
1

Welcome	to	this	MSc	Lab	Experiment.			All	my	teaching	materials	for	this	Lab-based	
module	are	also	available	on	the	webpage:		

www.ee.ic.ac.uk/pcheung/teaching/MSc_Experiment/

The	QR	code	here	provides	a	shortcut	to	go	to	the	course	webpage.	

2

This	Lab	Experiment	is	compulsory	and	its	goal	is	to	ensure	that	ALL	students	on	this	
course	get	to	a	level	of	competence	in	digital	design,	Verilog	and	FPGAs	as	expected	
with	our	MSc	graduates.
If	you	are	already	experienced	with	Verilog	and/or	FPGAs,	you	will	find	this	
experiment	quite	easy.		However,	if	you	have	not	done	either	in	your	UG	degree	
programme,	this	is	a	great	chance	for	you	to	catch	up.		This	Laboratory	served	as	a	
“levelling”	purpose	– make	sure	that	all	students	on	the	course	reach	a	common	
level	and	standard	in	digital	design.
The	learning	outcomes	for	each	of	the	four	parts	are:
Part	1:		 Basic	competence	in	using	Intel/Altera’s	Quartus	design	systems	for	
Cyclone-V	FPGA;	appreciate	the	superiority	of	hardware	description	language	over	
schematic	capture	for	digital	design;	use	of	case	statement	to	specify	combinatorial	
circuit;	use	higher	level	constructs	in	Verilog	to	specify	complex	combinatorial	
circuits;	develop	competence	in	taking	a	design	from	description	to	hardware.
Part	2:	 Use	Verilog	to	specify	sequential	circuits;	design	of	basic	building	
blocks	including:	counters,	linear-feedback	shift-registers	to	generate	pseudo-
random	numbers,	basic	state	machines;	using	enable	signals	to	implement	globally	
synchronisation.
Part	3:	 Understand	how	digital	components	communicate	through	
synchronous	serial	interface;	interfacing	digital	circuits	to	analogue	components	
such	as	ADC	and	DAC;	use	of	block	memory	in	FPGAs;	number	system	and	arithmetic	
operations	such	as	adders	and	multipliers;	digital	signal	generation.
Part	4:	 Understand	how	to	implement	a	FIFO	using	counters	as	pointer	
registers	and	Block	RAM	as	storage;	implement	a	relatively	complex	digital	circuit	
using	different	building	blocks	including:	counters,	finite	state	machines,	registers,	
encoder/decoder,	address	computation	unit,	memory	blocks,	digital	delay	elements,	
synchronisers	etc.;	learn	how	to	debug	moderately	complex	digital	circuits.	

3

You	would	have	been	taught	at	least	how	to	implement	digital	circuits	using	gates	
such	as	the	one	shown	here.		You	can	still	buy	this	chip	with	FOUR	NAND	gates	in	
one	package	and	this	is	known	as	discrete	logic.		We	generally	do	not	use	these	any	
more.		It	is	slow,	expensive,	consumes	lots	of	energy	and	very	hard	to	use.

Nevertheless,	it	is	good	to	learn	about	NAND	and	NOR	gates	because,	using	De	
Morgan’s	theorem,	you	could	in	theory	design	and	implement	a	Pentium	
microprocessor	using	use	two	input	NAND	or	NOR	gates	alone.		It	is	therefore	could	
be	regarded	as	the	building	block	of	all	digital	circuits.		Similarly,	you	could	in	theory	
build	a	car	using	only	basic	Lego	blocks.		Unfortunately	such	a	car	would	not	be	very	
good.

4

In	early	days	of	integrated	circuits,	designers	started	using	rows	of	basic	gates	
(shown	as	the	dark	stuff	here	arranged	in	rows).		These	are	either	completely	
customised	(full-custom)	or	it	is	made	with	standard	rows	of	gates	but	leaving	the	
gates	unconnected.		For	a	specific	design,	the	gates	are	connect	through	wires	in	the	
wiring	channels.		Therefore	the	customisation	is	only	in	the	wiring	metal	layers	and	
not	the	layers	with	transistors.		This	is	known	as	“semi-custom” application-specific	
integrated	circuits	(ASICs).

