
In this lecture, I will be examining the impact of extracting a portion of a signal and 
find the spectrum of this extracted portion instead of the signal.  This process of 
taking a portion of signal is known as “windowing”.

Then I will discuss the calculation of the Fourier transform of a signal on a computer 
using discrete method, known as Discrete Fourier transform or DFT.

Finally I will explain how to calculate energy of a signal in the frequency, instead of 
the time, domain.



Extracting a portion of signal from  an everlasting sinusoidal signal is the same as 
multiplying the everlasting sinewave with a rectangular function as shown. 
As mentioned in the last lecture, multiplying in the time domain is equivalent to an 
operation known as “convolution” in the frequency domain.  We will not examine 
convolution until a later lecture. 
It is sufficient for you to know for now that convolution results in the spectrum of 
the original sinewave, which is two spikes (impulses) at ±w0, being modified by the 
spectrum of the rectangular function as shown above.
The impact of applying the rectangular window (i.e. function) in the time domain is 
to spread out the energy of the sinusoid around the impulses.



Let us examine the magnitude spectrum of the rectangular function (in dB). It has a main 
region where most of the energy lies. This is call the mainlobe of the spectrum.  In 
addition, energy is also spread to its neighbouring lobes, the sidelobes.  This is known as 
“leakages” – energy leaked from the main frequency component.
The reason for such energy spreading to higher frequency is that the rectangular window 
causes discontinuity (or abrupt changes) at the edges of the window.  For example, in Lab 
2 exercise 3, you have discovered the difference between the spectrum for a 1000Hz and 
a 1100Hz sinewave with 1000 samples extracted and sampled to 8000Hz.  The 1000Hz 
has 125 exact cycles in the rectangular window.  However the 1100Hz sinewave has 137.5 
cycles extracted by the rectangular window.   



Instead of using a rectangular window function to “extract” portion of the signal to 
analyse, it is far better to apply a smooth window function, where the edges of the 
window tails off gradually.  In the lab we, use a Hamming window.  Shown here is 
the plot of the Hanning window, which is really very similar. 
There are two impact on applying such a window:
1.It reduces the sidelobes substantially and therefore reduces the leakages.
2.The total energy is reduced, but energy of the signal at each frequency relative to 
each other is unaffected.  In other words, if your unwindowed signal is the sum of 
two sinusoids w1 and w2, the magnitudes of both are reduced by using one of these 
windows, but their ratio remains the same.



Here is a table of the various windows commonly used as a function of time, the 
width of the mainlabe (the narrower, the better), the rate at which the sidelobe 
energy falls away (the faster rate the better), and the height of the first sidelobe.



Next we will examine how the computer calculate the spectrum – using discrete 
values instead of continuous values. 
First remind yourself the definition of Fourier Transform.



When you use the Matlab function fft(sig) to compute the spectral component 
values, you perform the Discrete Fourier Transform (DFT) calculation using a fast 
algorithm.  The fast algorithm is known as Fast Fourier Transform.  How this is done 
is not important. It is sufficient to know that a straight calculation of DFT on a N 
sample signal has a computation complexity of order(N2).   Using FFT, we reduce this 
order(N log N).  Say, if N 1000, using FFT instead of DFT would be over 300 times 
faster!
To compute the FFT or DFT of a time domain signal, we first extract the signal with 
an appropriate window (N samples in a window of T0), then make up a periodic 
signal as shown.  (This is the formulation used inside the computer algorithm.  The 
signal does not really exists as everlasting periodic signal does not happen in real 
life!)
The DFT/FFT algorithm basically compute the Fourier coefficients of this repetitive 
signal using the standard Fourier series equation as shown. 
The maths here just shows that the effect of DFT is to take discrete samples of the 
Fourier Transform of our windowed signal at frequency steps of f0 = 1/T0.



Let us examine DFT from a conceptual, instead of mathematical, point of view.
When we take a continuous time signal x(t) and obtain its spectrum using Fourier 
transform, we get X(w).
If we sample the continuous time signal, the resulting discrete time signal has a 
different spectrum as compared to that of the original signal. In fact, the original 
spectrum is repeated indefinitely at each frequency location ±n fs, where fs is the 
sampling frequency and n is all integers (plus or minus) n = ±1, ±2 …...
This result is very important.  It says that the sampling process modifies the 
spectrum of the signal in this particular way that has implications to how often we 
need to sample (i.e. what fs to choose), how we can avoid corrupt the signal 
through the sampling process, and finally, how can we get back the original 
continuous time signal from the discrete time signal.



