
1

2

This lecture is designed to complement and explain Lab 6 experiment.

3

This slide is self explanatory. These are some steps you should take in order
to minimize problems that you may encounter.

4

Here is a list of common mistakes students had in the lab.

5

This shows a “processor” module, which in Task 3 does an ALL PASS function.
That is, it takes a sample from the ADC and pass this to the output and to the
DAC. Therefore everything is simply passed from input to output. In Task 4,
we create other “processor” module that perform other processing
functions.

6

This is the block diagram of the basic framework used for Lab 6 Task 3 and 4.
The analogue part of the system includes a x3 amplifier which provides an
audio signal for the full 3.3V range.
The Sallen-Key lowpass filter acts as an anti-aliasing filter (from Signals and
Systems course) to avoid corrupting signal in the lower frequency band. This
LP filter has a corner frequency of around 1kHz. Given that our sampling
frequency is 50kHz, we only need to suppress signals beyond 25kHz. We
could have used a LP filter with much higher corner frequency, e.g. 10kHz.
This will work well for our system.
The two main modules on the FPGA are spi2dac.v and spi2adc.v. They
provide SPI interface to the DAC and ADC respectively. The control circuit is
simple – a clock tick circuit generating a 50 KHz sampling clock.

7

The ALL PASS module is slightly more complex than it may appear.
Data_in[9:0] is used to represent the analogue signal input (which is bipolar)
as offset binary. There is an offset of around 512 if the input is connect to
zero (no signal). The output data_out[9:0] also has an offset. To get Vout =
0V, you need to send the binary number 512.

If you are to process the signal using normal arithmetic operators such as +, -
and *, you need to use 2’s complement number system. Therefor the ADC
data is first offset correct by subtracting the offset 512 from the converted
data to yield x[9:0]. The actual processing step is simply to store this data in
a register in 2’s complement form. Then the output y[9:0] is again converted
back to offset binary for the DAC to output. This is done by adding 512 to
y[9:0].

If allpass.v and lab6task3.v are both correctly specified, you can send in the
ADC a recorded speech signal via the 3.5mm cable, and hear the same
speech on the speaker.

8

The final task is to create an echo synthesizer. The basic idea is simple: an
echo is recreated when the listener receive the source signal via a direct path
AND a delayed echo path as shown.

In order for this to work, we need a delay component in the FPGA system.
The easiest way to achieve this is to use a first-in-first-out (FIFO). I will explain
exactly what a FIFO is in a later lecture. For now it is sufficient for you to
know that a FIFO block has data[9:0] as input, and q[9:0] as output. The
first sample that goes in is the sample the first sample that comes out. There
is a write request signal wrreq which is asserted when you want to write a
word into the FIFO. Similar a rdreq signal is asserted when you want to read
a word out from the FIFO. There is a synchronising clock signal.

Finally if the FIFO is full (in this case storing 8192 samples already), then the
full signal goes high.

This FIFO will provide 0.1638 second delay if the sampling clock is 50KHz.

9

Here is the block diagram of the processor module for a single echo
synthesizer. The FIFO control circuit is quite simple, the FSM and the AND
gate ensure that at the start, the FIFO is not read until it is completely filled.
The AND gate blocks the wren pulse from the pulse generator. Therefore for
the first 8192 conversions, the FIFO is only written to, and nothing is taken off
it.
When the FIFO is full, the FSM output goes high, and from now on, every
data written into the FIFO, another data value 8192 samples earlier is taken
off the FIFO as the echo signal. This is then scaled by a constant 0.5 (which is
an arithmetic right shift with sign extension).

10

A slight modification create a mult-echo synthesizer. Here we put the delay
element in a feedback path. Note that you MUST perform a subtract instead
of an add, otherwise the system has positive feedback and will become
unstable.

11

Challenges are created to allow you to demonstrate you have attained the
learning outcomes for this module. Therefore you are advised to complete
all 6 Labs and at least one or more challenges.

12

This should be very simple to do.

13

This challenge is easy to achieve but can be time consuming to finding an
effective way of setting the time.

14

This is a nice challenge that produces very pure sinewave that you can hear.
Try setting frequency to 440Hz – the tuning fork frequency of orchestras.

15

This is a nice challenge that produces very pure sinewave that you can hear.
Try setting frequency to 440Hz – the tuning fork frequency of orchestras.

16

This is not an easy challenge, but you will learn a lot and the end result will
be very satisfying.

17

This is a great challenge which take what you did in Lab 6 further. The end
result is most satisfying. Play the long audio book and change the delay
value. You will hear the effect of echo very clearly.

18

For those who are bored with Christmas vacation, here is a challenge beyond
all other challenges. You can construct a voice changer (one that changes the
pitch of a voice without change in speed) by implementing a system shown in
the slide. There are two delay blocks with variable delay changing in time as
shown above. You then mix the two signal paths with a variable gain.
Magically, the voice pitch will be changed.

I will demonstrate its effect during the lecture. It is quite impressive!