5

Of	course	you	can	also	customise	everything	– each	transistor	and	each	wiring	
connect	in	a	full-custom	manner.	Here	is	the	layout	of	Intel	i7	microprocessor	(with	
4	cores).		Designing	such	a	circuit	is	very	expensive,	highly	risky,	and	once	designed,	
it	cannot	be	changed.

Most	applications	in	electronic	industry	cannot	afford	to	embark	on	such	a	design.		
This	drives	the	rise	of	the	Field	Programmable	Gate	Array.

6

So	what	is	an	FPGA?		You	came	across	the	idea	of	Programmable	Logic	Device	in	the	
first	year,	where	the	user	can	program	what	the	logic	gate	does	(be	it	a	NAND	or	
NOR	or	some	form	of	SUM-of-PRODUCT	implementation)	or	an	adder,	you	as	a	user,	
can	“program” the	chip	to	perform	that	logic	function.		Now	we	can	add	another	
layer	of	user	programmability	– you	can	program	how	these	logic	gates	are	
connected	together!		In	that	way,	we	have	a	general	programmable	logic	chip.		
Unlike	the	microprocessor	where	the	program	is	just	the	instruction	to	fix	digital	
hardware,	here	you	can	program	the	hardware	itself!

The	first	FPGA	was	introduced	by	Xilinx	in	1985.		It	has	arrays	of	logic	blocks	which	
are	programmable.		It	is	surrounded	by	PROGRAMMABLE	ROUTING	RESOURCES,	
which	allows	the	user	to	define	the	interconnections	between	the	logic	blocks.		It	
also	has	lots	of	very	flexible	input	and	output	circuits	(programmable	for	TTL,	CMOS	
and	other	interface	standards).

Nowadays,	there	are	two	major	players	in	the	FPGA	domain:	Xilinx	and	Altera	(now	
part	of	Intel).		These	two	domains	90%	of	the	FPGA	market	with	roughly	equal	
share.

7

Let	us	look	inside	an	FPGA.	Consider	the	logic	block	shown	in	blue	in	the	last	slide		
(Altera	calls	their	logic	block	a	Logic	Element	(LE)).		Typically	an	LE	consists	of	a	4-
input	Look-up	Table	(LUT)	and	a	D-flipflop.		Let	us	for	now	NOT	to	worry	about	how	
the	4-LUT	is	implemented	internally.		Just	treat	this	as	a	4-input	combinatorial	circuit	
which	produces	one	output	signal	as	shown	here.		The	IMPORTANT	characteristic	is	
that	the	4-LUT	can	be	user	defined	(or	programmable)	to	implement	ANY	4-input	
Boolean	function.
As	we	will	see	later,	the	lookup	table	is	actually	implemented	with	a	bunch	of	
multiplexers.		

8

The	Logic	Elements	are	surrounded	by	lots	of	routing	wires	and	interconnection	
switches.	Typically	a	signal	wire	to	the	Logic	Block	or	Logic	Element	can	be	
connected	to	any	of	these	wiring	channels	through	a	programmable	connection	
(essentially	a	digital	switch).	Xilinx	FPGAs	also	have	dedicated	switch	blocks	shown	
here.		Horizontal	and	vertical	wires	can	be	connected	through	such	as	switch	block	
with	programmable	switches	(don’t	worry	for	now	how	that’s	done).		

FPGAs	have	huge	amount	of	these	programmable	resources	and	switches.	Typically	
a	very	small	percentage	of	these	are	being	connected	(i.e.	ON)	for	a	given	
application.

The	main	advantage	and	“power” of	FPGA	comes	from	the	programmable	
interconnect	– more	so	than	the	programmable	logic.		

