hrishi.md 2025-11-16

Contents

e Overview
e Testbenches
o CU
o F1-FSM
o Reference
= Gaussian
= Sine Wave
o M-Extension
¢ Mistakes | Made
o Key Design Decisions
¢ Reflection

Overview

As the "verification" engineer, | worked on the testbench, bash scripts and top level RISC-V processor, that |
found to be a very engaging and informative role, as | could obtain a solid understanding of each of the
major components in the processor.

| also managed our repository, making edits to comments, naming styles and branch management on Git.
This is valuable experience | am glad to have learnt on this coursework, as it is especially applicable to my
future career.

Testbenches

In the following section, | detail the key technical work | did, writing testbenches for all the verisons of our
RISC-V processor, running various programs and looking at waveforms/the behaviour displayed by the
Vbuddy where possible.

| took the decision to write overall testbenches at first, having already written an admittedly basic Control
Unit testbench, followed by, time allowing, module-wise testbenches.

As | progressed to develop testbenches and alter the of the reference program, | decided to be more
thorough with my testing, using the FSM on the pipelined and cached CPUs respectively.

When developing testbenches, | found that the edited Python Script | was using to validate our processor
through a GitHub Action did not allow me to view console outputs and debug the testbenches | was writing
for the reference programs. See here.

CuU

The final point of the Testbenches section applied mainly to the testbench | developed for the control unit,
which used assertions, a feature found in many programming languages that we learnt about in Discrete
Maths. | chose to functionalise the assertion testing, where each test case would input the *DUT (Device
Under Test), instruction word in hexadecimal, the state of the zero flag (to test behaviour of branch

1/10

https://github.com/hv122/Team7Project/commit/7f333acf8db69d323178cd7c877302c8b3061db1

hrishi.md

2025-11-16

instructions) as well as a vector containing the expected results. See the relevant commit here and the

relevant function below.

void test case u_int32_ t
int

dut—>instr = hex_code;
dut—>z_flag = z_flag;

dut—>eval();

assert(int(dut—>alu_opcode) == results[0]);
assert(int(dut—>pc_src) == results[1]);
assert(int(dut->reg_write_en) == results[2]);
assert(int(dut->rsl) == results[3]);
assert(int(dut->rs2) == results[4]);
assert(int(dut—->rd) == results[5]);
assert(int(dut—->wd3_src) == results[6]);
assert(int(dut->data_write_en) == results[7]);
assert(int(dut—>pc_target_op) == results[8]);
assert(int(dut—>alu_opl_src) == results[9]);
assert(int(dut—>alu_op2_src) == results[10]);

Initial conditions passed!

R-Type instruction test passed!
I3-Type instruction test passed!
I19-Type instruction test passed!
5-Type instruction test passed!

5B-Type instruction with z_flag low test passed!
5B-Type instruction with z_Tlag high test passed!
UJ-Type instruction passed!

All tests passed!

See the successful control unit testbench message above.

int

| then realised that the initial test was not working as intended as O is not a valid 32-bit instruction for RISC-

V, so it was deprecated.

F1-FSM

This incorporated most of the testbench previously used in Lab 3, with a few changes made myself, due to

the nature of the input signals provided to our RISC-V processor.

top—>clk ;
top—>rst g

for (simcyc = 0; simcyc < MAX_SIM_CYC; simcyc++)

{
if (simcyc > 2)

{

2/10

https://github.com/hv122/Team7Project/commit/20f5ecd235df35dac7e6e76a8d29b0df0635b894
https://github.com/hv122/Team7Project/commit/9492c02eee60ee51c6f297b38cab20465424a299

hrishi.md 2025-11-16

top—>rst = 0;
}
for (tick = 0; tick < 2; tick++)
{
tfp—>dump(2 * simcyc + tick);
top—>clk = !top—>clk;
top—>eval();
b

vbdHex (1, top—>a0 &); // changed to a@ from dout
vbdBar(top—>a0 & I
vbdCycle(simcyc);

if ((Verilated::gotFinish() || (vbdGetkey() == 'q')))
(0);

Reference Program

To run the reference program, | used whilst in the directory as instructed,
then modified the in the branch as required. | tried various different
testbenches, then employed the help of groupmates to pair program a solution that functioned how |

wanted it to.

Me and Oskar found that the .hex file were the wrong endian - they were big-endian instead of little-endian,
so we needed to generate new hex files from the assembly provided. Oskar used his local RISC-V GNU
toolchain to compile the assembly to hex. For some reason, the and files
would give a zero value for a0, and this cannot be the fault of the testbench as it worked for Gaussian and

Sine without issue, so they've not been included here.

