Lecture 10: Sequential Circuits

Points Addressed in this Lecture

Digital Electronics I

Properties of Sequential Circuits

- So far we have seen Combinational Logic- the output(s) depends only on the current values of the input variables
- Here we will look at Sequential Logic circuits
- the output(s) can depend on present and also past values of the input and the output variables
- Sequential circuits exist in one of a defined number of states at any one time
- they move "sequentially" through a defined sequence of transitions from one state to the next
- The output variables are used to describe the state of a sequential circuit either directly or by deriving state variables from them

Synchronous and Asynchronous

Sequential Logic

- Synchronous
- the timing of all state transitions is controlled by a common clock
- changes in all variables occur simultaneously
- Asynchronous
- state transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
- changes in more than one output do not necessarily occur simultaneously
- Clock
- A clock signal is a square wave of fixed frequency
- Often, transitions will occur on one of the edges of clock pulses
- i.e. the rising edge or the falling edge

Truth Tables

- Just as for combinational circuits, sequential circuits can be described using truth tables
- In sequential circuits, truth tables include the idea of transitions in time

A	B	$\mathrm{Q}+$
0	0	Q
0	1	0
1	0	1
1	1	X

- Notes
- Q is the output before a change in inputs
- $\mathrm{Q}+$ is the output after a change in inputs
- X is don't care
- For synchronous circuits $\mathrm{Q}+$ is the value of Q at the next clock pulse

R-S Flip-Flop

- Symbols

Asynchronous

Synchronous

- Operation

- Asserting S sets Q to 1 and \bar{Q} to 0
- Asserting R resets Q to 0 and \bar{Q} to 1
- In the asynchronous flip-flop the outputs change immediately following the changes in the inputs
- In the synchronous flip-flop the outputs change on the next clock pulse after the changes in the inputs

Flip-Flops

- Flip-flops are the fundamental element of sequential circuits
- bistable
- (gates are the fundamental element for combinational circuits)

Flip-flops are essentially 1-bit storage devices

- outputs can be set to store either 0 or 1 depending on the inputs
- even when the inputs are de-asserted, the outputs retain their prescribed value
- Flip-flops have (normally) 2 complimentary outputs
- Q and \bar{Q}
- Three main types of flip-flop
- R-S
J-K
D-type
- Truth Table

S	R	$\mathrm{Q}+$
0	0	Q
0	1	0
1	0	1
1	1	X

- the "memory" in this device can be seen in the truth table row marked ***
- i.e. when $S=R=0$, the output holds onto its value
- in a synchronous flip-flop the Q output changes on the next clock
the input condition $\mathrm{S}=\mathrm{R}=1$ produces an undefined output X
- this combination of inputs would normally be avoided in a design

Construction of a Bistable Circuit

J-K Flip-Flop

- Symbol

- Operation

- The J-K flip-flop is a synchronous device
- Inputting $\mathrm{J}=1$ and $\mathrm{K}=0$ sets Q to 1 and \bar{Q} to 0 after the next clock pulse
- Inputting $\mathrm{J}=0$ and $\mathrm{K}=1$ resets Q to 0 and \bar{Q} to 1 after the next clock pulse
- Additional S and R inputs are sometimes included to permit asynchronous set and reset of the outputs respectively. These signals override the J and K inputs.

D Flip-Flop

- Truth Table

J	K	$Q+$
0	0	Q
0	1	0
1	0	1
1	1	\bar{Q}

- Notes
- the first 3 lines of the truth table are the same as for R-S flip-flop
- all input combinations have defined outputs
- Q+ indicates the value of Q after the next clock pulse
- inputting $\mathrm{J}=\mathrm{K}=1$ causes the output to toggle on each clock pulse - you might call this a Toggle flip-flop
- Symbol

$$
-
$$

Operation

- The D-type flip-flop is a synchronous device
- It has one data input and a clock.
- On the rising edge of the clock the data on D goes to the output Q

Truth Table

$$
\begin{array}{c|c}
\mathrm{D} & \mathrm{Q}+ \\
\hline 0 & 0 \\
1 & 1
\end{array}
$$

- Notes
- Probably the simplest flip-flop and very widely used

Transparent Latch

- A latch is a device which "latches" data for use at a future time
- The D-type flip-flop can do this - so can a transparent latch
- Symbol

- Truth Table

ENABLE	$\mathrm{Q}+$
0	Q
1	DATA

Operation

- When ENABLE goes to $0, \mathrm{Q}$ is "latched" (held at its current value)
- When ENABLE is $1, Q$ is the same a DATA

Transparent Latch Implementation

- Tocci page 205

Edge-Triggering

- Synchronous flip-flops change state on the edge of a clock pulse
Positive edge triggered:
- changes state on the 0 to 1 transition of the clock

Negative edge triggered:

- changes state on the 1 to 0 transition of the clock

