
JAlexandrouStatement.md 2023-12-07

1 / 12

RISC-V RV32I Processor Coursework

Personal Statement of Contributions

Jacob Alexandrou

Overview

Sign Extension Unit

Instruction Memory

Data Memory

Jump Instructions

F1 Program

SLLI Instruction

Program

Reference Program

Features Added

Testing

Pipelining

Results

Additional Comments

Sign Extension Unit

Link to module

I made the sign extension unit for lab 4 and its structure did not need to be changed for the

implementation of the full single cycle CPU. It is quite a simple module; only having to select bits from the

input instruction and concatenate. This is done differently for each instruction type:

In the module, the type of instruction is determined by the ImmSrc control signal. I chose to set the value

of ImmSrc for each instruction type like so:

ImmSrc Instruction type

000 Immediate

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/blob/54027ed4943bb47a50a4d34860ead019083ba575/CPU/SignExtend.sv

JAlexandrouStatement.md 2023-12-07

2 / 12

ImmSrc Instruction type

001 Store

010 Branch

011 Jump

100 Upper Immediate

and then created an enum for this in the code:

typedef enum bit[2:0] {Imm, Store, Branch, Jump, UppImm} Instr_type;

Then I simply used a case statement and defined the correct bit selection for each instruction type.

Instruction Memory

Relevant commits:

Added InstrMem

The instruction memory is a ROM with a 32-bit input and output. It takes the program counter as input

and outputs the corresponding instruction.

There are a few design decisions to note here:

Firstly, the address used for the instruction in the ROM is the program counter shifted right by 2 bits:

 instr = rom_array[{2'b0, PC[31:2]}];

This is to account for the byte offset and the fact that the PC increments by 4.

Secondly, instruction hex code was provided to us as 8-bit(byte) data. Although it may not reflect how a

real RISC-V processor functions; for simplicity, and due to the fact that there is no need to select

individual bytes of the instructions in this coursework, I decided to store instructions in the ROM as 32-

bit words.

To help with this I modified the format_hex.sh shell script provided by changing the line:

od -v -An -t x1 "$1.bin" | tr -s '\n' | awk '{$1=$1};1' > "$1.hex"

to :

od -v -An -t x4 "$1.bin" | awk '{$1=$1};1' > "$1.hex"

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/5434e33336bea65689f02cd584aff006a00d3589

JAlexandrouStatement.md 2023-12-07

3 / 12

This meant the script would output 32-bit big-endian data instead of 8-bit little-endian data so I could

load the output hex files straight into the instruction memory.

Data Memory

Relevant commits:

Added DataMem

Updated cpu.sv to include data memory

Modified data memory and control signals for byte addressing

Corrected DataMem

When I first added data memory to the CPU I created a memory file very similar to the instruction

memory, except it was a RAM instead of ROM and it was possible to write to the memory when the write

enable (we) control signal was high. This was capable of running the load and store word instructions.

Later on in the design process when the load and store byte instructions were required I heavily modified

the design. I will discuss this up-to-date version.

The first change I made to the memory was to change the data size in the ROM to 8-bit, therefore

meaning that individual bytes could be easily accessed and stored when using the input address directly.

See the code for reading and writing bytes below:

Writing:

 else if (we && ByteOp) begin
 ram_array[Address] <= WriteData[7:0];
 end

Reading:

 if (ByteOp) begin
 ReadData = {24'b0, ram_array[Address]};
 end

Note: For writing bytes to memory we always select the bottom 8-bits of the write data since the store

byte instruction always stores the least significant byte in the register to memory.

You will notice in both the code snippets that the boolean ByteOp is present. This is a control signal I

added to distinguish between word and byte operations in the memory. ByteOp is set to high for the byte

instructions including SB and LBU and is low for all others.

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/b89896eea99621c5557e894e96ed3fe092693274
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/84e6cd3523cdc1fac9612c16d6d25a7571a449b0
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/c5528319f45ad3dd552e73f9799e3639bf0602c5
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/8a508d4fcfeee2a32b64aa3787a57578072ec95a

JAlexandrouStatement.md 2023-12-07

4 / 12

The final feature of the memory to note is how words are written and stored following the restructure.