9

Programming	an	FPGA	is	called	“configuration”.	In	programming	a	computer	or	
microprocessor,	we	send	to	the	computer	instruction	codes	as	‘1’s	and	‘0’’s.		These	are	
interpreted	(or	decoded)	by	the	computer	which	will	follow	the	instruction	to	perform	tasks.		
The	microprocessor	needs	to	be	fed	these	program	codes	continuously	for	it	to	function.

In	FPGAs,	you	only	need	to	configure the	chip	ONCE	on	power-up.		You	download	to	the	
chip	a	BITSTREAM (also	bits	in	‘1’s	and	‘0’s),	which	determines	the	logic	functions	
performed	by	the	Logic	Elements,	and	the	interconnecting	switches	in	order	to	connect	the	
different	LEs	together	to	make	up	your	circuit.	Once	the	bitstream	is	received,	the	FPGA	no	
longer	needs		to	read	the	1’s	and	0’s	again,	very	unlike	a	microprocessor	which	has	to	
continually	decoding	the	machine	instructions.		That’s	why	we	sometimes	say	that	we	
configure an	FPGA	(instead	of	programming	an	FPGA,	although	the	two	words	are	used	
interchangeably).

What	happens	when	you	configure	an	FPGA?		Let	us	consider	the	4-input	LUTs	circuit.		This	
is	typically	implement	using	a	tree	of	four	layers	of	2-input	to	1-output	multiplexers.		The	
entire	circuit	is	behaving	like	a	16-to-1	multiplexer	using	the	4	inputs	ABCD	as	the	control	of	
the	MUX	tree.		For	example,	if	ABCD	=	0000,	then	the	top	most	input	of	the	MUX	is	routed	
to	Y	output.

In	this	way,	ABCD	forms	the	input	columns	of	a	truth	table.		For	4-inputs,	the	truth	table	has	
16	entries.		The	output	Y	for	each	of	the	truth	table	entry	corresponds	to	the	input	of	the	
MUX.	Configuration	involves	fixing	the	inputs	to	the	16-to-1	MUX	by	storing	‘1’ or	‘0’ in	the	
registers	R.		Changing	the	16	values	stored,	you	can	change	to	truth-table	to	anything	you	
want.

10

To	configure	the	programmable	routing,	let	us	look	at	how	the	routing	circuit	works.		Take	
Xilinx	SWITCH	BLOCK	circuit	(green	blocks	in	slide	7).		This	block	controls	the	connections	
between	four	horizontal	channels	and	four	vertical	channels.		The	diamond	shaped	block	is	a	
potential	interconnect	site.		Inside	the	switch	block	circuit,	there	are	6	transistor	switches	
which	are	initially	all	OFF	(or	open	circuit).		

The	gate	input	of	EACH	switch	is	controlled	by	the	output	of	a	1-bit	register	(e.g.	a	1-bit	D-
FF).		If	the	register	stores	a	‘1’,	the	routing	transistor	will	have	its	gate	driven	high.	Since	the	
transistor	is	an	nMOS	transistor,	it	will	become	conducting.		In	this	way,	configuring	the	
routing	resources	simply	means	that	the	correct	‘1’s	and	‘0’s	are	stored	in	the	registers	that	
control	these	routing	transistors.

As	you	would	expect,	typically	an	FPGA	would	have	hundreds	of	thousands	of	these	routing	
switches,	most	of	these	are	OFF.		Once	programmed,	the	interconnections	are	made.	The	
bold	lines	in	the	diagram	above	(after	programming)	shows	the	programmed	connections.

Bitsteam	information	used	for	configuration	purpose	are	usually	stored	on	a	flash	memory	chip,	
which	is	download	to	the	FPGA	during	power-up	– similar	to	“booting	up	a	computer”.			Once	this	is	
done,	the	FPGA	is	progammed	to	perform	a	specific	user	function	(e.g.	your	design	in	the	VERI	
experiment).

Alternatively	you	can	send	the	bitstream	to	the	FPGA	via	a	computer	connection	to	the	chip.		On	the	
DE1-SOC	board,	it	does	both.		Powerup	DE1	will	configure	the	Cyclone	V	FPGA	chip	to	a	“waiting”
mode,	which	makes	the	DE1	board	talk	to	the	computer	via	the	USB	port	while	flashing	the	lights	ON	
and	OFF.		You	then	send	to	the	board	a	bitstream	of	your	design	via	the	USB	port.