Gaussian
int main(int char char
{
int simcyc;
int tick;
bool a@_is_not_zero = ;
int counter = 0;

::ofstream csv_file("data.csv");

Verilated::commandArgs(argc, argv);

// initialises the top verilog instance
Vriscv xtop = new Vriscv;
Verilated::traceEverOn();
VerilatedVcdC *tfp = new VerilatedVcdC;
top—>trace(tfp,);
tfp->open("./testbench/vcd/riscv.vcd");

if (vbdOpen() != 1)

3/10

hrishi.md

return (-1);

vbdHeader("gaussian");
std::cout << "Starting riscv test" << std::endl;
for (simcyc = 0; simcyc < MAX_SIM_CYC; simcyc++)

{

}

if (simcyc > 2)

{
top—>rst = 0;
b
for (tick = 0; tick < 2; tick++)
{
tfp—>dump(2 * simcyc + tick);
top—>clk = !top—>clk;
top—>eval();
+

if (int(top—>a@) !'= 0)
a@_is_not_zero = true;

if (a@_is_not_zero && counter < 2500)

{
if (simcyc % 8 == 0)
{
vbdPlot(int(top—>a@), 10, 190);
vbdCycle(simcyc);
¥
csv_file << simcyc << "," << int(top—>a@) << std::endl;
counter++;
}
else
{
if (counter > 2500)
exit(0);
}
if ((Verilated::gotFinish()) || (vbdGetkey() == 'q'))
exit(0);

csv_file.close();
vbdClose(); // ++++
tfp—>close();
exit(0);

2025-11-16

The above code was used to generate the csv files as well as the plots on the Vbuddy. See the plot for the

Gaussian PDF below.

4/10

hrishi.md 2025-11-16

¢

$ 4 e ol
GND'VCC SCK SDA RES DC BLK

gaussian

Sine

The plot for the Sine PDF below.

5/10

hrishi.md 2025-11-16

E S 8 &0 ¢ ¢ o
) VCC SCK SDA RESDCBLK '

See below for the plots generated from the csv files, so we can observe them with axes and different
scales, find the notebook for this in the branch.

6/10

2025-11-16

hrishi.md
Sine Wave
50
4{} —
] [] '|] 1
v 307
=]
=
=1
g 0
10 -~
D T I I
56500 56550 56600 56650 56700 56750
Cycle Number
Gaussian
200 -
175 1
150
125 4
W
=]
=
= 100 -
£
75 1
5{} =
25 1
D =1
T T T T T
186000 1836500 187000 187500 188000
Cycle Number
M-Extension

Following Oskar's extension to the processor, enabling for multiplication, division and remainder operations,
| tested them against the following assembly program, and obtained the wavetrace.

7/10

hrishi.md 2025-11-16

.section .text

.globl main
Program to test the M Extension to the RV32I(M)
0B
main:
Test MUL
1i to, 10 # Load 10 into tO
1i t1, 3 # Load 3 into t1
mul t2, to, t1 # t2 =10 x t1 = (10 *x 3) = 30
Test MULH
1li t3, 0x10000 # Load high value into t3
1i t4, 0x10000 # Load high value into t4
mulh t5, t3, t4 # t5 = high bits of t3 *x t4 = 0x1
Test MULHSU
i t3, -1 # Load -1 (signed) into t3
1i t4, 0x10000 # Load high value into t4 (unsigned)

mulhsu t6, t3, t4 # t6 = high bits of signed t3 * unsigned t4 = -1

Reset t3, t4 for next tests
1i t3, 20 # Load 20 into t3
1i t4, 3 # Load 3 into t4

Test MULHU

1i t0, 0x10000 # Load high value into t@ (unsigned)

1i t1, 0x10000 # Load high value into t1 (unsigned)

mulhu t2, t0, ti1 # t2 = high bits of t@ x t1 (both unsigned) = 0x1

Test DIV
div t5, t3, t4 # t5 =t3 / t4 =(20/ 3) =6

i t4, 0

Test divide by zero output is as expected (-1)

div t5, t3, t4 # t5 = 1t3 / t4 = (20 / @) = OXFFFFFFFF (-1)
1i t4, 3

Test DIVU

divu t6, t3, t4 # t6=t3 / t4d=1(20/ 3) =6

Test REM

rem to, t3, t4 #: t0 = t3 % t4 = (20 % 3) = 2

Test REMU

remu tl, t3, t4 # t1l = t3 % t4 = (20 % 3)= 2

End of test! Yay, hopefully passed?
end_loop:
j end_loop

8/10

hrishi.md 2025-11-16

Signals

Time
clk=1

t0=0
t1=0
t2=0
t3=0
ta=0
t5=0
t6=0

The program was written by Oskar and | repurposed the RISC-V testbench to run and validate the code.