The most important message of this slide is how to work out N0 and T0 for a given 
sampling frequency fs (sampling period T = 1/fs).
The frequency step (for each successive frequency bin in the FFT result) = 1/T0.  
Given that the sampling frequency is fs, the number of samples you need is:

N0 = T0 * fs.

For example, in the Lab, we where using fs = 8000Hz  and N0 = 1000x



In other words, when we perform DFT, we create a periodic signal using a windowed 
version of the original (long) signal.  Because of this action of constructing of a 
period signal from the original portion of signal, we get a spectrum with discrete 
frequency bins.  This is in contrast with Fourier transform, which produces a 
continuous frequency spectrum (with ALL frequencies).  
DFT is a computer based algorithm, therefore everything must be discrete.
The previous slide shows that the effect of DFT is to SAMPLE the continuous 
spectrum from the Fourier transform, and the rate of sampling (in frequency) is 
given by the frequency step  1/T0 = fs/N0. 
It is helpful to consider DFT as looking at the spectrum of the original signal through 
a picket fence.  You only see samples of the spectrum at discrete frequencies.  It 
also means that you may miss peak components if they fall between the sampling 
points (between the fence gaps and blocked by the fence posts).
Consider Lab 1, exercise 2.  In this Lab, we sample the signal at 8000 Hz, and we 
extract 1000 samples to analyse using DFT (actually we used FFT, the fast version of 
DFT in Matlab).
The frequency resolution (step) is 8000Hz/ 1000 = 8Hz.  The DFT algorithm will 
generate a spectrum between -4000Hz and +4000Hz in steps of 8Hz. This yields 
1000 frequency bins.  In our Matlab code, magnitude[1] = 0Hz or dc value. 
magnitude[2] = 8Hz bin etc..  Now if you use the tuning fork app to generate a 
1000Hz tone, you will see a clear spike in magnitude[126] (exactly 125 x8 = 1000Hz).  
However, if you use a 1100Hz tone, the signal falls between magnitude[138] and 



magnitude[139] (bin 138.5 = 1100/8 + 1).  So what you should see is the energy 
shared in the two neighbouring frequency bins.



Here is a formal mathematical definition of Discrete Fourier Transform.  You are not 
really required to remember this.  If you compare this with the formal definition of 
the Fourier transform (not the discrete version), they look very similar except that

1.x(t) now becomes x[nT] because samples are discrete.  T is the sampling interval 
and T = 1/fs.
2.w0 is the fundamental frequency as we repeat the extract signals every T0. w0 = 
2πf0 = 2π/T0.
3.DFT produces results Xr, the amount of signal at the rth frequency bin, whose 
frequency is  rW0, where W0 is the discrete frequency step.



The next three slides are about energy of a signal.

We have seen before in Lecture 1 and Lab 2 Exercise 4 that we can compute the 
energy of a signal by integrating the square of the signal x2(t) over the duration 
where the signal is non-zero.  
Parseval’s Theorem basically says that you can do this energy calculation equally 
well in the frequency domain.  The important result here is the equation:

We can compute energy of the signal by integrating over all the spectral frequencies 
(w = -∞ to w = +∞) the square of the magnitude of the spectrum.  The 1/2π is a 
scaling factor to account for the fact that we using radians/sec as frequency and not 
Hz (cycles/sec).



Therefore we can view the plot of |X(w)|2 as the energy spectral density of the 
signal.   We can then ask the question: “how much energy is between two 
frequencies?” by integrating under the curve as shown.

We can this energy spectral density because the unit can be seen as energy per unit 
bandwith (in Hz).



For real signals, it can be shown that the spectrum is symmetrical about 0, i.e. X(w) 
= X(-w). Therefore we can simplify the calculation of energy between two 
frequencies w1 and w2 as shown.



Here is an example of how to use Parseval’s Theorem to provide useful results.
We are interested in the bandwidth of a signal which contain 95% of the energy. The 
signal in question is x(t) = e-at u(t).
This is done by performing FT on x(t) using the FT table.
Using Parseval’s Theorem we can compute the integral and calculate the total 
energy of the signal Ex.
The rest is pretty straightforward.


