Lecture 3: Basic Logic Gates & Boolean Expressions

Professor Peter Cheung Department of EEE, Imperial College London

> (Floyd 3.1-3.5, 4.1) (Tocci 3.1-3.9)

Imperial College London

Points Addressed in this Lecture

- What are the basic logic gates?
- What is Boolean algebra?
- Boolean variables & expressions
- Boolean algebra as a way to write down logic
- Boolean Operators
- Truth tables
- Relationships between logic gates & Boolean expressions

E1.2 Digital Electronics I	3.1	Oct 2007	E1.2 Digital Electronics I	Oct 2007
Imperial College London	Boolean Algebra		Imperial College London Boolean Variables take the var	
 Digital electronic systems manipulate binary information To design such systems we need a convenient mathematical framework useful systems are often too complicated to keep in our head Boolean algebra provides this framework Points in a circuit are represented by Boolean Variables Boolean algebra allows us to specify relationships between Boolean variables Hence Boolean algebra can be used as a design tool for digital electronic circuits 		 Boolean variables take the value either 0 or 1 only if a variable doesn't have the value 0, then it must have the value 1 if a variable doesn't have the value 1, then it must have the value 0 In digital electronics: Boolean 0 and 1 correspond to the binary 0 and 1 In logic: 1 and 0 are sometimes called true and false We use symbols to represent Boolean variables just like with ordinary algebra eg: A, B, C, X, Y, Z, etc typically a single character typically upper case Three Logic operations: AND, OR, NOT 		

Imperial College London	Imperial College London				
 Boolean Algebra to Describe Logic Example: House Heating System Principles: set the required temperature using a thermostat turn on heating if temperature lower than required turn off heating if temperature higher than required turn on heating if heating pipes are in danger of freezing Implementation: use a manual switch to turn on the house heating use a room thermostat to detect room temperature use a frost thermostat to detect outside temperature (danger of freezing) use a digital electronic circuit to turn the heating on and off 'intelligently' 	 Boolean representation: 4 variables H, R, F and S H represents the On/Off switch of the entire heating system H = 1 when the heating system is switched on. R represents the room thermostat R = 1 when the room temperature is lower than required F represents the frost thermostat F = 1 when the external temperature is near freezing S represents the On/Off switch of the boiler S = 1 when heat should be generated by the boiler 				
E1.2 Digital Electronics I Oct 2007	E1.2 Digital Electronics I Oct 2007				
 In Boolean algebra we use for 'and' and + for 'or' S = H • R + F • R If we could build an electronic circuit which implemented this Boolean expression we could sell it as a simple heating system controller 	 Imperial College London Boolean Operators Like ordinary algebra, Boolean algebra allows for operations on its variables NOT - Takes the complement (inverse) of a single variable Called 'NOT K' and written K eg: Let K represent a key on a computer keyboard and let K = 1 mean the key is pressed We now have a variable which shows the state of the key: K=1 shows key is pressed K=0 shows key is not pressed If we take the compliment of K we have a variable which also shows the state of the key but in the opposite sense 				
	 K=1 shows key is not pressed K=0 shows is pressed 				

