
Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		1	

Department	of	Electrical	&	Electronic	Engineering	

Imperial	College	London	

2nd	Year	Laboratory	

Experiment	VERI:	FPGA	Design	with	Verilog	(Part	1)	

(webpage:	www.ee.ic.ac.uk/pcheung/teaching/E2_Experiment	/)		

Objectives	

By	the	end	of	this	experiment,	you	should	have	learned:	

• How	to	design	digital	circuits	using	Altera’s	Quartus	II	Design	software;	
• How	to	design	digital	circuits	targeting	Altera’s	Cyclone	V	FPGA	using	Terasic’s	DE1-

SoC	Board;	
• How	to	design	digital	circuits	in	efficient,	synthesizable	Verilog	HDL;	
• How	to	evaluate	your	design	in	terms	of	resource	utilization	and	clock	speed;	
• How	to	use	the	DE1-SoC	FPGA	board	with	 its	custom	daughter	board	 for	analogue	

I/O	functions;	
• Have	designed	something	yourself	for	the	Cyclone	V	FPGA.	

Before	you	start	

Before	you	come	to	the	laboratory,	you	are	expected	to:	

• Have	understood	the	lectures	on	Verilog	
• Be	familiar	with	the	basic	architecture	inside	the	FPGA	
• Have	read	through	this	Laboratory	instructions	

	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		2	

Both	the	experimental	board	and	a	PC	would	be	made	available	to	you	during	your	allotted	
period	 in	 the	 second	 year	 laboratory.	 	 In	 addition,	 you	may	 also	borrow	a	DE1-SoC	board	
from	Level	1	stores	to	use	at	home	for	one	week.		If	no	one	else	has	booked	the	board,	you	
can	renew	the	borrowing	period	on	a	week-by-week	basis.	

This	instruction	manual	is	divided	into	four	parts,	one	for	each	week.		Each	part	has	its	own	
goals	and	learning	outcomes.			

Some	students	will	 find	this	experiment	harder	or	easier	 than	average,	depending	on	your	
prior	experience	with	digital	logic.		Therefore	the	four	Lab	sessions	contain	the	compulsory	s	
well	as	optional	exercisers.	If	you	fall	behind	this	experiment	during	any	week,	 it	 is	wise	to	
find	 a	 bit	 of	 spare	 time	 to	 catch	 up	 outside	 the	 official	 laboratory	 sessions	 and	 restrict	
yourself	to	the	compulsory	parts	only.	

PART	I	–	Schematic	to	Verilog	

1.0	Introduction	

You	 should	 have	 done	 some	 background	 reading	 before	 attending	 the	
laboratory	session	as	suggested	at	the	Lecture.	

FPGAs	 is	 a	 type	 of	 programmable	 logic	 devices	 introduced	 by	 Xilinx	 in	
1985.	 	 It	 is	 now	 the	 predominant	 technology	 for	 implementing	 digital	
logic	 in	 low	to	moderate	volume	production.	 	The	basic	 structure	of	an	
FPGA	 is	 shown	 below.	 It	 consists	 of	 three	main	 types	 of	 resources:	 1)	
Logic	Blocks	 (or	Elements);	2)	Routing	Resources;	3)	 I/O	Pad.	 	For	more	
information	about	FPGA,	see	Lecture	1	notes	available	on	the	E2	Digital	
Electronics	course	webpage.	

1.1	 Quartus	II	Design	Suite	

Quartus	II	provides	a	complete	environment	for	you	to	implement	your	design	
on	an	Altera	FPGA.		It	supports	all	aspects	of	the	design	flow,	which	is	typically	
following	the	flow	diagram	shown	here.		The	best	way	to	learn	Quartus	
is	to	go	through	this	experiment	step-by-step.		After	you	have	learned	
the	 basics,	 you	 can	 start	 to	 explore	 other	 aspects	 of	 the	 Quartus	
system.		

1.2	 DE1-SoC	Board	

DE1-SoC	Board	is	designed	and	made	by	Terasic.		It	is	based	around	a	
Cyclone	V	FPGA	from	Altera.		Include	on	the	DE1	board	are	various	I/O	
devices	 such	 as	 7-segment	 LED	 displays,	 LED,	 switches,	 VGA	 port,	
RS232	 port,	 SD	 card	 slot	 etc.	 A	 block	 diagram	 of	 the	 DE1	 board	 is	
shown	 below.	 	 Although	 the	 Cyclone	 V	 includes	 a	 dual-core	 ARM	
processor,	we	will	 only	 be	 using	 the	 FPGA	part	 of	 the	 FPGA	 for	 this	
experiment.		

