Imperial College
) |

Lecture 8

Pipelined Processor

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 1

In this lecture, we consider how to improve the performance of a processor
using a technique known as pipelining.

The idea here is to exploit temporal parallelism. Executing an instruction
require various steps. In the single-cycle processor, these are performed one
step after another. Hence the total time taken for the processor to complete
one instruction cycle is the sum of the time taken by each of these steps or
stages.

The idea of pipelining is to divide the single-cycle instruction cycles into 5
separate stages. Then add a register between each stage so that different
stages can happen in parallel. In a5 stage pipeline, the process can be
executing 5 instructions simultaneously. Each instruction is in different stage
of completion.

This is rather like making a car in a production line. Instead of waiting for a
car to be completely built from start to finish, the manufacturing process is
divided into many stages. In this way, the factory is building many carsin a
single production line. The register is like the storage area where each stage
puts its output for the next stage to add their contributions.




Single-cyle vs Pipelined Processor

Single-Cycle

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 150

|nstr r T T T T T T T T T T T T T L
Dec ime (ps)
1 Fetch Read Execute] Memory |Wr
Instruction Reg ALU | Read / Write|Reg|
2 Fetch '?;Z Execute] Memory |Wr
Instruction ALU | Read / Write|Reg
Reg
Pipelined
Instr p
1 Fetch RDeZCd Execute Memory |Wr
Instruction ALU Read / Write |Reg
Reg
2 Fetch RDeeaCd Execute Memory |Wr
Instruction Reg ALU Read / Write [Reg
3 Fetch RDeea(; Execute| Memory |Wr
Instruction Reg ALU Read / Write |Reg|
Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Hirris and David Harris (H&H),
PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 2

Consider how a single-cycle processor executes an instruction. The steps are
dividied into five consecutive stages. The horizontal axis is time in ps, and is
roughly correct for a typical processor in 2020 technology.

Fetching instruction from memory takes around 200ps. This is mostly taken
by the memory access delay from address to data. The register address fields
of the instructions AD1, AD2 are presented to the Register File. Register File
is small and therefore has fast access time. Register operands takes, say,
100ps to be available. The ALU then takes another 120ps to perform the ALU
operation. The ALU result could be used to access data memory (e.g. as
address pointer), which takes another 200ps. Finally the memory data could
be written back to the Register File, which takes around 60ps. The total time
taken to complete this five stage execution of the instruction could be around
680ps.

In the case of a pipeline processor, each stage is now a pipeline stage taking
one clock cycle. Multiple instructions are executed at the same time, but
progressing at different stages as shown in the diagram. The cycle time is
now the longer time for any one of the stage to complete. In this case, it is
200ps. Therefore in theory, we could be executing instructions over 3 times
faster. The latency is longer, i.e. the time it takes for an instruction to
complete is 5 x 200ps = 1ns. However, 5 instructions are completed within
that time overall. Therefore pipeline processors are always faster than single-
cycle processors.



Pipelined Processor Abstraction

1 2 3 4 5] 6 7 8 9 10

»
-

Fetch Decode Exec Memory Writeback Time (cycles)

1w s2, 40(s0) [ IIEII’ I.ﬂ-l

add s3, s9, s10 MIIIIH I 53

sub s4, tl, s8 mllll’ Ilﬂ-l

and s5, sll, tO MIIIIB I|ﬂ-l

sw 6, 20 (t4)

or s7, t2, t3 M [ IIEI" I 57

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Hims and David Harris (H&H),

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 3

Here is an abstract diagram showing what happens when a 5-stage pipeline
processing executing a series of instructions as shown. A pipeline register is
inserted between stages.

Consider what happens during cycle 5. The first instruction (lw) is finishing by
writing to s2 of the Register File. The 2" instruction (add) is not really doing
much but is passing the ALU data to the next pipeline register bypassing data
memory. The 3 instruction (sub) is performing the ALU subtraction
operation. The 4% instruction (and) is fetching the operand from the Register
File. Finally, the 5% instruction (sw) is being fetch from the instruction
memory.