E1.2 Digital Electronics I

Basic Boolean Operators & Logic Gates

3.9

 ≥ 1

Rectangular outline symbol

A B X 0 0 Û

0 1

1 0

1 1

Truth table

Timing Diagram

0 = LOW

1 = HIGH

- Inverter
- AND Gate
- OR Gate
- Exclusive-OR Gate
- NAND Gate
- NOR Gate

E1.2 Digital Electronics I

Distinctive shape symbol

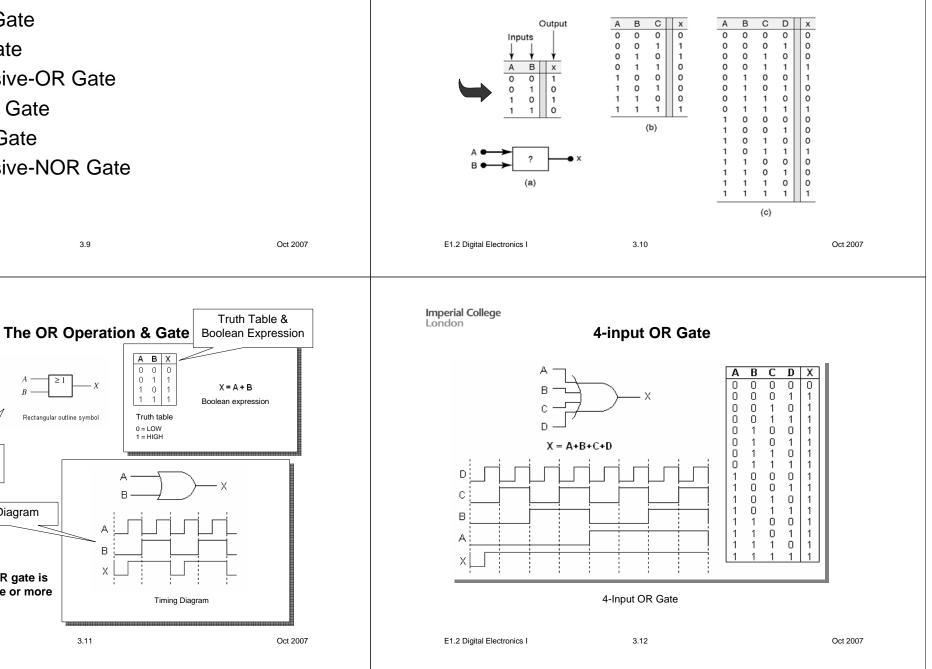
Symbol or

Schematic

Timing Diagram

The output of an OR gate is HIGH whenever one or more

Imperial College


London

Exclusive-NOR Gate

Imperial College London

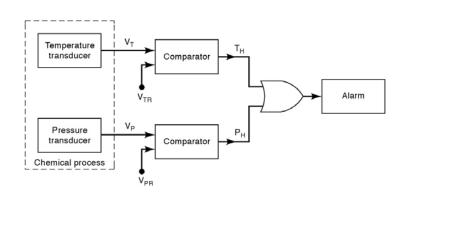
Truth Tables

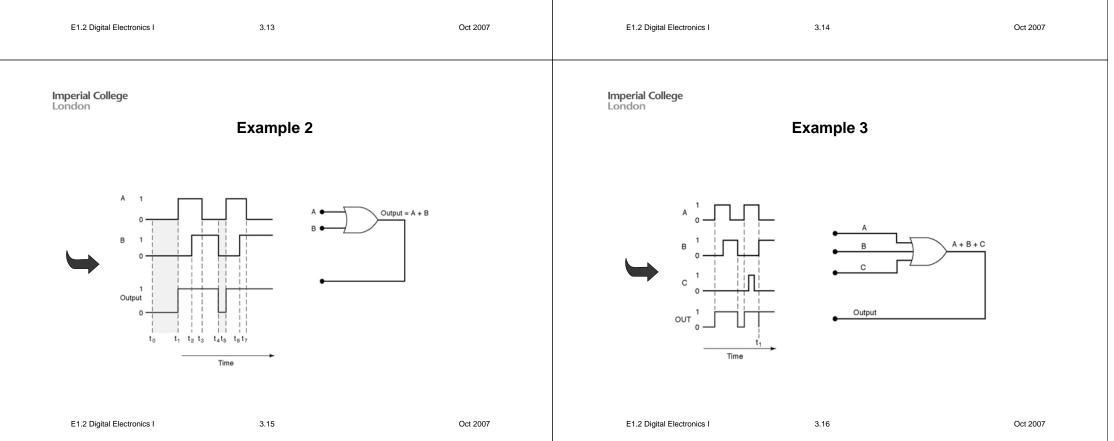
· How a logic circuit's output depends on the logic levels present at the inputs.

inputs are HIGH

А

В Х


Imperial College London


Summary of OR operation

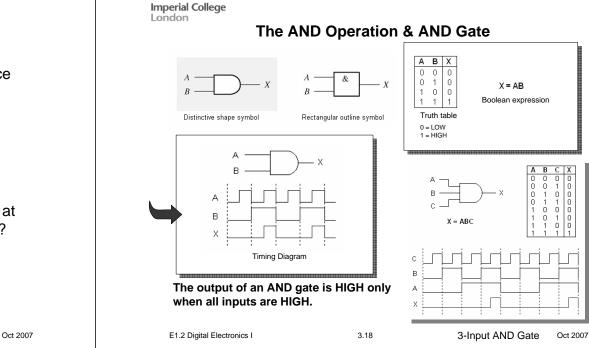
- Produce a result of 1 whenever any input is 1. Otherwise 0.
- An OR gate is a logic circuit that performs an OR operation on the circuit's input
- The expression x=A+B is read as "x equals A OR B"

Imperial College London

Example of the use of an OR gate in an Alarm system

Imperial College London

Review Questions


- What is the only set of input conditions that will produce a LOW output for any OR gate?
 - all inputs LOW
- Write the Boolean expression for a six-input OR gate
 X=A+B+C+D+E+F
- If the A input in previous example is permanently kept at the 1 level, what will the resultant output waveform be?
 - constant HIGH

Imperial College

Summary of the AND operation

- The AND operation is performed the same as ordinary multiplication of 1s and 0s.
- An AND gate is a logic circuit that performs the AND operation on the circuit's inputs.
- An AND gate output will be 1 only for the case when all inputs are 1; for all other cases the output will be 0.
- The expression x=A•B is read as "x equals A AND B."

Imperial College

Review Questions

• What is the only input combination that will produce a HIGH at the output of a five-input AND gate?

all 5 inputs = 1

• What logic level should be applied to the second input of a two-input AND gate if the logic signal at the first input is to be inhibited(prevented) from reaching the output?

- A LOW input will keep the output LOW

• True or false: An AND gate output will always differ from an OR gate output for the same input conditions.

