Lecture 8: Flip-flops

Professor Peter Cheung
Department of EEE, Imperial College London
(Floyd 7.1-7.4)
(Tocci 5.1-5.9)

Points Addressed in this Lecture

- Properties of synchronous and asynchronous sequential circuits
- Overview of flip-flops and latches

Imperial College

London

General digital system diagram

Imperial College
London

Properties of Sequential Circuits

- So far we have seen Combinational Logic
- the output(s) depends only on the current values of the input variables
- Here we will look at Sequential Logic circuits
- the output(s) can depend on present and also past values of the input and the output variables
- Sequential circuits exist in one of a defined number of states at any one time
- they move "sequentially" through a defined sequence of transitions from one state to the next
- The output variables are used to describe the state of a sequential circuit either directly or by deriving state variables from them

Synchronous and Asynchronous Sequential Logic

- Synchronous
- the timing of all state transitions is controlled by a common clock
- changes in all variables occur simultaneously
- Asynchronous
- state transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
- changes in more than one output do not necessarily occur simultaneously
- Clock
- A clock signal is a square wave of fixed frequency
- Often, transitions will occur on one of the edges of clock pulses
- i.e. the rising edge or the falling edge

Imperial College
London
Flip-Flop

FF = latch = bistable circuit

Imperial College
London

NAND Gate Latch

A NAND latch has two possible resting states when SET = CLEAR = 1.

Negative Pulse on SET input put the latch in a HIGH (SET) state

Imperial College
London
NAND Gate Latch (cont.)

(a)

(b)

Truth table for the NAND Set-Clear (Set-Reset or SR) Latch

SR Latch to deglitch a switch

(b)

Aero 2 Signals \& Systems (Part 2)
8.13

NOR gate Latch

Aero 2 Signals \& Systems (Part 2)
March 2007

Imperial College
ondon

Clock Signals and Clocked FFs

- Digital systems can operate
- Asynchronously: output can change state whenever inputs change
- Synchronously: output only change state at clock transitions (edges)
- Clock signal
- Outputs change state at the transition (edge) of the input clock
- Positive-going transitions (PGT)
- Negative-going transitions (NGT)

(a)

Imperial College
London

Control inputs must be held stable for (a) a time t_{S} prior to active clock transition and for (b) a time t_{H} after the active block transition.

(a) Clocked S-C F that responds only to the positive-going edge of a c lock pulse;
(b) truth table;
(c) Typic al waveforms.

Aero 2 Signals \& Systems (Part 2)

Internal Circuitry of S-C FF

Simplified version of the internal circuitry for an edge-triggered S-C FF

Implementation of edgedetector circuits used in edge-triggered FFs: (a)
PGT; (b) NGT. The duration of the CLK* pulses is typically 2-5 ns

Aero 2 Signals \& Systems (Part 2)
8.18

Imperial College
London

Clocked J-K FF

(a) Clocked J-K flip-flop that responds only to the positive edge of the clock; (b) waveforms.

Imperial College
London
Internal circuitry of edge-triggered J-K flip-flop

Aero 2 Signals \& Systems (Part 2)

Clocked D Flip-Flop

D F that triggers only on positive-going transitions; (b) waveforms.

Aero 2 Signals \& Systems (Part 2)
8.21

Imperial College
London
Parallel Data Transfer using D-FF

Imperial College London

D Latch (transparent latch)

Aero 2 Signals \& Systems (Part 2)

Aero 2 Signals \& Systems (Part 2)

Imperial College
London

Asynchronous Inputs cont.

Asynchronous Inputs to FF

The S, C, J, K, and D inputs is called synchronous inputs because their effects on the output are synchronized with the CLK input.

Asynchronous inputs (override inputs) operate independently of the synchronous inputs and clock and can be used to set the FF to 1/0 states at any time.

Aero 2 Signals \& Systems (Part 2)
8.26

Imperial College
London

Points Addressed in the next part of the Lecture

- Introduction to Moore model and Mealy model state diagrams
- State diagrams and state tables of flip-flops
- Timing parameters of flip-flops

State Diagrams

- There are two ways to draw state diagrams:
- Moore model and Mealy model
- we will look first at the Moore model using the Reset-Set (RS) flip-flop as an example
- A Moore model state diagram shows
- a circle for each of the various "states" a circuit can be in
- "states" refers to the logic levels around the circuit
- labels in the circles to show the state number and the associated output for that state
- an arrow for each possible transition between states
- labels on the arrows to show the required conditions to transit between states

State Diagram of RS Flip-Flop

- The circuit must be in either state 1 or state 2.
- In state 1

- Q output = 0
- an input of $S=1, R=0$ causes a transition to state 2
- any other input leaves the circuit in state 1
- (an input of $S=R=1$ is not allowed for RS flip-flops)
- In state 2
- Q output = 1
- an input of $S=0, R=1$ causes a transition to state 1
- any other input leaves the circuit in state 2

Imperial College
London

- Example

Present State	Next state inputs: SR			
	00	01	11	10
1	1	1	X	2
2	2	1	X	2

- The circuits is in state 2 ; the inputs are $\mathrm{S}=1, \mathrm{R}=0$. What is the next state?
- state 2

Assigned State Table of
 RS-Flip-Flop

- Differs from a State Table by showing the associated outputs not the state numbers
- Example

Present Output	Next output inputs: SR 			
	00	01	11	10
0	0	0	X	1
1	1	0	X	1

- The output of the circuits is 1 ; the inputs are $S=1, R=0$. What is the next output?

$$
-1
$$

Imperial College
London

- The Boolean expression is then obtained by grouping terms as usual

$$
\begin{aligned}
& Q^{+}=Q \bar{R}+S \\
& \overline{Q^{+}}=\bar{Q} \bar{S}+R
\end{aligned}
$$

- Such equations are called characteristic equations

Boolean Expression from Assigned State Table

- We continue the example of the RS flip-flop and call the "next output" Q+
- The assigned state table defines the logical relationship between the inputs (S and R) and Q^{+}
- a Boolean relationship
- Hence we can re-draw the assigned state table as a Karnaugh map

$\mathrm{Q} \backslash \mathrm{SR}$	00		01	11
10				
0	0	0	X	1
1	1	0	X	1

Aero 2 Signals \& Systems (Part 2)
8.34

Imperial College London

D-type Implementation

- Moore Model State Diagram

- Assigned State Table

Present Output	Next output	
	0	1
0	0	1
1	0	1

Characteristic Equation

$$
Q^{+}=D
$$

Mealy Model State Diagrams

- Similar principles to Moore model but different labelling
- State circles are labelled only with state numbers
- Outputs are written next to inputs on the arrows
- E.g. JK Flip-flop

State Number