11

Let	us	now	look	at	the	FPGA	that	you	will	use	for	this	course.		The	Altera	
Cyclone	V	FPGA	has	a	more	advanced	programmable	logic	element	than	the	
simple	4-input	LUT	that	we	have	considered	up	to	now.		The	call	this	a	
Adaptive	Logic	Module	or	ALM.		

An	ALM	can	take	up	to	8	Boolean	input	signals	and	produces	four	outputs	
with	or	without	a	register.		Additionally,	each	ALM	also	can	perform	the	
function	of	a	2-bit	binary	full	adder.

As	a	user	of	the	Cyclone	V	FPGA,	you	don’t	actually	need	to	worry	too	much	
about	exactly	how	the	ALM	is	configured	to	implement	your	design.		The	CAD	
software	will	take	care	of	the	mapping	between	your	design	and	the	physical	
implementation	using	the	ALMs.		It	is	however	useful	to	know	that	as	the	
technology	evolves,	more	and	more	complicated	programmable	logic	
elements	are	being	developed	by	the	manufacturers	in	order	to	improve	the	
area	utilization	of	the	FPGAs.

The	Cyclone	V	on	the	DE1-SOC	board	has	32,000	ALMs,	which	could	be	
estimated	to	be	equivalent	to	85K+	the	old	style	LEs.		Putting	this	in	context,	
you	could	put	onto	this	one	chip	2,000	32-bit	binary	adder	circuits!

12

The	Cyclone	V	is	much	more	than	just	an	FPGA	with	a	bunch	of	Logic	Elements	(or	
ALMs).		Our	chip	in	the	DE1-SOC	board	has	32,000	ALMs,	which	is	around	85K	old	
style	4-input	LUT	LEs.	On	top	of	that,	it	also	has	over	4Mbit	of	embedded	memory,	
87	DSP	blocks	(to	do	multiply-accumulate	operations	needed	for	signal	processing),	
and	even	a	dual-core	ARM	microprocessor!

It	has	hard-logic	to	implement	PCIe	interface	(to	fast	peripherals)	and	external	
memory	interface	to	connect	to	external	memory.		It	is	a	truly	powerful	chip	onto	
which	one	could	implement	an	entire	digital	electronic	system.		Therefore	Altera	call	
this	Cyclone	V	System-on-Chip	(SoC).

13

For	this	lab-based	module,	you	will	be	designing	circuits	using	the	free	version	of	the	
design	suite	known	as	Quartus	Prime	Lite	from	Intel/Altera.		You	can	download	your	
own	copy	onto	your	notebook	machine,	or	you	can	use	the	versions	that	are	
installed	in	any	PCs	located	anywhere	in	the	department.		

This	very	powerful	design	tool	contains	everything	you	need	to	design	a	complex	
digital	system	ON	YOUR	OWN	COMPUTER!		However,	the	software	only	runs	on	
either	a	MS	Windows	or	a	Linux	operating	system.		If	you	are	using	a	Mac,	you	
would	need	to	run	a	Virtual	Machine	applications	(such	as	Virtual	Box)	and	install	
Windows	or	Linux	before	installing	Quartus	II	software.

Beware	that	the	software	is	very	large	– you	need	to	have	several	GB	of	free	disk	
space.		The	minimum	required	RAM	is	4GB,	and	8GB	is	recommended.

If	your	laptop	is	suitable,	do	download	this	software	and	play	with	it	at	home.

14

This	slide	shows	you	the	functional	blocks	of	the	DE1-SoC	board.		This	has	
everything	you	need	test	basic	designs	involving	switches,	7-segment	displays	
and	even	a	VGA	output.

15

I	also	provide	a	purpose-built	ADC/DAC	board	to	support	the	lab	experiment.		
This	add-on	board	in	only	needed	in	week	3	onwards	during	the	laboratory	
sessions.		So	for	now,	you	can	ignore	it.

