalone unit later in the term and will require slight modifications.

Board Configuration Settings

The 3-ways dual-in-package (DIP) switches (red) are used to set the configuration of
PyBench as shown below as a 3-bit binary number.

MSB LSB sw[2:0] | Function

000 Run user.py

001 Not used

010 Not used

011 Wifi module Test

100 Spectrum of mic signal
101 Bulb board test

110 Pybench board Test

Setting = 1102 or 6 111 |Run pybench.py

O iy =

PYKC version 1.1 24 Jan 2022 1

When all switches are in the ‘0’ position (down), the system runs the user program with a
file name ‘user.py’. Settings 1 (001) to 2(010) are not used and can be programmed by user
by changing ‘main.py’.

Setting 3 is reserved for testing the WiFi module which is currently not installed. Setting 4
(which you used in Lab 1) perform DFT on the microphone signal and displays a live
spectrum. Setting 5 (101) is used to test the bulb board (small PCB used for Lab 3 —
Understanding Systems). It is used to calibrate the sensitivity of the light detecting diode to
the bulb intensity.

Setting 6 (110) is used for self-test. Under this setting, PyBench will enter a self-test mode
after pressing the RESET button (left). Thereafter, pressing the USER button will scan
through four tests in sequence according to the following:

Microphone and amplifier test
Inertia Measurement Unit (IMU) test
Motor test

ADC and DAC test

PwnNpE

Setting 7 (111) is the normal setting when conducting Lab Experiments. It runs the PyBench
programme ‘PyBench_main.py’ stored on the microSD card and allow the PyBench board to
be controlled via the serial USB interface.

The Pyboard microcontroller module

The Pyboard is a standalone microcontroller system using the ARM microprocessor. It has
been preprogrammed to run MicroPython (uPy) natively. Details on the Pyboard can be
found on: https://docs.micropython.org/en/latest/pyboard/general.html.

The way that we are using the Pyboard is via the MicroSD card, which contains the PyBench
software environment as explained later in this document.

Pyboard brings out many I/O pins, named as X1 to X12 and Y1 to Y12. They are connect to
various components on the PyBench PCB according to the following table:

PIN FUNCTION PIN FUNCTION

X1 Motor PWM_A/Servo 1 Y1 DT-06 WIFI Tx
X2 Motor PWM_B/Servo 2 | Y2 DT-06 WIFI Rx
X3 Motor control AIN1/Servo 3 | Y3 Swi

X4 Motor control AIN2/Servo 4 Y4 Motor sensor A_A
X5 Analogue OUTPUT Y5 Motor sensor A_B
X6 | Sw2 Y6 Motor sensor B_A
X7 Motor control BIN1 Y7 Motor sensor B_B
X8 Motor control BIN2 Y8 SWo

X9 IMU-I12C SCL | Y9 . OLED-I2C SCL
X10 IMU-I2C SDA | Y10 OLED-I12C SDA
X11 POT10K | Y11 Microphone amplifier
X12 7 Analogue INPUT ‘ Y12 NEOPIXEL

PYKC version 1.1 24 Jan 2022 2

The physical pin layout of the PYB v1.1 is summarised in the diagram below:

|micro SD slctl |USB micro-ABl
ﬁ'anme Es,l%e available timers ~ peripherals i —_—
[V }f co |—{TF] o =Of | i+ 'ONGE e [vin]
(e | s n . B
(v oo |— Bt —© —— T8 . e
(e o1 B3 of——o (LS 5 : el
[7 }{ 814 [{ERRHERRHERT, N® :.I.:@Eﬁ
[v8 | 515 a0 5@ L (B e10 [¥o |
| X9 || B6 4l @ * s wost EMH TR EHINT A7 1 X8 |
[xo}i &7 | —{B c® - = @ [26 7 |
X} c4] z 1 BB A5 X6 |
[RsT] 4 — T TENEE 2o []
: . III i N
[sv] | — B
[un} = __ BFHEREH ~o {1]

CPU pin

peripherals available timers

name name

rrrrrrrr# o

The MicroSD card and PyBench software version 3.0

When you first power up the PyBench system, it tests whether a SD card is present. If yes,
it executes the file ‘boot.py’ which in turn runs the file ‘main.py’.