Adding Pipeline to Single-Cycle Processor

1
1 1 : _:.
i 1
CLK (QL: bl ! H i i
1915 WE3 [T] rote e \ WE
N\ -AE '
PCF PCEL A ro H I instd 1 A1 RD1 1 H !
i : Sl [awresum ||, oo ] | |Reacostaw Hoo
Instruction | | ! E] [PV s 1| ro2e 2M ! ot
Memory : : SrcBE ] Data H
—— A3 i
i Register X | WriteDataE: 1 | writeDatam Memory | |
i wo3 o) H WD i
1 . H : i
1 PCO e | H !
! | + 1
! 1 : 1
! 1 1
g 1
: na RdD 1| Ree 1 | Ram 1| Raw
i =
! 1 1
4 1 —] immExtd | | | immExte ! N
i 2 Extend | | i !
! 1 1
1
PCPIusAF ! pepusid | 1| popuste 1 | Peprsim H
s PCPusW
T T PCTargete | T o
! | H 1
! T T
! 1 : 1
' | | ResultW
! 1 T
! | .
Fetch 1 Decode : Execute i Memory Writeback

* Signals in Pipelined Processor are appended with first letter of
stage (i.e., PCF, PCD, PCE).
* Register file written on falling edge of CLK

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 4

Adding pipelining to the single-cycle microarchitecture is easy. We simply
insert registers between each of the five stages. The five stages are given the
names: Fetch, Decode, Execute, Memory and Writeback.

Introducing pipeline registers also create signals with the same purpose but
for different instructions. For example, the Program Counter value PC is
moving from stage to stage on each clock cycle. The PC value at the Execute
stage is for a different instruction to the PC value at the Fetch stage.

To distinguish the PC signal at different stage of the pipeline, we append the
letter F, D, E, M, and W to indicate which stage the signal has reached.

Note that the writeback to Register File now happens on the FALL EDGE of
the clock instead of the rising edge. In this way, data can be written in the
first half cycle and read back in the second half of the cycle for use in a
subsequent instruction.



Adding Pipeline to Single-Cycle Processor

PCSrcE « ZeroE
CLK . CLK CLK
( N\ | [~ 1
RegWriteD | RegwiteE: | |[~]regwritem V| Regwritew
c‘l"""‘i’t"'_ ResultSreD.o ResultSreE o ResultSrch; ResultSrcWs
" MemWriteD MemWriteE | MemWriteM
JumpD JumpE
60 BranchD BranchE
P ALUControlD; o ALUControlE;o
ALUSrcD ALUSrcE
. ct7,
5| | ImmSreD, o | |
CLK CLK — CLK
CLK 2 | L
7 WE3 RD1E N WE
0)pcr [ ]pcr instp__ ] A1 RD1
1 A RDH ALUResultM ReadDataW & 00
Instruction wnl RD2 RD2E A RDH %
Memory ™ Data
—— Memol
Register WiteDataE WiteDataht i
wps "2 wp
PcD pce | ! |
+
17 RdD RAE RaM | RdW
4 — ImmExtD ImmEXtE
N7 Extend
PCPlus4F PCPlus4D PCPIlus4E PCPlusdaM
L L] L L PCPIusaW
PCTargetE
Result’
H H Based on: “Digital Design and Computer Architecture
*  Same control unit as single-cycle processor gital Desig P

(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

e Control signals travel with the instruction (drop off when used)

PYKC 18 Nov 2025

EIE2 Instruction Architectures & Compilers Lecture 8 Slide 5

The Control Unit for a pipelined processor is the same as that for the single-
cycle processor excepted that all the control signals MUST also be pipelined
so that they arrive in synchrony to the datapath. In other words, the control
signals must travel with the data so that each stage is being controlled by the
correct signal.



Pipeline Hazards

* When an instruction depends on result from instruction
that hasn’t completed
* Two types of hazards:
— Data hazard: register value not yet written back to register file
— Control hazard: next instruction not decided yet (caused by
branch)

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 6

Running several instruction in a pipelined manner has potential of wrong
data being used. A later instruction could depend on result from an earlier
instruction that is yet to finish.

Such program introduced by pipelining is known as “Hazards”. There are two
types of hazard: Data and Control.



Data Hazard

1 2 3 4 5 6 7 8

add s8, s4, s5 m‘lil’ ﬂ i@

Time (cycles)

sub s2, s8, s3 SUbiB_?//sz
/-
¢ \

or s9, té6, s8 M ’ I 59
\
and s7, s8, t2 |EI" I S7

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 7

In the code sequence shown here, instruction 1 (add) does not produce the
correct result in s8 until cycle 5. Yet, instruction 2 (sub) uses the s8 result in
cycle 3, instruction 3 (or) uses in cycle 4 and so on. The blue arrow show
when s8 receives its correct results as compared to when it is needed by
subsequent instructions.