16

You	are	very	familiar	with	schematic	capture.		In	the	first	year,	you	used	SPICE	
for	simulating	analogue	circuits	and	Quartus	II		for	your	digital	experiment	
where	you	create	schematic	circuits	with	gates.

However	modern	digital	design	methods	in	general	DO	NOT	use	schematics.		
Instead	an	engineer	would	specify	the	design	requirement	or	the	algorithm	
to	be	implemented	in	some	form	of	computer	language	specially	designed	to	
describe	hardware.		These	are	called	“Hardware	Description	Languages”
(HDLs).

The	most	important	advantages	of	HDL	as	a	means	of	specifying	your	digital	
design	are:	1)	You	can	make	the	design	take	on	parameters	(such	as	number	
of	bits	in	an	adder);	2)	it	is	much	easier	to	use	compilation	and	synthesis	
tools	with	a	text	file	than	with	schematic;	3)	it	is	very	difficult	to	express	an	
algorithm	in	diagram	form,	but	it	is	very	easy	with	a	computer	language;	4)		
you	can	use	various	datapath	operators	such	as	+,	*	etc.;	5)	you	can	easily	
edit,	store	and	transmit	a	text	file,	and	much	hardware	with	a	schematic	
diagram.

For	digital	designs,	schematic	is	NOT	an	option.	Always	use	HDL.		In	this	
lecture,	I	will	demonstrate	to	you	why	with	an	example.

17

I	have	chosen	to	use	Verilog	HDL	as	the	hardware	description	language	for	the	
course.		Verilog	is	very	similar	to	the	C	language,	which	you	should	already	know	
from	your	first	year	course.		However,	you	must	always	remember	that	YOU	ARE	
USING	IT	TO	DESCRIBE	HARDWARE	AND	NOT	A	COMPUTER	PROGRAMME.

You	can	use	Verilog	to	describe	your	digital	hardware	in	three	different	level	of	
abstraction:
1) Behavioural	Level – you	only	describe	how	the	hardware	should	behave	without	
ANY	reference	to	digital	hardware.		
2) Register-Transfer-Level	(RTL)	– Here	the	description	assume	the	existence	of	
registers	and	these	are	clocked	by	clock	signal.		Therefore	digital	data	is	transferred	
from	one	register	to	the	next	on	successful	clock	cycles.		Timing	(in	terms	of	clock	
cycles)	is	therefore	explicitly	defined	in	the	Verilog	once.		This	is	the	level	of	design	
we	use	on	this	course.
3) Gate	Level	– this	is	the	low	level	description	where	each	gate	is	described	and	
how	these	are	connected	together	is	specified.		
Verilog	is	not	only	a	specification	language	which	tells	the	CAD	system	what	
hardware	is	suppose	to	do,	it	also	includes	a	complete	simulation	environment.		A	
Verilog	compiler	does	more	than	mapping	your	code	to	hardware,	it	also	can	
simulate (or	execute)	your	design	to	predict	the	behaviour	of	your	circuit.		It	is	the	
predominant	language	used	for	chip	design.

18

This	is	a	Verilog	code	module	that	specifies	a	2-to-1	multiplexer.		It	is	rather	
similar	to	a	C	function	(except	for	the	module keyword).		

It	is	important	to	remember	the	basic	structure	of	a	Verilog	module.		There	is	
a	module	name:	mux2to1.		There	is		a	list	of	interface	ports:	3	inputs	a,	b	and	
sel,	and	2	outputs	out	and	outbar.		Always	use	meaningful	names	for	both	
module	name	and	variable	names.

You	must	specify	which	port	is	input	and	which	port	is	output,	similar	to	the	
data	type	declaration	in	a	C	programme.