1.4	 Verilog	Hardware	Description	Language	

One	of	 the	key	 learning	objective	of	 the	2nd	year	course	 in	digital	 logic	 (E2.1)	 is	 for	you	 to	
learn	the	Verilog	Hardware	Description	Language	(HDL),	which	is	commonly	used	to	specify	
FPGA	and	other	types	of	chip	designs.	An	excellent	tutorial	can	be	found	on:		

http://www.asic-world.com/verilog/veritut.html.	 A	 Verilog	 Syntax	 Summary	 sheet	 is	
provided	in	Appendix	A.	

	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		3	

	
Block	Diagram	of	the	DE1-SoC	Board	

1.5	 	Using	Quartus	Prime	software	and	DE1	at	home	

If	your	own	laptop	is	sufficiently	powerful	(at	least	4GB	of	RAM)	and	has	plenty	of	free	disk	
space	(at	least	1GB	of	free	disk	space),	you	may	want	to	install	a	copy	of	the	Quartus	design	
software	on	your	own	computer.	 	 The	 latest	 version	 is	Quartus	 version	16.	 	 You	may	also	
borrow	a	DE1-SoC	board	 from	the	EEE	Stores	with	your	 ID	card.	The	 lending	period	 is	one	
week	at	a	time.			You	may	renew	your	loan	of	the	board	if	no	one	else	is	on	the	waiting	list.	
Of	 course,	 the	 DE1-SoC	 board	 and	 the	 appropriate	 software	 are	 available	 anytime	 during	
working	hours	in	the	Level	1	Electronics	Lab.	

To	 install	 your	 own	 copy	 of	 Quartus,	 you	 should	 go	 to	 Altera’s	 website	 to	 register,	 then	
download	 the	 free	 Quartus	 Prime	 Light	 Edition	 from:	 http://dl.altera.com/?edition=web.		
Note	that	Quartus	and	the	DE1	board	only	works	with	MS	Windows	or	Linux.	 	 If	you	are	a	
Mac	user,	you	would	need	to	 run	a	virtual	machine	 (e.g.	VirtualBox,	Parallels	or	VMware),	
load	a	version	of	Windows	or	Linux,	and	then	run	Quartus	under	that	environment.	

Plug	the	DE1	board	to	a	USB	port	on	your	computer	and	turn	it	ON	(red	button).		It	will	ask	
you	for	a	device	driver,	which	can	be	found	in	the	Quartus	software	directory	….\drivers.		
See	“DE1-SoC	Getting	Started	Guide”	from	the	experiment	webpage.		



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		4	

Experiment	1:	Schematic	capture	using	Quartus	II	–	7-Segment	Display	

If	you	have	come	to	the	laboratory	session	prepared,	Part	I	of	experiment	VERI	should	take	
no	more	than	ONE	3-hour	session.		It	will	lead	you	through	the	entire	design	of	a	7-segment	
decoder	using	schematic	entry	method.		It	will	use	four	slide	switches	on	the	right	(SW3	to	
SW0)	on	the	DE1	board	as	input,	and	display	the	4-bit	binary	number	as	a	hexadecimal	digit	
on	the	right-most	7-segment	display	(HEX0).		

	

Step	1:		Creating	a	good	directory	structure	

Before	 you	 start	 carrying	 out	 any	 design	 for	 this	
exercise,	it	would	be	very	helpful	if	you	first	create	in	
your	 home	 directory	 a	 directory	 structure	 on	 the	
h:\	drive	for	this	experiment.	Shown	on	the	right	 is	a	
possible	 directory	 structure	 that	 you	may	 choose	 to	
create.	 	 Each	 folder	 is	 empty	 for	 now,	 but	 as	 you	
progress	 through	 the	 four	 Lab	 Sessions,	 you	 will	 be	
creating	each	design	in	each	of	the	folders.	

Step	2:		See	what	you	are	aiming	for	

Go	to	the	Experiment	webpage	(see	above)	and	download	
a	copy	of	the	solution	for	Exercise	1:	“ex1sol.sof”	to	your	
home	directory	 (or	wherever	 that	 is).	 	Now	 turn	ON	 the	
DE1	board.	