This can be seen clearly from the code:

Writing:

 always_ff @(posedge clk) begin
 if (we && !ByteOp) begin
 ram_array[{Address[31:2], 2'b0}] <= WriteData[31:24];
// Big endian storage
 ram_array[{Address[31:2], 2'b0}+1] <= WriteData[23:16];
 ram_array[{Address[31:2], 2'b0}+2] <= WriteData[15:8];
 ram_array[{Address[31:2], 2'b0}+3] <= WriteData[7:0];
 end

When writing the input address is taken and the bottom two bits are replaced with zeros to ensure we

have the base word address. Following this, bytes are selected from the WriteData from most

significant to least and are stored in the base word address and the next 3 higher addresses respectively.

This means the word is stored in memory in the big-endian format.

Reading:

 ReadData = {ram_array[{Address[31:2], 2'b0}],
 ram_array[{Address[31:2], 2'b0}+1],
 ram_array[{Address[31:2], 2'b0}+2],
 ram_array[{Address[31:2], 2'b0}+3]};

Reading works in a similar way; we start by reading the byte in the base word address, then concatenate

this with the bytes in the next 3 higher addresses. The output ReadData is then the required full 32-bit

word.

Jump Instructions

Relevant commits:

Added control signals and logic for JAL and JALR

Created test program jumps.s and fixed errors in CPU

In order to implement the two jump instructions, JAL and JALR, I had to add a few features to the CPU:

�. Calculate the program counter values for each jump instruction correctly.

�. Add control logic to select the next value of the program counter for the JAL and JALR instructions

and integrate this with branch instructions.

�. Add an output and control logic to store PC+4 in the register file when a jump instruction occurs.

To calculate the program counter value for JAL I had to ensure that the control signal ImmSrc was set to

3'b011 in order to select and sign extend the correct 20-bit immediate for the J-type instruction. This

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/c7f90b038431a2868a718ab96a4e37b59cab5620
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/5f0a7563d39e276319d26a059350cd76f1d95523

JAlexandrouStatement.md 2023-12-07

5 / 12

immediate could then be added to the program counter in the same way as for branch instructions.

JALR is different in the sense that the program counter value comes from the ALU output. The instruction

uses the regular I-type extension and the immediate is added to the RD1 output of the register file.

I designed the logic to select the next program counter value as two cascading multiplexers:

(These were added as code in the PC_Next.sv module)

As above, two control signals are use to select PC_Next:

PcSrcReg is a new control signal I added that is only high for the JALR instruction.

PcSrc was the existing control signal used for branch instructions and also needs to be high for the JAL
instruction. I implemented the following logic in the ALUDecoder.sv module for this:

 always_comb begin
 casez({Jlink, func3})
 4'b1???: PCSrc_o = 1;
 4'b0001: begin // for bne, branch if alu output not zero
 if(branch && !zero) begin
 PCSrc_o = 1;
 end
 end
 default: PCSrc_o = 0;
 endcase
 end

By using a casez statement I could include don't-cares in the case statement which is what the ? are.

Jlink is high only for the JAL instruction and when this is the case, PCSrc is always high. I have only

included logic for the BNE branch instruction above; however the design is made to be easily scalable for

JAlexandrouStatement.md 2023-12-07

6 / 12

the other branch instructions by including different values of func3 in the case statement and adding

logic for them.

The last step to fully implement the jump instructions was adding the ability to write PC+4 to the register

file.

To do this I firstly had to add another output to the PC_Next component which always output the value of

the current program counter plus 4.

I then created another cascading multiplexer at the write data input of the register file. The code

implementation of this can be seen here:

 .wd3 (StorePC ? PC_Plus4 : (ResultSrc ? ReadData : ALUout)),

When the control signal StorePC is high, which is only when there is a JAL or JALR instruction, PC+4 is

written to the RegFile. In all other instructions, the write data is dependent on the ResultSrc control

signal, selecting better then ALU or data memory output.