This is called a Read After Write (RAW) hazard. The sub instruction tries to
read s8 after the add instruction is suppose to have written it in the
instruction code sequence. However, pipelining results in the wrong data
being read.



Avoid Data Hazard in code

e Insert enough nops for result to be ready
e Or move independent useful instructions forward

1 2 3 4 5 6 7 8 9 10

add s8, s4, s5 mllll’ I 58
\
nop ==l e T TSl H]]
nop ==l e o —{ v H]]
sub s2, s8, s3 mlll" I 52
or s9, t6, s8 [m = |IEIII I@-I
and s7, s8, t2 MIll'n I 57

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

\J

Time (cycles)

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 8

A way to solve the RAW hazard problem is to avoid using the result until it is
ready to be used. This can be achieved by inserting NOP instructions (which
is a pseduoinstruction in RISC-V: addi zero, zero, 0).

In this example, inserting two NOPs after the add instruction means that by
cycle 5, s8 is updated on the first half of the cycle, and the sub instruction
now reads the correct value of s8 in the second half of the cycle. Thereafter,
s8 is also correct for the remaining instructions.

Inserting NOP instructions is a waste of cycles. So another method used in
compilers is to swap other instructions after “add” which do not rely on s8
results.



Handle Data Hazard by Forwarding

e Data is available on internal busses before it is written back to the register file (RF).

Forward data from internal busses to Execute stage.

Check if source register in Execute stage matches destination register of
instruction in Memory or Writeback stage.

If so, forward result.
1 2 3 4 5 6 7 8

add s8, s4, s5
sub s2, s8, s3 v
or s9, t6, s8 |
and s7, s8, t2 a“d

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

>
Time (cycles)

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 9

Another method to overcome the data hazard problem is to add hardware to
“forward” required data internally from earlier stages of the pipeline.

In this example s8 is written back to Register File only in cycle 5. However,
the value is available in cycle 4 after the ALU stage. Therefore it is possible to
bypass the last pipeline register, and present the ALU result directly as the
input operand for the sub instruction as shown in the diagram.

Similarly, or instruction can take the s8 results from the last pipeline register
before writeback happens.

As for and instruction, no bypassing is required because by the time “and”
needs s8, the correct data is already stored in the Register File.



Adding Hazard Unit

PCSreE ZeroE
CLK CLK CLK
) A = 7
RegWriteD RegWriteE RegWriteM RegWriteW
5‘6“‘,;"' ResultSrcDso ResultSrcE o ResultSrcM: Result$rcWio
i MemWriteD MemWriteE | MemWriteM
JumpD JumpE
BranchD BranchE
so lop
1 ALUControlD, o ALUControlE;
[o | [T auseo ALUSIE
funet?s | T mmsre, o
— |
CLK CLK CLK
CLK T . || |
- WE3 RDIE WE
L =il g (=i Y ro H insip [ A1 RD1
1 s | oo 1l [ressomanl
Instruction an| oo RO2 RD2E o
Memory Data
] A3 P’ wrtepatan | | Memery
w3 Register WD
File
PCD pce |
1915 Rs1D Rs1E
24:20 Rs2D Rs2t
1 RdD RdE]| RdM Raw
4 Extimmd | | Extihm]
317 Extend
PCPlusdF PCPIus4D PCPlusdE PCPluséM
— — — LI pePusaw
PCTargetE
ResultW
Based on: “Digital Design and Computer Architecture % §
(RISC-V Edition)” by Sarah Harris and David Harris (H&H). HE
fid Il
[ Hazard Unit ]
PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 10

To manage all these bypassing, one needs to add multiplexers a show in the
diagram above, and a Hazard Unit that detects data depency from the
instructions and determine when to and not to bypass the pipeline stages.

10



Data Hazard due to Iw Data Dependency

8

>
Time (cycles)

lw 7, 40(s5)  |MJ™ IIEII’
and s8, s7, t3 mIIE :

or t2, s6, s7

sub s3, s7, s2 I .-53

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 11

Forwarding (or bypassing) only works if the data required is already in the
pipeline. Unfortunately for the lw instruction in the example above, the
correct value of s7 is not anywhere until cycle 5. Therefore it is NOT possible
to perform forwarding to the 2" instruction (AND).