Step	3:		Programme	the	FPGA	

Start	 up	 Quartus	 software	 on	 your	 computer.	 	 Click	
command:	Tools	 >	 Programmer.	 	 In	 the	 popup	window,	
click:	Hardware	Setup	….	 	You	should	see	something	 like	
the	 diagram	on	 the	 right.	 	 Then	 select:	DE-SOC	 [USB-1].	
This	is	to	tell	Quartus	software	that	you	are	using	the	DE1-
SoC	USB	interface	to	program	(or	blast)	the	FPGA.		Then	click	Auto	Detect	
button	on	the	left.		A	window	will	pop	up	and	you	need	to	select	SCSEMA5	
radio	button	to	tell	the	system	which	type	of	Cyclone	V	FPGA	chip	you	are	
using	(which	is	5CSEMA5).	

You	will	now	see	 two	 lines	 in	 the	Programmer	window	as	 shown	on	 the	
right.		Since	we	are	only	configuring	(i.e.	sending	a	bit-stream	to)	the	FPGA	
part	 of	 the	 Cyclone	V	 chip,	we	 need	 to	delete	 the	 SOCVHPS	 (stands	 for	
System-on-Chip	V	High	Performance	System,	which	is	the	ARM	processor)	
from	the	programmer	set	up.	

Next	 click	 the	 AddFile	 button.	 Navigate	 to	 the	 folder	 containing	 the	
ex1sol.sof	file.		Select	this.		Finally	click	the	Start	button.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		5	

The	ex1sol.sof	file	contains	the	solution	to	Exercise	1	designed	by	me.		It	has	the	bit-stream	
to	configure	(or	programme)	the	FPGA	part	of	Cyclone	V.	Once	the	bit-stream	is	successfully	
sent	to	the	FPGA	chip,	this	design	will	take	over	the	function	of	the	chip.		You	should	be	able	
to	 change	 the	 least	 significant	 four	 switches	 and	 see	 a	 hexadecimal	 number	 displayed	 on	
rightmost	7-segment	display.	

You	 should	 leave	 the	 programmer	 utility	 running	 in	 the	 background	 for	 ease	 of	 sending	
another	design	to	the	FPGA	later.		Return	to	Quartus	software	by	clicking	its	window.	

Step	4:	Paper	Design	

The	 overall	 block	 diagram	 for	 the	 decoder	 is	
shown	 below.	 	 The	 decoder	 outputs	 out[6..0]	
drive	 the	 seven	 segments	 on	 the	 display.	 Note	
that	 the	 LED	 segments	 are	 low	 active,	 meaning	
that	 the	 LED	 will	 light	 up	 (ON)	 if	 the	
corresponding	digital	signal	is	at	0V.		

The	truth-table	for	the	decoder	is	shown	
here:	

With	what	you	have	 learned	 in	the	first	year,	
you	 should	 be	 able	 to	 design	 the	 decoder	 in	
the	 form	 of	 seven	 Boolean	 equations,	 and	
then	 use	 K-map	 to	 minimise	 the	 logic.	 	 In	
order	 to	 save	 time,	 only	 derive	 the	 Boolean	
equation	 for	 out[4]	 as	 a	 Boolean	 function	 of	
in[3..0].			

You	also	should	not	use	K-map	to	perform	any	optimization.	 	 	Quartus	 (and	other	modern	
CAD	design	software)	will	perform	logic	minimization	for	you	and	will	do	a	much	better	job,	
taking	into	account	the	architecture	of	the	FPGA	chip.		

Step	5:	Create	the	project	“ex1”	

• Create	in	your	home	directory	the	
folder	../part_1/ex1.			

• Click	file>New	Project	Wizard,	complete	the	form.	
Use	ex1	as	the	project	name	and	ex1_top	as	top-
design	name.			

• Select	the	FPGA	device	as	Cyclone	V	5CSEMA5F31C6.		
Then	click	Finish.	