Finally,	the	2-to-1	multiplexing	function	is	specified	in	the	assign	statement	
with	a	construct	that	is	found	in	C.		This	is	a	behavioural	description	of	the	
multiplexer	– no	gates	are	involved.
The	last	statement	specifies	the	relationship	between	out and	outbar.		It	
is	important	to	remember	that	Verilog	describes	HARDWARE	not	instruction	
code.		The	two	assign statements	specify	hardware	that	“execute” or	perform	
the	two	hardware	functions	in	parallel.		Therefore	their	order	does	not	
matter.

19

Continuous	assignment	specifies	combinational	circuits	– output	is	continuously	
reflecting	the	operations	applied	to	the	input,	just	like	hardware.
Remember	that	unlike	a	programming	language,	the	two	continuous	assignment	
statements	here	ARE	specifying	hardware	in	PARALLEL,	not	in	series.
Here	we	also	see	the	conditional	assignment	statement	that	is	found	in	C.		This	maps	
perfectly	to	the	function	of	a	2-to-1	multiplexer	in	hardware	and	is	widely	used	in	
Verilog.
Furthermore,	there	are	many	other	Boolean	and	arithmetic	operators	defined	in	
Verilog	(as	in	C).	Here	is	a	quick	summary	of	all	the	Verilog	operators	(used	in	an	
expression).		

20

While	the	previous	Verilog	code	for	the	2-to-1	mux	only	specify	“behaviour”,	here	is	
one	that	specify	a	gate	implementation	of	the	same	circuit.		Three	types	of	gates	are	
used:	and,	or	an	not	gates.		There	are	internal	nets	(declared	as	wire)	which	take	on	
any	names.

Keywords	such	as	and,	or and	xor are	special	– they	specify	actual	logic	gates.		They	
are	also	special	in	that	the	number	of	inputs	to	the	and-gate	can	be	2,	3,	4,	…..	Any	
length!

Note	that	this	module	uses	TWO	AND	gates,	and	they	have	different	names:	a1	and	
a2.		There	are	TWO	separate	instances	of	the	AND	gate.		For	software	functions,	
“calling” a	function	simple	execute	the	same	piece	of	programme	code.			Here	the	
two	lines	“and	a1	(out1,	…” and	“and	a2	(out2	…” produce	two	separate	piece	of	
hardware.		We	say	that	each	line	is	“instantiating” an	AND	gate.

Wiring	up	the	gates	is	through	the	use	of	ports	and	wires,	and	depends	on	the	
positions	of	these	“nets”.		For	example,	out1	is	the	output	net	of	the	AND	gate	a1,	
and	it	is	connect	to	the	input	of	the	OR	gate	o1	by	virtual	of	its	location	in	the	gate	
port	list.

21

So	far	we	have	used	Verilog	in	a	very	hardware	specific	way.		“assign” and	using	
gate	specification	are	special	to	Verilog.

Here	is	something	that	is	more	like	C	– and	it	is	called	“procedural	assignment”.		
Typically	we	use	something	called	“always” block	to	specify	a	“procedure” or	
collection	of	sequential	statements	which	are	sandwiched	between	begin-end	
construct.

The	always	block	needs	a	sensitive	list	– a	list	of	signals	such	that	if	ANY	of	these	
signal	changes,	the	always	block	will	be	invoked.		You	may	read	this	block	as:

“always	at	any	changes	in	nets	a,	b	or	sel,	do	the	bits	between	begin	and end”
Actually,	if	you	are	defining	a	combinational	circuit	module,	an	even	better	way	to	
define	the	always	block	is	to	use:
…..		always			@	*					//	always	at	any	change	with	any	input	signals

Inside	the	begin-end	block,	you	are	allowed	to	use	C-like	statements.	In	this	case,	we	
use	the	if-else	statement.		All	statements	inside	the	begin-end	block	are	executed
sequentially.

22

Note	that	Verilog	keyword	reg does	not	implies	that	there	is	a	register	created	in	the	
hardware.		It	is	much	more	like	declaring	a	variable	that	holds	a	value.		It	is	a	rule	in	
Verilog	that	assignment	INSIDE	an	always	block	MUST	be	declared	reg,	and	NOT	a	
net	(wire).		This	is	one	of	the	few	peculiarities	of	Verilog	that	can	be	confusing	to	
students.	

