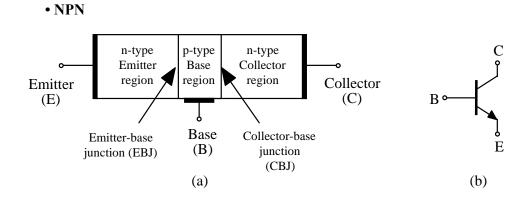
# **Bipolar Junction Transistors**

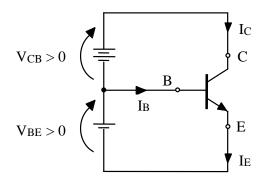
#### • Physical Structure & Symbols



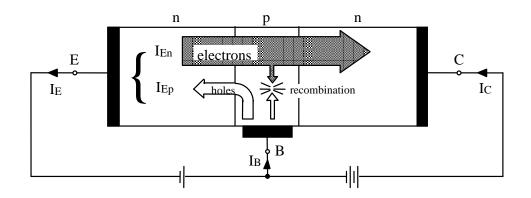
- PNP similar, but:
  - N- and P-type regions interchanged
  - Arrow on symbol reversed
- Operating Modes

| Operating mode | EBJ     | CBJ     |
|----------------|---------|---------|
| Cut-off        | Reverse | Reverse |
| Active         | Forward | Reverse |
| Saturation     | Forward | Forward |
| Reverse-active | Reverse | Forward |

• Active Mode - voltage polarities for NPN



# **BJT - Operation in Active Mode**



+  $I_{En}$  ,  $I_{Ep}$  both proportional to  $exp(V_{BE}/V_T)$ 

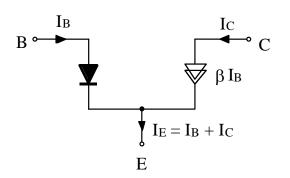
•  $I_C \approx I_{En}$ 

$$\Rightarrow I_C \approx I_S \exp(V_{BE}/V_T) \tag{1.1}$$

• 
$$I_B \approx I_{Ep} \ll I_{En}$$
  
 $\Rightarrow$  can write  $I_C = \beta I_B$  where  $\beta$  large (1.2)

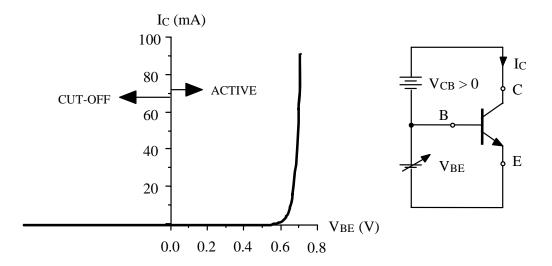
• 
$$I_S = SATURATION CURRENT (typ 10^{-15} to 10^{-12} A)$$
  
•  $V_T = THERMAL VOLTAGE = kT/e \approx 25 mV at 25 °C$   
•  $\beta = COMMON-EMITTER CURRENT GAIN (typ 50 to 250)$ 

• Active Mode Circuit Model



## **BJT Operating Curves - 1**





#### • ACTIVE REGION:

•  $I_C \approx 0$  for  $V_{BE} < \approx 0.5 V$ 

- I<sub>C</sub> rises very steeply for  $V_{BE} > \approx 0.5 V$
- $V_{BE} \approx 0.7$  V over most of useful I<sub>C</sub> range

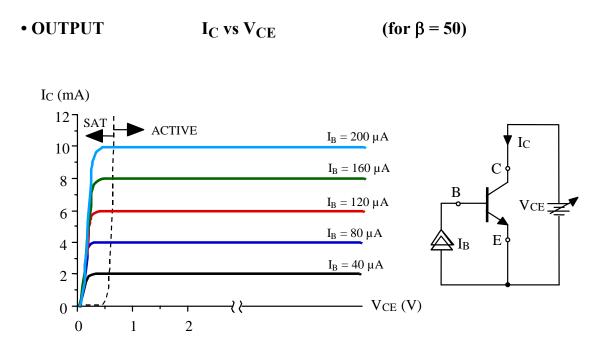
•  $I_B$  vs  $V_{BE}$  similar, but current reduced by factor  $\beta$ 