Step	6:	Specify	the	7-segment	decoder	as	schematic	

• Download	 from	 the	 website	 the	 file:	
My7Seg_incomplete.bdf.zip	 and	 unzip	 in	 the	
folder	 ../part_1/ex1.	 	 This	 is	 a	 partially	 completed	
schematic	 for	 the	 7-segment	 decoder	 circuit	 with	
circuit	for	out[4]	missing.		You	are	now	ready	to	enter	
the	 circuit	 to	 produce	 out[4]	 as	 gates	 using	 the	
schematic	 editor.	 This	 is	 shown	 on	 the	 right	 and	 it	
implements	the	equation:	

out4	=	/in3*in0	+	/in3*in2*/in1	+	/in2*/in1*in0	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		6	

The	Graphic	Editor	provides	a	number	of	libraries	which	include	circuit	elements	that	can	be	
imported	into	a	schematic.	Double-click	on	the	blank	space	in	the	Graphic	Editor	window,	or	

click	on	 the	 icon	 	in	 the	 toolbar	 that	 looks	 like	an	AND	gate.	A	pop-up	box	will	appear.	
Expand	the	hierarchy	in	the	Libraries	box	as	shown	in	the	figure.	First	expand	libraries,	then	
expand	 the	 library	primitives,	 followed	by	expanding	 the	 library	 logic	which	comprises	 the	
logic	 gates.	 Select	 “and2”,	 which	 is	 a	 two-input	 AND	 gate,	 and	 click	 OK.	 Now,	 the	 AND	
symbol	will	appear	 in	 the	Graphic	Editor	window.	Using	 the	mouse,	move	the	symbol	 to	a	
desirable	location	and	click	to	place	it	there.		

• Repeat	 and	place	 two	 “and3”	 and	one	 “or3”	 gates	on	 the	 schematic.	 	 Change	 the	
names	of	all	the	input	and	output	nodes	accordingly.		(It	is	quickest	to	put	down	all	
the	gates	first	before	wiring	them	up	later.)	

• Now	wire	up	the	gates	by	click	and	drag	on	the	input	nodes	of	the	gates	to	extend	a	
wire	out,	and	then	simply	type	the	name	of	the	node	on	the	keyboard.		

• When	completed,	you	will	see	the	entire	schematic	diagram	for	the	decoder	circuit	
as	shown	here:	

	
Step	7:	Include	this	file	in	project	

Every	time	you	create	a	new	entity	or	module	as	part	of	your	design,	you	must	include	the	
file	in	the	project.	

• Click:	Project	>	Add	Current	Files	to	Project	….,	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		7	

Step	7:	Make	a	symbol	for	the	decoder	

It	 is	 often	 convenient	 to	 encapsulate	 a	 circuit	 into	 a	 module	 (sometimes	 known	 as	 an	
“entity”),	which	is	then	used	multiple	times	in	a	design.		For	us	to	do	so,	we	need	to	create	a	
symbol	for	My7seg	decoder	module.	

Click	File	>	Creat/Update	>	Create	Symbol	…	

	

Step	8:	Use	this	module	at	the	top-level	design	schematic	

• Now	we	will	use	the	newly	created	entity	My7seg	in	the	top-level	design.			
• Click				File	>	New	….				and	select	Block	Diagram	/Schematic	File	as	shown	here:	

• Use	 the	 	button	 to	 select	 and	 place	 the	 My7seg	 module,	 input	 port	 and	
output	port	on	the	schematic.	

• Double	 click	 the	 port	 symbol	 	to	 edit	 the	 input	 and	 output	 pin	 names	 as	
SW[3..0]	and	HEX0[6..0]	respectively.	

• Use	the	bus	wiring	 tool	 to	wire	up	 the	ports	 to	 the	module	as	 two	busses	as	
shown	below.	

• Save	this	file.	

	

Step	9:	Pin	assignment	&	Compilation	

You	need	to	associate	your	design	with	the	physical	pins	of	the	Cyclone	V	FPGA	on	the	DE1-
SOC	board.	

• Check	 that	 the	 device	 is	 corrected	 assigned	 as	
5CSEMA5F31C6	using:	Assignments	>	Device	…	

• Click:	Processing	>	Start	>	Start	Analysis	and	Elaboration.		
This	will	work	 out	 the	 input/output	 port	 names	 for	 your	
design.	 	 This	 should	 complete	without	error.	 	Otherwise,	
fix	all	errors	and	re-analyse.	(There	will	be	many	warnings	
–	generally	warnings	are	not	 important.	But	 there	MUST	
not	be	errors,	which	will	be	shown	in	RED.)	