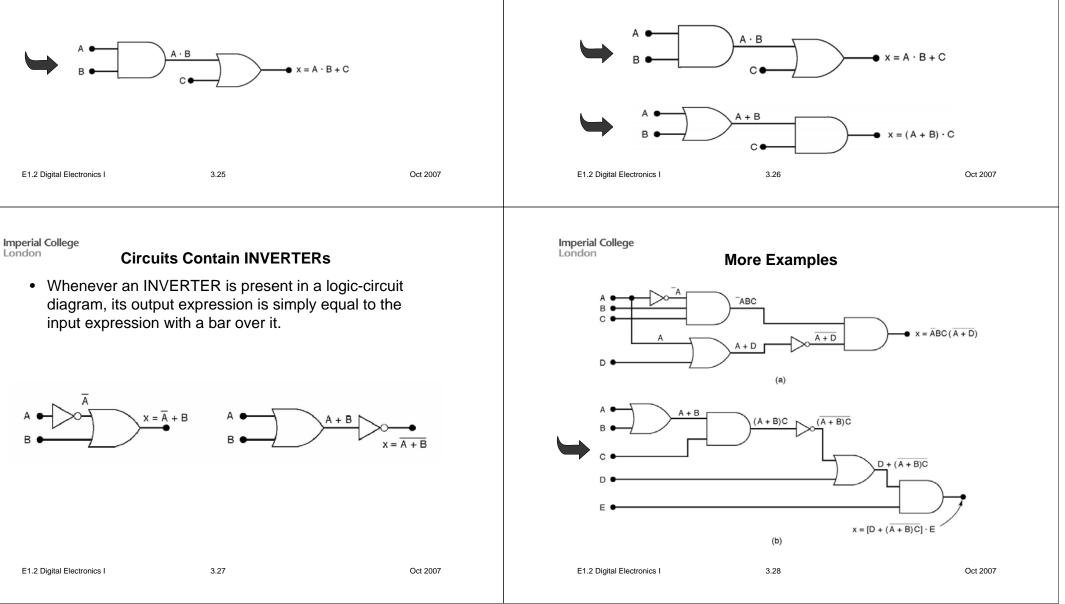
- False

Oct 2007

Imperial College

Describing logic circuits algebraically

- Any logic circuit, no matter how complex, can be completely described using the three basic Boolean operations: OR, AND, NOT.
- Example: logic circuit with its Boolean expression

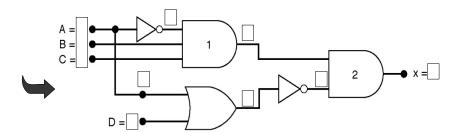

Imperial College London

Parentheses

• How to interpret A•B+C?

– Is it A•B ORed with C ? Is it A ANDed with B+C ?

- Order of precedence for Boolean algebra: AND before OR. Parentheses make the expression clearer, but they are not needed for the case on the preceding slide.
- Therefore the two cases of interpretations are :

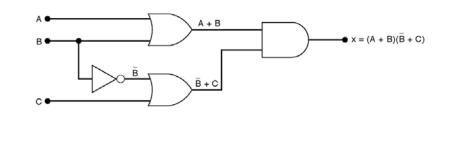


Precedence

- 1. First, perform all inversions of single terms
- 2. Perform all operations with parentheses
- 3. Perform an AND operation before an OR operation unless parentheses indicate otherwise
- 4. If an expression has a bar over it, perform the operations inside the expression first and then invert the result

Determining output level from a diagram

E1.2 Digital Electronics I	3.29	Oct 2007	E1.2 Digital Electronics I	3.30	Oct 2007	
Imperial College London More Example			 Implementing Circuits From Boolean Expressions When the operation of a circuit is defined by a Boolean expression, we can <u>draw a logic-circuit</u> diagram directly 			
c • 1			from that expression, we of the texpression from that expression from the transformet from transformet from the transformet from t	ssion.	CHEC + ABC	
$D = 0$ $B = 1$ $A = 1$ $A = 1$ $A = AB(\overline{C + D})$			B = B = B = B = B = B = B = B = B = B =			
E1.2 Digital Electronics I	3.31	Oct 2007	E1.2 Digital Electronics I	(b) 3.32	Oct 2007	


Imperial College London

E1.2 Digital Electronics I

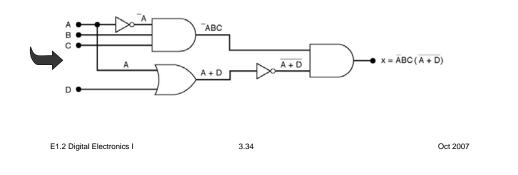
Example

• Draw the circuit diagram to implement the expression

$$x = (A + B)(\overline{B} + C)$$

3.33

Oct 2007


Imperial College London

Review Question

• Draw the circuit diagram that implements the expression

 $x = \overline{ABC}(\overline{A+D})$

using gates having no more than three inputs.