#### • CUT-OFF REGION:

•  $I_C \approx 0$ 

• Also  $I_B$  ,  $I_E \approx 0$ 

# **BJT Operating Curves - 2**



### • ACTIVE REGION ( $V_{CE} > V_{BE}$ ):

•  $I_C$  =  $\beta$   $I_B$  , regardless of  $V_{CE}$ 

#### i.e. CONTROLLED CURRENT SOURCE

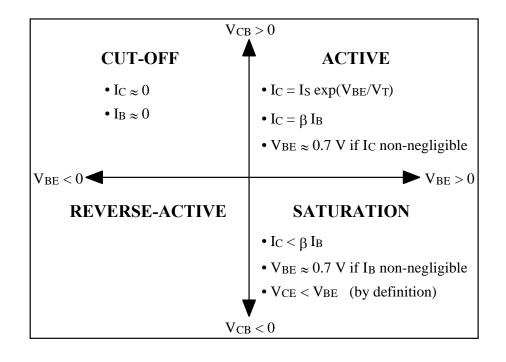
• SATURATION REGION (V<sub>CE</sub> < V<sub>BE</sub>):

• I<sub>C</sub> falls off as  $V_{CE} \rightarrow 0$ 

•  $V_{CEsat} \approx 0.2$  V on steep part of each curve

• In both cases:

•  $V_{BE} \approx 0.7 \text{ V}$  if  $I_B$  non-negligible



# **Summary of BJT Characteristics**

• Also  $I_E = I_B + I_C$  (always)

### • THIS TABLE IS IMPORTANT - GET TO KNOW IT !

### • For PNP table:

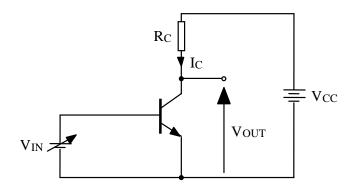
• Reverse order of suffices on all voltages in table

i.e.  $V_{CB} \rightarrow V_{BC}$  etc

• Reverse arrows on currents in circuit

i.e. arrows on  $I_B,\,I_C$  point out of PNP device, while arrow on  $I_E$  points in.

## Common-Emitter Amplifier Conceptual Circuit



• Assume active mode:

$$I_C = I_S \exp(V_{IN}/V_T)$$

• Apply Ohm's Law and KVL to output side:

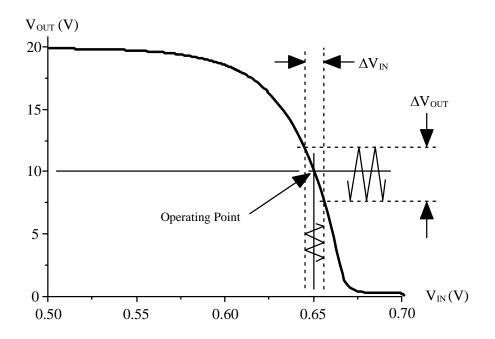
$$\mathbf{V}_{\mathbf{OUT}} = \mathbf{V}_{\mathbf{CC}} - \mathbf{R}_{\mathbf{C}}\mathbf{I}_{\mathbf{C}} \tag{1.3}$$

=  $V_{CC} - R_C I_S \exp(V_{IN}/V_T)$ 

NOTE: Called 'common-emitter' because emitter is connected to reference point for both input and output circuits. Common-Base and Common-Collector also important.

# C-E Amplifier Input-Output Relationship

• e.g.  $V_{CC} = 20 \text{ V}$ ,  $R_C = 10 \text{ k}\Omega$ ,  $I_S = 10^{-14} \text{ A}$ ,  $V_T = 25 \text{ mV}$ .



• Plenty of voltage gain i.e.  $\Delta V_{OUT} >> \Delta V_{IN}$ 

### **BUT:**

- Highly non-linear
  - ⇒ Output distorted unless input signal very small
  - ⇒ Need to BIAS transistor to operate in correct region of graph to get high gain without distortion

## C-E Amplifier Small-Signal Response - 1

## Aim: to get quantitative information about the small-signal voltage gain and the linearity of a C-E amplifier

• Start with the large signal equations:

$$V_{OUT} = V_{CC} - R_C I_C$$
$$= V_{CC} - R_C I_S \exp(V_{IN}/V_T)$$

• Suppose we add to  $V_{IN}$  a small input signal voltage  $v_{in}$ , resulting in a corresponding signal  $v_{out}$  at the output. We can relate  $v_{out}$  to  $v_{in}$  by expanding the above as a Taylor series:

$$V_{OUT} + v_{out} = V_{CC} - R_C I_C [1 + v_{in}/V_T + (v_{in}/V_T)^2/2 + ..]$$
 (1.5)

• Assuming  $v_{in} \ll V_T$ , we can neglect quadratic and higher terms, giving:

$$V_{OUT} + v_{out} \approx V_{CC} - R_C I_C - R_C (I_C/V_T) v_{in} \qquad v_{in} \ll V_T$$

This is a LINEAR APPROXIMATION, valid only when v<sub>in</sub> is small

Cont'd..

