| Imperial College<br>London<br>Lecture 4: Bo<br>Department of EEE<br>(Floyd 4<br>(Toc                                                                                                                                                    | <b>Polean Algebra</b><br>r Peter Cheung<br>, Imperial College London<br>.1-4.4, 5.2-5.4)<br>ci 3.8-3.14) | <ul> <li>Points Addressed in this Lecture</li> <li>Theorems &amp; rules in Boolean algebra</li> <li>DeMorgan's Theorems</li> <li>Universality of NAND &amp; NOR gates</li> <li>Active low &amp; Active high</li> <li>Digital Integrated Circuits</li> </ul> |                                                                                                          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| E1.2 Digital Electronics I 4.1                                                                                                                                                                                                          | Oct 2007                                                                                                 | E1.2 Digital Electronics I                                                                                                                                                                                                                                  | Oct 2007                                                                                                 |  |  |  |
| <section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header> | Jean Algebra                                                                                             | Imperial College<br>London<br>Commutative Laws<br>A + B<br>A + B<br>A + B =<br>A - B =                                                                                                               | of Boolean Algebra<br>= $B + A$<br>$B \longrightarrow B + A$<br>= $B \cdot A$<br>$B \longrightarrow B A$ |  |  |  |







# Implications of DeMorgan's Theorems(I)





(b)

E1.2 Digital Electronics I

Imperial College

Example

4.17

 Determine the output expression for the below circuit and simplify it using DeMorgan's Theorem



Imperial College London

### Implications of DeMorgan's Theorems(II)



Imperial College London

### **Review Questions**

• Using DeMorgan's Theorems to convert the expressions to one that has only single-variable

inversions.

$$\overline{R\overline{ST} + \overline{Q}} \quad \longrightarrow \quad y = (\overline{R} + S + \overline{T})Q$$
$$\overline{A + B} \cdot \overline{C} \quad \longrightarrow \quad z = \overline{AB} + C$$

• Use DeMorgan's theorems to convert below expression to an expression containing only single-variable inversions.

y =

z = (z

$$y = \overline{A + \overline{B} + \overline{C}D} \longrightarrow y = \overline{A}B(C + \overline{D})$$

Oct 2007

Imperial College London

# Universality of NAND gates





E1.2 Digital Electronics I

Imperial College

London





4.22

Imperial College London

#### **Basic Characteristics of Digital ICs**

- Digital ICs (chips): a collection of resistors, diodes and transistors ٠ fabricated on a single piece of semiconductor materials called substrate.
- Dual-in-line package (DIP) is a common type of packages. ٠



Oct 2007



Logic Level LOW HIGH INDETERMINATE\* PULSING \* Includes open or floating condition

Logic probe is used to monitor the logic level activity at an IC pin or any other accessible point in a logic circuit







| Sun<br>How to represent th<br>Logical statements<br>Truth tables<br>Traditional graphic<br>Boolean algebra ex<br>Timing diagrams | nmary:<br>he basic logic functions<br>in our own language<br>logic symbols<br>pressions | e        | Imp<br>Lon<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | erial College<br>Boolean Alge<br>and design of<br>OR, AND, Ne<br>OR: HIGH of<br>AND: HIGH of<br>NOT: output<br>NOR: OR wi<br>NAND: AND<br>Boolean theo<br>logic circuit a<br>the circuit<br>NAND, NOR<br>Boolean ope | Su<br>ebra: a mather<br>of digital circui<br>OT: basic Boo<br>utput when an<br>output only when<br>is the opposit<br>ith its output c<br>with its output c<br>orems and rul<br>and can lead t<br>and can lead t | mmary<br>matical tool use<br>its<br>plean operation<br>by input is HIGF<br>hen all inputs a<br>te logic level as<br>onnected to an<br>at connected to an<br>at connected to an<br>les: to simplify t<br>to a simpler way | ed in the analy<br>s<br>f<br>re HIGH<br>the input<br>INVERTER<br>an INVERTER<br>he expression<br>y of implement<br>any of the basic | sis<br>of a<br>ing<br>c |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| E1.2 Digital Electronics I 4                                                                                                     | 4.37                                                                                    | Oct 2007 |                                                              | E1.2 Digital Electronics I                                                                                                                                                                                           |                                                                                                                                                                                                                 | 4.38                                                                                                                                                                                                                     |                                                                                                                                     | Oct 2007                |