Lab 3 – Exercise 1: Measuring Angel of tilt – the IMU

- The IMU – insertia measurement unit – has built in 3-axis accelerometer and 3-axis gyroscope
- Easy to access from Matlab using PyBench:

\[
[p, r] = \text{pb.get_accel}(); \\
[x, y, z] = \text{pb.get_gyro}();
\]

- Pitch angle – plane pointing up or down
- Roll angle – plane pointing left or right
- Angle can be in unit radian or degree: \(\text{degrees} = \text{radians} \times \frac{180}{\pi} \)
- Generally use radian for calculations; use degree of display

- Learn usefulness and limitations of accelerometer and gyroscope
Lab 3 – Exercise 1a: Accelerometer

- Measure ANY acceleration
- pitch & roll angle – due to gravity g
- Movement involve force acceleration, also measured
- Accelerometer measurement of tilt angle is NOISY

Lab 3 – Exercise 1b: Gyroscope

- Gyro gives angular velocity, not angle
- Needs to integrate to get angle
- Integration = accumulation
- Also accumulate errors – causing drift (or dc offset)

```matlab
[x, y, z] = pb.get_gyro(); % angular rate in rad/sec
dt = toc; % get elapsed time
tic;
timestamp = timestamp + dt;
gx = max(min(gx+x*dt,pi/2),-pi/2); % limit to +/− pi/2
gy = max(min(gy+y*dt,pi/2),-pi/2);
plot(timestamp, gy*180/pi,'.b'); % plot pitch in blue
plot(timestamp, gx*180/pi,'.r'); % plot roll in red
pause(0.001); % delay for 1 ms, needed for plot
```
Lab 3 – Exercise 1c: Gyroscope

```
subplot(2,1,1)
axis([0 end_time -90 90]);
```

```
subplot(2,1,2)
axis([0 end_time -90 90]);
```

Lab 3 – Exercise 2: 3D visualization

```
model = IMU_3D();
subplot(2,1,1);
model.draw(fig1, p, r, 'Accelerometer');
```

```
model = IMU_3D();
```

```
model.draw(fig1, p, r, 'Accelerometer');
```
Lab 3 – Exercise 3: Complementary Filter - Concept

angle $\theta = \alpha \times \left(\theta + \dot{\theta} \, dt \right) + (1 - \alpha) \times \rho$

where
- $\alpha =$ scaling factor chosen by users and is typically between 0.7 and 0.98
- $\rho =$ accelerometer angle
- $\theta =$ output angle computed
- $\dot{\theta} =$ gyroscope reading of the rate of change in angle
- $dt =$ time interval between gyro readings

◆ What happens if $\dot{\theta}$ is zero? Effectively average out the value of ρ
◆ What happens if $\dot{\theta}$ has a small error? Effectively reduce this error over time

Lab 3 – Exercise 3: Complementary Filter - Implementation
Create peripheral objects
b_LED = LED(4) # blue LED
pot = ADC(Pin('X11')) # 5k ohm potentiometer to ADC input on pin X11

I2C connected to Y9, Y10 (I2C bus 2) and Y11 is reset low active
oled = OLED_938(pinout={'sda': 'Y10', 'scl': 'Y9', 'res': 'Y8'}, height=64,
 external_vcc=False, i2c_devid=61)

oled.poweron()
oled.init_display()

Simple Hello world message
oled.draw_text(0,0,'Hello World!') # each character is 6x8 pixels

tic = pyb.millis() # store start time

while True:
 b_LED.toggle() # read elapsed time
 toc = pyb.millis() # read elapsed time
 oled.draw_text(0,20,'Delay time:{:.3f}sec'.format((toc-tic)*0.001))
 oled.draw_text(0,40,'POT5K reading:{:5d}'.format(pot.read()))
 tic = pyb.millis() # start time
 oled.display()
 delay = pyb.rng()%1000 # Generate random number btw 0 and 999
 pyb.delay(delay) # delay in milliseconds