## C-E Amplifier Small-Signal Response - 2

- Using (1.3), we can separate the output voltage into BIAS and SIGNAL components:
  - $V_{OUT} = V_{CC} R_C I_C$  Quiescent O/P Voltage

 $v_{out} \approx - R_C (I_C / V_T) v_{in}$  Output Signal

• SMALL-SIGNAL VOLTAGE GAIN:

$$A_v = v_{out}/v_{in} = -R_C I_C / V_T = -R_C g_m$$
 (1.10)

e.g. If quiescent O/P voltage lies roughly mid-way between the supply rails then  $R_C I_C \approx V_{CC}$  /2. In this case  $A_v = -V_{CC}$  /(2V<sub>T</sub>), so for  $V_{CC} = 20$  V we get  $A_V = -400$ .

The quantity  $g_m = I_C/V_T$  is known as the TRANSCONDUCTANCE of the transistor.

#### • LINEARITY

**Include higher order terms from Equation 1.5:** 

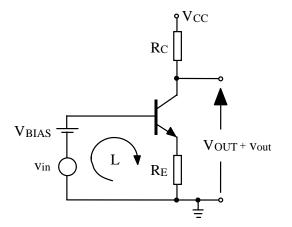
$$v_{out} \approx -R_c g_m [v_{in} + v_{in}^2/2 V_T + ....]$$

Ratio of unwanted quadratic term to linear term is  $v_{in}/2V_T$ , so expect 10 % distortion when  $v_{in}/2V_T \approx 0.1$ , or  $v_{in} \approx 5$  mV.

 $\Rightarrow$  Amplifier is linear only for very small signals

## **Bias Stabilisation - 1**

- Biasing at constant  $V_{BE}$  is a bad idea, because  $I_S$  and  $V_T$  both vary with temperature, and we require constant  $I_C$  (or  $I_E$ ) for stable operation. Also,  $I_S$  is not a well-defined transistor parameter.
- We can obtain approximately constant I<sub>E</sub> as follows:



• KVL in loop L (with no signal) gives:

$$I_E = (V_{BIAS} - V_{BE}) / R_E$$
 (1.11)  
 $\approx (V_{BIAS} - 0.7 V) / R_E$  if  $V_{BIAS} >> V_{BE}$ 

 $\Rightarrow$  I<sub>E</sub> relatively insensitive to exact value of V<sub>BE</sub>

• Get  $I_C$  from  $I_C = \alpha I_E$  where  $\alpha = \beta/(1 + \beta) \approx 1$ 

#### • a is the COMMON-BASE CURRENT GAIN

# **Bias Stabilisation - 2**

### • R<sub>E</sub> provides NEGATIVE FEEDBACK

i.e. if the emitter current starts to rise as a result of some change in the transistor's characteristics, then the voltage across  $R_E$  rises accordingly. This in turn lowers the base-emitter voltage of the transistor, tending to bring the emitter current back down towards its original value.

⇒ STABILISATION

BUT R<sub>E</sub> also:

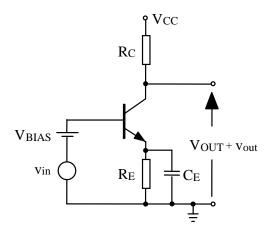
• Reduces small-signal voltage gain:

$$A_{v} = -R_{C} g_{m} / (1 + I_{E}R_{E}/V_{T}) \qquad (1.12)$$
$$\approx -\alpha R_{C}/R_{E}$$

• Reduces output swing

# Bias Stabilisation - 3 Recovery of Small-Signal Voltage Gain

• We can recover the original value of  $A_v$  for AC signals by using a BYPASS CAPACITOR:



• Now we have:

$$A_v = -R_C g_m /(1 + I_E Z_E / V_T)$$
 (1.12b)

where  $Z_E$  is the combined impedance of  $R_E$  and  $C_E$ :

