

pykc 17 March 2022 1

DE2 Electronics 2
Additional notes on PID Control Class

I realised from yesterday Lab Session that many of you are struggling with PID controller.
The problem lies with the following:

1. It is generally not easy to tune a PID control of such an unstable system in the first
place.

2. It is even harder because you may have mistakes in your Python code. It is not easy
to know if the error is in the tuning or the code.

3. The derivative term is really bad for two reasons. If the measurement (e.g. motor
speed) is noisy, then the derivative of is very noisy, particularly after divided by dt
(which is small).

Theo Bui also pointed out to me the inconsistency between my lectures slides and the
instructions for Lab 7 and the Challenges. On the slides, I suggested the derivative term can
come from the gyroscope (which provide a relatively clean ptich_dot measurement). In my
Lab instruction, I suggested that you calculate error_dot by (current_error – last_error)/dt.
I was wrong!

I spent last evening thinking hard about this problem and decided to write a PID Class for
you to use. Note that I have NOT tested this, but I hope this works. There are two versions:
version 1 is designed for Challenge 5 self-balancing, where pitch and pitch_dot are
available.

Version 2 is designed for controlling the speed of the motor. You can download these two
versions from course webpage.

pykc 17 March 2022 2

Version 1 – Self-balancing control

Usage:
pid = PIDC(4.0, 0.5, 1.0) # create pid object with these Kp,Kd,Ki values
pwm, direction = pid.getPWM(0.0, pitch, pitch_dot) # work out PWM drive value

pykc 17 March 2022 3

Explanations
Control variable is pitch angle, and the output is PWM duty cycle and direction.

Lines 17 to 24: initialization code. Make these variables visible outside the class. So

you can check last error value with pid.error_last.
Line 29: calculate current error
Line 32: instead of calculating error dot, use pitch_dot from gyroscope. Allowed

here because pitch_dot is a good approximation to error_dot in this
case and it is NOT noisy.

Line 35: calculate dt in seconds to use later for integral term
Line 37: integral term
Line 40: do the PID control computation
Lines 43-44: Update “states” of the PID controller by storing previous values
Line 46: Limit PWM duty cycle to 0 to 100
Lines 48-53: Return direction of motor to achieve balance

Version 2

Here is where version 2 differs from version 1:

Line 24: No speed_dot because it is not available.
Line 30: calculate error_dot as (e[n]-e[n-1]). Assume that 1/dt is constant and

absorbed into Kd. In fact, I think you can make Kd=0.0 for motor speed
control. It is not critical here.

Also we only control the speed of the motor, not direction for this case. So, not need to
check for direction.

For Challenge 3, controlling the speed of motor, I think a simple Proportional or
Proportional-Integral controller would suffice.