• Click	Assignment	>	Pin	Planner			and	a	new	window	with	
the	 chip	 package	 diagram.	 You	 should	 also	 see	 the	 top-
level	input/output	ports	shown	as	a	list.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		8	

	

• Click	on	the	appropriate	pins	one	by	one,	and	select	the	corresponding	location	from	
a	dropdown	list	according	to	the	list	shown	in	the	pin	assignment	table	above.		The	
I/O	standard	(i.e.	interface	voltages)	should	be	“3.3V	LVTTL”.		

• Click:	Processing	>	Start	Compilation,	to	build	the	entire	design,	and	to	generate	all	
the	necessary	files.		There	should	be	NO	error,	but	there	will	be	many	warnings.	

Step	10:	Program	the	FPGA	on	the	DE1	Board	

• You	have	now	created	in	the	../part_1/ex1/output_files/	folder	the	file	ex1_top.sof,	
which	contain	your	design.		(This	should	be	the	same	design	as	the	one	I	gave	you	to	
try	out	in	Step	2	of	this	exercise.)		

• Program	the	DE1	board	with	your	version	of	ex1_top.sof	and	test	that	it	is	working	
properly.	

Step	11:	Propagation	Delay	from	inputs	to	outputs	

• Click:	Tools	 >	 TimeQuest	 Timing	Analyzer	 to	 invoke	 the	built	 in	 timing	analyzer	of	
Quartus.			A	new	TimeQuest	window	will	appear.			

• Click:	Netlist	>	Create	Timing	Netlist.			Then	select	post-fit	and	slow-corner,	then	OK.	
• In	the	“Set	Operating	Conditions”	window,	select	“Slow	1100mV	0°C	model”.	
• Now	 click:	 Netlist	 >	 Update	 Timing	 Netlist	 …	 	 This	 will	 use	 the	 specified	 timing	

model	and	condition	to	produce	a	set	of	timing	data.	
• Click:	Report	>	Datasheet	>	Report	Datasheet.		This	will	produce	a	table	showing	the	

input-to-output	propagation	delay	for	various	combination	of	rise	and	fall	times	(RR,	
RF,	FR	and	FF).		Make	sure	that	you	understanding	what	this	table	means.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		9	

• Repeat	 the	 procedcure	 again	 but	 for	 “Slow	 1100mV	
85°C	Model”.	What	 is	 the	delay	difference	at	 these	
two	temperature	extremes?	Why?	

Step	12:		Examine	the	resources	used	

• Now	 examine	 the	 Compilation	 Report.	 	 You	 should	
see	something	as	shown	here.	

• It	 shows	 that	 this	 design	 used	 only	 4	 out	 of	 32,070	
ALMs	(Adaptive	Logic	Modules),	11	of	the	457	I/O	pins	
and	none	of	the	other	resources.	

	

Congratulations!	You	have	now	completed	your	first	FPGA	design!	

Experiment	2:		7-Segment	decoder	in	Verilog	HDL	

I	 hope	 you	 now	 appreciate	 how	 limiting	 and	 slow	 it	 is	 to	 enter	 a	 design	 as	 a	 schematic	
diagram.		Modern	digital	designers	DO	NOT	USE	schematic	as	a	method	of	entry	any	more.		
Instead	 a	 designer	 would	 either	 use	 Verilog	 or	 VHDL	 hardware	 description	 language,	 or	
some	 high	 level	 language	 such	 as	 OpenCL	 or	 Vivaldo	 HLS	 to	 specify	 the	 design.	 In	 this	
experiment,	 you	 will	 design	 the	 Verilog	 version	 of	 what	 you	 have	 done	 in	 Experiment	 1.		
Hopefully	this	will	convince	you	never	to	use	schematic	capture	for	digital	design	again!§	

Step	1:	hex_to_7seg.v	

• Create	 a	 new	 project	 ex2	 as	 before	 and	 a	 top-
level	module	ex2_top	as	before	in	ex2	folder.	

• In	 Quartus,	 create	 a	 design	 file	 in	 Verilog	 HDL	
known	as	hex_to_7seg.v	using:	

File	 >	 	 New	 ….	 	 and	 select	 Verilog	 HDL	
from	the	list.	