Mistakes | Made

When developing the top level module for the formative Lab, which directly lent itself to this coursework, |
assumed that everyone was done with their commits, so | failed to pull the remote repo prior to starting the
work. This came up the next day when | debugged the processor using the testbench and it did not display
the behaviour as expected. | took this onboard for the actual coursework.

When developing the testbench to demonstrate that it was working as intended, | realised that | needed to
write device agnostic code, a technique | have learnt whilst machine learning. The issue | was coming up
against was that the testbench for the overall processor was trying to use the Vbuddy in the GitHub action
as well, which was causing an error, so | need to add some conditions to let the testbench know to avoid the
Vbuddy relevant code when it was not connected. See commit e7ef215 for full details.

Key Design Decisions

As | was working on the testbench, a lot of the key design decisions lied with myself. As this was the case, |
took the decision that we should construct several mid-level modules that grouped together relevant
modules in order to allow for us to replace major components simply, rather than having to unpick all the
connections to replace basic modules such as a MUX. It also allowed use to narrow our search area when
correcting bugs with the overall processor.

As requested in the Project Statement, | also decided a coding style for us to use in our modules, which is
listed in the file. See the commit.

| also decided to suffix files with "_deprecated" and then proceeded to move these files into a folder, in
case their contents may be required later on.

| had to decide which modules made sense to be grouped together, along with their relevant designers, and
this also worked in reverse, for example, choosing to break up the regfile from the alu as they were together
in the formative lab. See the following commits:

Choosing to group PC with relevant mux and reg.

Separated the data_mem module and the 4-1, 2-bit select multiplexer, deprecating the
module. This was done to ease the implementation of pipelining in future. See the commit here.

Corrected the muxes being labelled wrong and serving the wrong purposes. See here.

After completion of the single-cycle CPU, | wrote testbenches for the smaller components that we didn't
see it as necessary for originally, for the sake of cohesive testing, and then furthered the functionality of
Oskar's Python script to allow for some CI/CD like functionality, utilising GitHub Actions. This took

9/10

https://github.com/hv122/Team7Project/blob/main/oskar.md
https://github.com/hv122/Team7Project/commit/e7ef215f3c9cccdc30beef8530891fec3d1221ac
https://github.com/hv122/Team7Project/commit/e6ca39ac48edd9286a93c7e3191cf5e4e6f5f391
https://github.com/hv122/Team7Project/commit/eb727e50732d3dcae2e4c1e1f9bdc2a104b11697
https://github.com/hv122/Team7Project/commit/4e30c1c9a04b92e34b991d009106cd110046cb3b
https://github.com/hv122/Team7Project/commit/a18edd8ebb4c6b429eceffb8d28090ea9c1ea834

hrishi.md 2025-11-16

significant experimentation and learning, as well as waiting for Verilator to build several times. | had upwards
of 30 commits on this section alone to test build on push!

| learnt about caching and artifacting, both methods with which I thought | could carry the Verilator
install/binaries across workflow runs, but both of these ideas fell flat and resulted in what is an even more of
an industry-standard approach; | then ended up using the Docker image of Verilator to build and run the
code in a closed environment, ideal for guaranteeing thorough testing. See the actions demonstrating bug
highlighting failures and successful running.

Reflection

Ensure to co-ordinate a coding style from an early stage, otherwise a lot of monotonous reformatting is
required - changing from UpperCamelCase to lower_snake_case takes a lot of effort.

Construct the Continuous Integration workflow using GitHub Actions from earlier in the project, as | only
made it after we finished the single-cycle design, so we couldn't use it's full capability from the beginning.
Write a more cohesive Python Script and maybe consider experimenting with CocoTB.

More specifically to myself, | rushed myself along dependent on my teammates progressing quickly, which
led to make a few more errors when constructing the top file like such. This could be prevented by making
the schema earlier in the process, aka prior to starting coding it out. See this commit for the error | made.

Overall, | very much enjoyed this coursework and project, as even more so than last year's group project, |
felt as if we were free to do with the processor as we pleased, which allowed me to explore outside the brief,
such as with my development of YAML script and integrating that into a GitHub Action, providing us with a
quick and easy method with which to test our processor and it's functionality, ensuring that the existing
processor would continue to work even as we developed more modules for it.

10/10

https://github.com/hv122/Team7Project/actions/runs/7078339056/job/19263705485
https://github.com/hv122/Team7Project/actions/runs/7078386172/job/19263798063
https://github.com/hv122/Team7Project/commit/a18edd8ebb4c6b429eceffb8d28090ea9c1ea834