At this point, the jump instruction were fully implemented so I wrote a quick test program called jumps.s
which featured a subroutine and used this to debug and confirm correct functionality.

Link to program here.

F1 Program

Relevant commits:

Added left shift to ALU

Updated control unit to include slli instruction

Created and tested simple f1 program

Corrected simple f1 program

Modified f1.s to run on pipelined CPU

SLLI Instruction

Before creating and testing an f1 starting light program I knew I would need to implement the shift left

logical immediate instruction (SLLI) instruction. This can be used to shift the contents a register left by a

number of bits specified in the immediate.

The implementation was quite simple; firstly adding a new ALU function which would shift ALUop1 by

ALUop2:

 LSHIFT: ALUout = ALUop1 << ALUop2;

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/blob/35b963d53edd7f8b925cd79fa52b680a9464c8ad/src/myprog/Jumps.s
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/194f6e81f202ff305ce9d08535dba87b6cc066b0
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/e6a7746c1ae94fe2af1527dc1e33c058646ea52e
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/7d13dc531af121c6103cdfe3964bde80c30fd72a
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/bed8897bd3a7b0a4d894cca0ce007a8e5ae4f5f0
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/cd04bde3ae12fc08b2df848dae1a01bbd9a26168

JAlexandrouStatement.md 2023-12-07

7 / 12

Then adding some control unit logic to set the correct value of the ALUctrl signal which can be seen in

this commit

Program

At this point, all the instructions required for f1 program were implemented so I wrote a simple version

which after some fixes looked like this:

.text
main:
 jal ra, init # execute init subroutine
loop:
 jal ra, reset # execute reset subroutine
 jal ra, shift # execute shift subroutine
 j loop # loop forever
init:
 addi t1, zero, 0xFF # load t1 with 255
 ret
reset:
 addi a0, zero, 0x0 # a0 used for output
 addi a1, zero, 0x1 # set a1 to 1
 ret
shift:
 addi a0, a1, 0 # load a0 with a1
 slli a1, a1, 1 # shift a1 left by 1 bit
 addi a1, a1, 1 # increment a1 by 1
 bne a1, t1, shift # if a1 !=255, branch to shift
 addi a0, a1, 0 # load a0 with a1
 ret

I also made a simple testbench to produce a .vcd waveform output but did not include any Vbuddy

functionality. When testing the program initially it was not functioning as intended and after examining

the waveform I realised I had somehow made it this far without making register x0 unwritable.

This was a quick fix, with line 19 of RegFile.sv being changed to:

if (we3 && ad3 !==0)

Now the register would not write if the write address was zero.

After this fix, the program worked well, and I handed over to my teammate James to modify the program

and add a testbench for Vbuddy.

I also modified my program with NOP instructions to test if it would run on the pipelined CPU.

Reference Program

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/e6a7746c1ae94fe2af1527dc1e33c058646ea52e

JAlexandrouStatement.md 2023-12-07

8 / 12

Relevant commits:

Added control signals for lui

Updated ALU for lui instruction

Fixed Rtype control signals

Updated pdf testbench so pdf.s now runs

Made testbench to run reference program on Vbuddy

Tested reference program on pipelined CPU

Modified testbench so reference program runs on vbuddy

Features Added

When provided with the reference program I created a simple testbench and tried running it on our CPU.

Unfortunately the output pdf waveform was not produced. The first error I noticed was that I has not yet

implemented the LUI instruction required for some executions of the LI pseudo instruction.

To implement this I had to add logic inside the control unit to set the value of ALUctrl to a new value (6)

for the LUI instruction. I then created a new function in ALU.sv corresponding to this value of ALUctrl
called PASSOP2 which simply passed through ALUop2 to the output. This could be used with the sign

extension for U-type instructions to execute the LUI instruction successfully.

The second bug I found during debugging was with the MemWrite control signal for R-type instructions.

It was set to high and needed to be low.