23

This	slide	shows	how	the	procedural	statement	is	mapped	to	the	basic	MUX	
circuit.		The	continuous	assignment	statement	corresponds	to	the	NOT	gate.

24

This	is	yet	another	way	to	specify	the	MUX	circuit.		It	is	still	a	procedural	assignment	
with	the	“always” block.		However,	we	replace	the	if-else	statement	with	a	“case”
statement.		The	case	variable	is	sel.		Since	sel	is	a	1-bit	signal	(or	net),	it	can	only	
take	on	0	or	1.

Note	that	the	various	case	values	can	be	expressed	in	different	number	formats	as	
shown	in	the	slide.		For	example,	consider	2’b10.		The	2	is	the	number	of	bits	in	this	
number.	‘b	means	it	is	specified	in	binary	format.		The	value	of	this	number	is	10	in	
binary.

25

This	slide	demonstrates	why	language	specification	of	hardware	is	so	much	better	than	
schematic	diagrams.		By	simple	declaring	the	signals	as	a	multi-bit	bus	(8	bits	[7:0]),	we	
change	this	module	to	one	that	specifies	8	separate	2-to-1	multiplexers.	

Another	useful	way	to	specify	a	bus	is	using	the	concatenation	operator:		{	….	}	as	shown	
above.

The	concatenation	operator	is	particularly	useful	in	converting	digital	signals	from	one	
word	length	(i.e.	number	of	bits	in	a	word)	to	another.		For	example,	to	convert	an	8-bit	
unsigned	number	a[7:0]	to	a	13-bit	unsigned	number	b[12:0],	you	can	simple	do	this:

assign b[12:0] = {5’b0, a[7:0]};

26

Here	is	a	simple	example:	the	design of	a	4-bit	hex	code	to	7	segment	decoder.				You	
can	express	the	function	of	this	7-segment	decoder	in	three	forms:	1)	as	a	truth	
table	(note	that	the	segments	are	low	active);	2)	as	7	separate	K-maps	(shown	here	
is	for	out6	segment	only);	3)	as	Boolean	equations.

This	is	probably	the	last	time	you	see	K-maps.		In	practical	digital	design,	you	would	
rely	heavily	on	CAD	tools.		In	which	case,	the	logic	simplifications	are	done	for	you	
automatically	– you	never	need	to	use	K-maps	to	do	that	manually!

27

Here	is	a	tedious	implementation	in	the	form	of	schematic	of	interconnected	gates.		
Very	hard	to	do	and	very	prone	to	errors.

28

One	could	take	a	group	of	gates	and	specify	the	gates	in	Verilog	gate	primitives	such	
as	and,	or	etc.		Still	very	tedious.		Here	is	the	implementation	for	the	out6	output.

29

Instead	of	specifying	each	gate	separately,	here	is	using	continuous	assignment	
statement,	mapping	the	Boolean	equation	direction	to	a	single	Verilog	statement.		
This	is	better.

30

Here	is	the	complete	specification	of	the	hex_to_7seg	module	using	continuous	
assignment.		It	shows	how	one	should	write	Verilog	code	with	good	comments	and	
clear	documentation	of	input	and	output	ports.

31

Finally	the	4th method	is	the	best.		We	use	the	case	construct	to	specify	the	
behaviour	of	the	decoder.		Here	one	directly	maps	the	truth	table	to	the	case	
statement – easy	and	elegant.

Instead	of	using:					always	@	(in),	you	could	also	use	always	@*

32

How	is	a	Verilog	description	of	a	hardware	module	turned	into	FPGA	configuration?		
This	flow	diagram	shows	the	various	steps	taken	inside	the	Quartus II	CAD	system.	

For	the	Lab	Experiment,	you	will	be	working	in	pairs.		In	other	to	ensure	that	you	get	
to	know	each	other,	I	have	randomly	paired	you	together	with	someone	else	as	Lab	
Partner	for	this	module.