• Type	 the	 Verilog	 source	 file	 as	 shown	 below.	
(You	 should	 have	 seen	 this	 during	 one	 of	 the	
Lectures	 earlier).	 	Make	 sure	 you	 pay	 attention	
to	the	syntax	of	Verilog.		Save	your	file.	

• A	 full	 compilation	 can	 take	 a	 long	 time.	 	 A	 far	
more	 efficient	 way	 to	 check	 the	 syntax	 of	 your	
code	by	clicking:		Process	>	Analyze	current	file.		
You	 should	 get	 into	 a	habit	 of	ALWAYS	perform	
this	 step	 to	 make	 sure	 that	 the	 new	 Verilog	
module	 you	 have	 created	 is	 as	 error	 free	 as	

possible.		It	will	save	you	a	lot	of	time.	

Step	2:		Create	Top-Level	Specification	in	Verilog	

• Instead	 of	 using	 schematic	 capture	 for	 the	 top-
level	 module	 (that	 connects	 to	 physical	 pins	 on	
the	 FPGA),	 we	 will	 do	 this	 also	 in	 Verilog	 by	
creating	the	file:		“ex2_top.v”	as	shown	here.		Set	
this	as	Top-Level	entity.	

• Click:	 Project	 >	 Add/Remove	 Files,	 and	 remove	
the	.bdf	file	as	part	of	this	project.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		10	

• This	allows	you	to	remove	the	.bdf	file	and	replace	it	with	the	.v	file	for	the	top-level	
specification.	

• Verify	 that	 everything	 works	 properly	 with:	 	 Process	 >	 Start	 >	 Start	 analysis	 &	
elaboration.	Make	 sure	 that	 there	 is	 no	 error.	 	 (Warnings	 often	 capture	 potential	
errors.	 	 However,	 the	Quartus	 system	 generates	many	warnings,	 and	 nearly	 all	 of	
which	are	not	 important.	 	Once	you	have	gain	confidence	on	the	system,	you	may	
start	ignoring	the	warning,	but	never	ignore	any	error.)	
	

You	will	save	a	lot	of	time	if	you	ALWAYS	use	these	two	steps:	analyze,	and	analysis	&	
elaboration,	and	ensure	that	ALL	errors	are	dealt	with	(and	warning	understood).	

	

Step	3:	Pin	Assignment	–	the	quick	way	

• Earlier	you	used	the	pin	assignment	editor	to	associate	pins	on	the	package	to	your	
signals.		This	is	a	tedious	process.		In	ex1,	if	you	have	correctly	completed	the	design,	
the	pin	assignment	would	have	been	stored	in	a	file:		“ex1_top.qsf”	file.			

• Open	this	 file,	either	using	Quartus’	built-in	editor	by	clicking:	File	>	Open	 file…	or	
use	your	own	favourite	edit	on	your	PC.			

• You	will	find	lines	of	statement	such	as:	

	
• The	first	line	defines	the	voltage	standard	used	by	the	HEX0[4]	signal	(3.3V	logic).	
• The	second	line	defines	the	physical	pin	location	of	HEX0[4]		is	PIN_AF28.	
• Now	open	the	ex2_top.qsf	file.		You	will	see	that	there	is	no	pin	assignment	for	this	

design	yet.		Before	full	compilation,	we	need	to	tell	Quartus	which	signal	is	connect	
to	which	physical	pin	on	the	FPGA.	

• Instead	 of	 using	 the	 tedious	 pin	 assignment	 editor	 in	 ex1,	 we	 will	 modify	 the	
ex2_top.qsf	file	with	our	text	editor	to	include	the	pin	assignment	information.		To	
do	this,	first	download	from	the	experiment	webpage	the	file:	pin_assignment.txt	to	
the	VERI	directory.	

• Then	use:	Edit	>	Insert	File	…		in	Quartus	to	insert	the	whole	of	pin_assignment.txt	
in	ex2_top.qsf.	

• Note	that	we	only	use	7	pins	 in	ex2_top.v,	but	pin_assignment.txt	defines	all	pins	
used	by	the	four	parts	of	Experiment	VERI.	 	Quartus	will	generate	 lots	of	warnings	
which	you	may	ignore	about	these	unused	pins	not	being	driven.		 It	will	not	create	
any	error	and	the	pin	assignments	for	unused	pins	will	be	ignored.	