Testing

Due to the fact the program took ~150,000 clock cycles to execute, this could not all be run on Vbuddy. I

therefore created a testbench that would only plot the output data on Vbuddy once the display:
subroutine was executed in the program.

I did this by firstly adding a new line to the reference program in loop3: just before the value of a0 is set

to one of the pdf values:

LI a0, -1 # a0 = -1, this is used to control a bool in
the tesbench

As per the comment, I used this to control a boolean in the testbench called StoreNextVal. This
boolean is set to high when a0 == -1 and it tells me that in the next clock cycle, the value of a0 will be

one of the pdf values. I could then use this to store all the pdf values in an array, and output them later to

command line and to Vbuddy.

The code for storing the values looks like this:

 if (StoreNextVal) {
 if (ValuesStored <= 255) {
 Pdf_Values[ValuesStored] = top->a0;
 ValuesStored++;

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/4e4a2d0ae48c0716f1e55d7d363ada0d5b0c4d67
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/36cb8954ad44e872c26a166f0ca0b78b43921a34
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/0737ed294551ec203059c6ee195127004d3a9602
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/256b682a6b66d696ac34053d94da9146b903d1ba
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/5ac570ef7df0a8912304a4a68aba38c7fd04cf4f
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/ba17492d2c87faa9a6d64ffcedf5ca61d159924c
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/653e1e8afee4d421652a3e71d2b778744df45ac9

JAlexandrouStatement.md 2023-12-07

9 / 12

 StoreNextVal = 0;
 }
 else break;
 }

Notice StoreNextVal is set back to zero every time a pdf value is stored. The size of the array is also

limited to 255 as this is the number of pdf values the program produces.

The output section of the testbench is as follows:

for (int i = 1; i <= 240; i++){ //limit to 240 here since this is the
resolution of vbuddy display in x direction
 std::cout << "X: " << i << " Y: " << Pdf_Values[i] << std::endl;
 vbdPlot(Pdf_Values[i], 10, 190); //Scaled the display slighty so
the top and bottom values can be seen more clearly
 }

The values stored in the array are simply output to Vbuddy, resulting in very fast execution of the

program.

Pipelining

For the pipelined CPU I added many NOP instructions to the reference program to avoid hazards. This

meant that the program now took roughly 3 times as many clock cycles to run.

In addition to this the testbench had to be modified slightly so that the program would run correctly on

Vbuddy.

Since there were now two NOP instruction between the cycle the StoreNextVal boolean was set and the

moment a0 was set to the pdf value, a0 = -1 was stored to the array twice before the desired value of

a0. In hindsight I should have altered this but instead I increased the size of the array by 3 times and

added to the output section:

 if(Pdf_Values[i] != -1)

So the value would only be output to Vbuddy if it was not equal to -1.

Results

Here are examples of Vbuddy displaying the result graphs:

Gaussian:

JAlexandrouStatement.md 2023-12-07

10 / 12

Noisy:

Triangle:

JAlexandrouStatement.md 2023-12-07

11 / 12

Sine:

Additional Comments

In addition to the contributions listed above, I also did some general bug fixing and verification of the

CPU. For example:

Updated CPU so addi, bne and lw instructions are fully working

Verified basic counter program runs on pipelined CPU

To conclude, I enjoyed the time I spent working on the project and I feel satisfied that I learnt a good

amount about RISC-V, SystemVerilog and about hardware design in general. I would have liked to have

worked on the data cache and possibly other features if there was more time; perhaps I will revisit these

in the future. One thing I would do differently if I had the chance is to take the time to properly plan the

changes I made at the beginning of the project, because when I started doing this for later changes I

https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/6086ff9674b36455e1ecf331ca8581812c731c0c
https://github.com/EIE2-IAC-Labs/iac-riscv-cw-1/commit/a2f5b9865beaa997364e98eaa9f65884187b0cea

JAlexandrouStatement.md 2023-12-07

12 / 12

found I was more successful, spent less time debugging and it made the whole process more efficient

and enjoyable.

