Imperial College London	Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches 		
Lecture 8: Flip-flops			
Professor Peter Cheung Department of EEE, Imperial College London (Floyd 7.1-7.4) (Tocci 5.1-5.9)			
Aero 2 Signals & Systems (Part 2) 8.1 March 2007	Aero 2 Signals & Systems (Part 2) 8.2 March 2007		
<section-header></section-header>	<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>		

Imperial College London

Synchronous and Asynchronous Sequential Logic

Flip-Flops · Flip-flops are the fundamental element of sequential Synchronous circuits - the timing of all state transitions is controlled by a common clock bistable - changes in all variables occur simultaneously (gates are the fundamental element for combinational) Asynchronous circuits) - state transitions occur independently of any clock and normally Flip-flops are essentially 1-bit storage devices dependent on the timing of transitions in the input variables - outputs can be set to store either 0 or 1 depending on the - changes in more than one output do not necessarily occur inputs simultaneously - even when the inputs are de-asserted, the outputs retain Clock their prescribed value - A clock signal is a square wave of fixed frequency Flip-flops have (normally) 2 complimentary outputs - Often, transitions will occur on one of the edges of clock pulses - Q and \overline{Q} • i.e. the rising edge or the falling edge Three main types of flip-flop - R-S J-K D-type Aero 2 Signals & Systems (Part 2) 8.5 March 2007 Aero 2 Signals & Systems (Part 2) 8.6 March 2007 Imperial College Imperial College London London Flip-Flop **NAND Gate Latch** Output states O Q = 1, Q = 0: called HIGH or 1 Normal state: also called output FF SET state Inputs ā Inverted $Q = 0, \bar{Q} = 1$: called LOW or 0 state; output also called CLEAR or RESET state (a) (b) 2 CLEAR CLEAR (a) (b) = latch = bistable circuit FF A NAND latch has two possible resting states when SET = CLEAR = 1. Aero 2 Signals & Systems (Part 2) 8.7 March 2007 Aero 2 Signals & Systems (Part 2) 8.8 March 2007

Imperial College

London

- Synchronously: output only change state at clock transitions (edges)
- Clock signal
- Outputs change state at the transition (edge) of the input clock
- Positive-going transitions (PGT)
- Negative-going transitions (NGT)

8.15

Aero 2 Signals & Systems (Part 2)

March 2007

Clock

input

Control inputs must be held stable for (a) a time t_s prior to active clock

transition and for (b) a time t_H after the active block transition.

ts

Setup time

(a)

March 2007

t_H

Hold time

(b)

FF

(C)

March 2007

Imperial College

Aero 2 Signals & Systems (Part 2)

Clocked D Flip-Flop

D FF that triggers only on positive-going transitions; (b) waveforms.

Imperial College

Clocked D Flip-Flop from J-K Flip-Flop

London

Transparent Latch Timing

Imperial College

Asynchronous Inputs to FF

London

Imperial College London

Assigned State Table of RS-Flip-Flop

- Differs from a State Table by showing the associated outputs not the state numbers
- Example

- 1

Present Output	Next output			
	inputs: SR			
	00	01	11	10
0	0	0	Х	1
1	1	0	Х	1

• The output of the circuits is 1; the inputs are S=1, R=0. What is the next output?

Imperial College London

Boolean Expression from Assigned State Table

- We continue the example of the RS flip-flop and call the "next output" Q+
- The assigned state table defines the logical relationship between the inputs (S and R) and Q+
 - a Boolean relationship
- · Hence we can re-draw the assigned state table as a Karnaugh map

Q∖SR	00	01	11	10
0	0	0	Х	1
1	1	0	Х	1

rch 2007

Aero 2 Signals & Systems (Part 2)	8.33	March 2007	Aero 2 Signals & Systems (Part 2) 8.34	Mar
Imperial College Q\SR 0 1 - - • The Boolean express terms as usual • Such equations are	$\frac{00 01 11 10}{0 0 X 1}$ $\frac{00 0 X 1}{1 0 X 1}$ ssion is then obtained by grow $\frac{Q^+}{Q^+} = \overline{Q}\overline{R} + S$ $\overline{Q^+} = \overline{Q}\overline{S} + R$ called characteristic equa	ouping tions	Imperial College D-type Implementa • Moore Model State Diagram • 0 • 10 • Assigned State Table Present Output Next output 0	ation 2/1 1 racteristic Equation $Q^+ = D$

8.36

Mealy Model State Diagrams

- Similar principles to Moore model but different labelling
- State circles are labelled only with state numbers
- Outputs are written next to inputs on the arrows
- E.g. JK Flip-flop