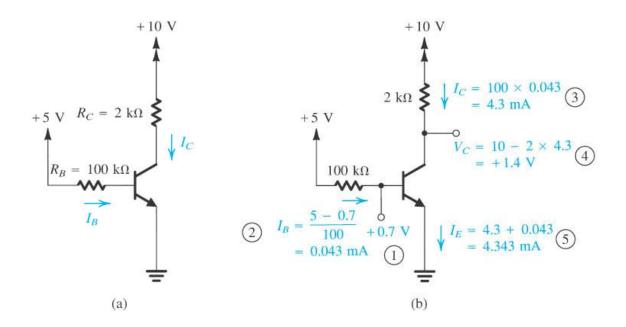
$$Z_E = R_E / (1 + j \omega R_E C_E)$$

By making  $C_E$  large enough, we can make the parallel combination appear like a short circuit (i.e.  $|Z_E| \approx 0$ ) at all AC frequencies of interest, so that Equation 1.12b reduces to  $A_v \approx - R_C g_m$  as for our original common-emitter amplifier. On the other hand, the capacitor has no effect on biasing, because it passes no DC current.

NB Technique only really relevant to discrete circuits (no big capacitors inside IC's!)

### **Example 1**

Analyze the circuit below to determine the voltages at all nodes and the currents in all branches. Assume  $\beta = 100$ .



1.  $V_{BE}$  is around 0.7V

$$I_{B} = \frac{+5 - V_{BE}}{R_{B}} \approx \frac{5 - 0.7}{100} = 0.043 \text{ mA}$$
2.  

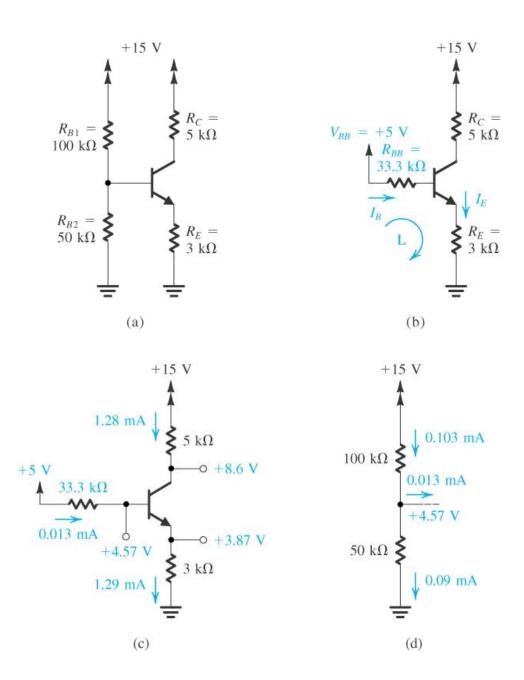
$$I_{C} = \beta I_{B} = 100 \times 0.043 = 4.3 \text{ mA}$$
3.  

$$V_{C} = +10 - I_{C}R_{C} = 10 - 4.3 \times 2 = +1.4 \text{ V}$$
5.  

$$I_{E} = (\beta + 1)I_{B} = 101 \times 0.043 = 4.3 \text{ mA}$$

### Example 2

Analyze the circuit below to determine the voltages at all nodes and the currents in all branches. Assume  $\beta = 100$ .



Step 1: Simplify base circuit using Thévenin's theorem.

$$V_{BB} = +15 \frac{R_{B2}}{R_{B1} + R_{B2}} = 15 \frac{50}{100 + 50} = +5 \text{ V}$$
$$R_{BB} = (R_{B1} // R_{B2}) = (100 // 50) = 33.3 \text{ k}\Omega$$

Step 2: Evaluate the base or emitter current by writing a loop equation around the loop marked L.

$$V_{BB} = I_B R_{BB} + V_{BE} + I_E R_E$$

Substituting for  $I_B$  by

.

$$I_B = \frac{I_E}{\beta + 1}$$

and rearranging the equation gives

$$I_{E} = \frac{V_{BB} - V_{BE}}{R_{E} + [R_{BB}/(\beta + 1)]}$$

For the numerical values given we have

$$I_E = \frac{5 - 0.7}{3 + (33.3/101)} = 1.29 \text{ mA}$$

The base current will be

$$I_B = \frac{1.29}{101} = 0.0128 \text{ mA}$$

• Step 3: Now evaluate all the voltages.

$$V_B = V_{BE} + I_E R_E = 0.7 + 1.29 \times 3 = 4.57V$$
$$I_C = (\frac{\beta}{1+\beta})I_E = 0.99 \times 1.29 = 1.28mA$$

$$V_c = +15 - I_c R_c = 15 - 1.28 \times 5 = 8.6V$$