11



Stalling to solve Iw Data Dependency

1w s7,

and s8,

or t2,

sub s3,

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

40 (s5)

s7, t3

s6, s7

s7, s2

8 9

»
|

Time (cycles)

PYKC 18 Nov 2025

EIE2 Instruction Architectures & Compilers

Lecture 8 Slide 12

This problem can be solved by pausing or stalling the execution of AND and
OR instruction as shown above. In cycle 4, the Decode stage for the AND
instruction is stalled for an extra cycle, and so is the Fetch stage of the OR
instruction. Now s7 can be forwarded for the AND instruction and the OR
instruction.

12



Control Hazard

* beq, bne:
— Branch not determined until the Execute stage of pipeline
— Instructions after branch fetched before branch occurs
— These 2 instructions must be flushed if branch happens

1 2 3 4 5 6 7 8 9 10
>

Time (cycles)

20 beq s1, s2, L1
,,,,,,,,,,,,,,,,,,,,,,,,
|
24 sub s8, tl, s3 Flush |
these :
|

— e e e — —

O - - ]
28 or s9, t6, s5 °I Il.l}’ I m I instructions
t = )

2C

58 Ll: add s7, s3, sd mIIEI', I [o] 57

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 13

Control Hazard happens when we execute branch instructions. In the
example shown here, the BEQ instruction can change the control flow of the
program (to another address L1).

By the time the branch instruction is taken, two instructions following BEQ is

already in various stages of execution in the pipeline. The pipeline register
therefore contains results for SUB and OR instructions, which should not be

executed. This situation is known as Control Hazard. To overcome this
hazard, we must FLUSH or discard the data stored in the pipeline.

13



Single-Cycle Processor Performance

Program Execution Time
= (#instructions)(cycles/instruction)(seconds/cycle)
= # instructions x CPI x T,

Dec

Fetch Execute] Memory |[Wr
Element Parameter Delay (ps) Instruction R::s ALU | Read/ Write|Reg
@®  Register clk-to-Q b 40
Register setup Lsetup 50
® Multiplexer b 30 Program with 100 billion instructions:
AND-OR gate £AND-OR 20 Exec Time = # instructions x CPI x T,
° ALU fita 120 = (100 X 10%)(1)(750 X 10%2s)
Decoder (control unit) o 25 =75 seconds
Extend unit tirk 35
([ Memory read o 200
@® Register file read tREread 100

® Register file setup EREsetup 60 750pS

Based on: “Digital Design and Computer Architecture T . = t + 2t + t + t + t + t
(RISC-V Edition)” by Sarah Harris and David Harris (H&H). c_single — “pcq PC mem = “RFread = "ALU ' ‘mux ' °“RFsetup

PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 14

The performance of a processor is determined by the time it takes to execute N
instructions where N can be millions or billions.

The total elapsed time is shown by the simple equation above. CPI is the number of
clock cycles per instruction. In the case of single-cycle process, this is 1 by definition. Tc
is the cycle time of the clock, which is the time it takes for one instruction to be
completed.

The table above shows the typical delay incurred by different stages of the processor.
The ones marked in red dot are the delays that are most significant and cannot be
absorbed in anyway. For example, memory read/write operation and ALU operation
tends to dominate the delay time.

Therefore, the estimate cycle time for single-cycle processor is the sum of these
significant delay. In our example here, this amount to 750ps.

So executing 100 billion instructions using this single-cycle processor takes 75 seconds.

14



Pipelined Processor Performance

Pipelined processor critical path:
Tc_pipelined = max of

tpcq + tmem + tsetup FetCh
2(tRFread + tsetup) DeCOde
tpcq + 4tmux + tALU + tAND-OR + tsetup Execute 350pS
tpcq + tmem + tsetup Memory
2(tycq + trux + trewrite) Writeback
Program with 100 billion instructions
Execution Time = (# instructions) X CPl X T,
= (100 X 10°)(1.23)(350 X 1071?)
=43 seconds
Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H).
PYKC 18 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 8 Slide 15

For the pipelined processor, the cycle time Tc is determined by the delay of
the longest (slowest) pipeline stage. In our case, it the execute stage, which
takes 350ps.

Also, to overcome hazards caused by pipelining, we often need to stall the

processor. Therefore the Cycle per Instruction (CPI) value for pipeline
processor is always larger than 1 (i.e. takes more than one cycle to complete

an instruction). In this case, we assume CPI = 1.23.

The total time taken to complete 100 billion instructions is 43 seconds. This is
therefore 1.7X faster than the single-cycle processor.

15