‘main.py’ examines the 3-ways switch setting and acts accordingly.
Using PyBench with a computer

You can connect the PyBench system to a computer via the USB port of the PYB
microcontroller. The MicroSD card will automatically appear as a disk drive on your
computer running either Windows 10 or Mac OSX. Not driver installation is required. You
can read and write files to the SD card at will.

WARNING: DURING DISK READ AND WRITE, THE RED LED ON THE PYB BOARD WILL FLASH.
DO NOT REMOVE THE USB CABLE WHILE THE LED IS FLASHING. DOING SO WILL CORRUPT

YOUR SD CARD.

You can examine the content of the SD card installed.

It contains the PYBENCH_MK2

environment and the following MicroPython (uPy) files:

Program Purpose
boot.py First to run, the boot file specifies which is the main program.
bulb_test.py Test and calibration program for the small plug in board for Lab3. Run if SW = 101.
echo.py Test program for wifi module
main.py Test the DIP switch setting and execute the corresponding .py file.
mic.py Microphone class library to acquire signals from microphone module.
motor.py Driver class library for the motor driver chip TB6612 to drive motors.
mpu6050.py IMU driver class library — to communicate with the accelerometer and gyroscope.
neopixel.py Neopixel LED strip driver class library.
oled_938.py OLED display driver class library.
plotspec.py Plot spectrum of microphone signal on OLED in dB. Fs = 10kHz.
pybench_main.py The controlling program for PyBench to interpret commands. Run if SW = 111.
pybench.py The PyBench class library. Can be used in your own application programs later.
pybench_test.py Self-test program for the PyBench board to verify the hardware. Run if SW = 110.
font.py Character fonts used by oled_938.py.

PYKC version 1.1 24 Jan 2022

DFT package by Peter Hinch|:

Program Purpose
dft.py Fast DFT algorithm written in ARM assembly instructions.
dftclass.py MicroPython class wrapper for dft.py.
polar.py Complex coefficient to magnitude/phase translation.
window.py Application of a window function to input signal.

To develop your own uPy programmes for PyBench, you would first use something like
VSCode or PyCharm to edit y our Python script. You can then directly transfer your uPy
programs onto the SD card, which just appears as a disk drive.

PYKC version 1.1 24 Jan 2022

Using PyBench with Matlab via a USB cable

PyBench, under the switch setting of 111 (all DIP switches up), can be remotely controlled
via a serial USB cable. Coupled with another purposed written PyBench.m Matlab program,
the PyBench board becomes a programmable electronics workbench for Matlab. To
initialize the system under this setup, the following is required:

1. PyBench.m must be on Matlab’s search path.

2. Once the USB cable is installed, the following Matlab script is required:

ports = serialportlist;
pb = PyBench (ports(end));

% find the list of communication ports
% create pb as a PyBench object

3. Thereafter, the following PyBench methods are available to control the hardware:

Methods

Purpose

pb.set_sig_freq (f)

Set signal frequency to f. 0.1 Hz < f <3000 Hz

pb.set_samp_freq (f)

Set sampling frequency to f. 1 Hz < f < 30,000 Hz

pb.set max_v (v)

Set maximum amplitudetov.0<v<3.3

Set minimum amplitudetov. 0<v<3.3

pb.set_duty cycle (d)

Set duty cycle of a square signaltod. 0<d <100

pb.dc (v)

Output a dc voltagev. 0<v<3.3

pb.sine () Output a sinusoidal signal at set signal frequency between max_v and min_v.
pb.triangle () Output a triangular signal at set signal frequency between max_v and min_v.
pb.square () Output a square signal at set signal frequency between max_v and min_y,

with the set duty cycle.

Capture one sample v from analogue input. 0<v<3.3

Capture n samples from analogue input. 0 < data<3.3

Capture n samples from microphone. 0 < data<3.3

Get pitch angle p and roll angle r from the IMU. -90 < p, r < +90

Get accelerations (dx, dy, dz) in three axes from the IMU in degrees/sec.

Note that when using PyBench with Matlab, you may find that serial communication may be
lost or, in a tight Matlab infinite loop, you cannot regain control of Matlab. If this happens,

you can do the following:

1. Type CTRL+C in Command Window. If this still does not work, exit Matlab and unplug
PyBench cable. Re-start Matlab and connect the USB cable again.

2. Type CTRL+Cin Command Window. Enter fclose(instrfind());
will close the serial port.

or fclose(pb.usb);

PYKC version 1.1 24 Jan 2022 5