Step	5:	Test	your	design	

• Recompile	your	design.	
• Go	 to	 the	 Programmer	 window	 (assuming	 that	 you	 still	 have	 it	 opened).	 	 Delete	

the	.sof	file	entry	and	add	the	current	.sof	file.				
• Test	your	design	on	the	board.	

Step	6:	Put	module	in	mylib	

Over	the	four	weeks	in	the	Lab,	you	will	design	and	verify	various	Verilog	modules	which	
you	will	 reuse.	 	You	should	copy	 these	 to	 the	“mylib”	 folder	and	 include	them	 in	your	
new	design	as	necessary.	

Note:		When	you	perform	a	compilation,	there	may	be	a	popup	window	informing	you	that	
some	“Chain_x.cdf”	file	has	been	modified,	and	ask	if	you	wish	to	save	it.	Just	click	NO.	



Experiment	VERI:	 Department	of	EEE	
FPGA	and	Verilog	 Imperial	College	London	

V4.2	-	PYK	Cheung,	15	Nov	2016	 	 Part	1	-		11	

Experiment	 3:	 Test	 yourself	 -	 10-bit	 binary	 switch	 values	 on	 three	 7-segment	
displays	

Here	 is	 a	 “test	 yourself”	 exercise.	 	 Create	 your	 own	 design	 to	 display	 all	 10-bit	 sliding	
switches	as	hexadecimal	on	three	of	the	7-segment	LED	displays.					

Checkpoint:		You	should	get	to	this	point	by	the	end	of	the	3-hour	Lab	Session	or	earlier.	

	

Experiment	4	 (optional):	Displaying	10-bit	binary	as	BCD	digits	on	 the	7-segment	
displays	

In	one	of	the	lectures,	you	have	been	taught	how	to	convert	binary	numbers	to	binary-code-
decimal	 digits	 using	 the	 “shift	 and	 add	 3”	 algorithm.	 	 You	 have	 been	 shown	 how	 to	
implement	an	8-bit	binary	to	BCD	converter	using	Verilog.		Furthermore	in	problem	sheet	1,	
you	have	been	asked	to	extend	this	to	a	10-bit	converter	(bin2bcd_10.v).	

For	this	optional	exercise,	you	are	required	to	display	the	10-bit	binary	number	as	specified	
by	the	10	sliding	switches	SW[9:0]	as	a	decimal	number	using	your	10-bit	converter	module	
and	the	7-segment	decoder.		Record	the	resource	usage	of	your	design.	

• Now	 download	 from	 the	 experiment	 website	 a	 16-bit	 binary	 to	 BCD	 converter	
module	provided	(bin2bcd_16.v),	and	replace	your	10-bit	converter	with	this	one.			

• When	instantiating	the	16-bit	converter,	but	only	using	10	of	the	16	bits,	you	should	
specify	the	input	ports	as:		{6’b0,	SW[9:0]}.		(Remember	that	the	{…}	operator	is	for	
bit-concatenation.)	

• Test	your	design	on	the	DE1	Board.			
• Compare	the	resource	usage	by	this	design	(with	bin2bcd_16.v)	with	that	using	the	

10-bit	version	 (bin2bcd_10.v).	 	You	will	 find	 that	 in	 fact	 the	number	of	ALMs	used	
will	be	the	same.			

• Basically	Quartus	optimizer	 removes	unused	 resources.	 	The	module	bin2bcd_16.v	
has	 six	of	 its	 input	 connected	 to	0,	 and	only	12	of	 its	output	 connected	 to	output	
pins.		The	CAD	software	will	eliminate	all	the	redundant	logic.		This	should	result	in	
the	same	number	of	ALM	being	used	as	that	with	a	10-bit	converter.		In	other	words,	
for	 such	 combinational	 circuit,	 you	 only	 need	 to	 keep	 the	 16-bit	 version	 for	 any	
numbers	with	16	bits	or	lower.	

	

	

Before	you	move	onto	Part	II	of	VERI,	you	should	copy	the	components	
(modules)	 you	 have	 designed	 to	 the	 “mylib”	 folder.	 	 In	 the	 following	
sessions,	 you	will	 be	using	 the	 various	 .v	 files	 from	 this	 repository	 of	
your	own	design.		You	will	also	be	adding	to	it	later.	

	


