Lecture 9: Flip-flops

Professor Peter Cheung
Department of EEE, Imperial College London
(Floyd 7.1-7.4)
(Tocci 5.1-5.9)

Imperial College

London

General digital system diagram

Imperial College
 London

Properties of Sequential Circuits

- So far we have seen Combinational Logic
- the output(s) depends only on the current values of the input variables
- Here we will look at Sequential Logic circuits
- the output(s) can depend on present and also past values of the input and the output variables
- Sequential circuits exist in one of a defined number of states at any one time
- they move "sequentially" through a defined sequence of transitions from one state to the next
- The output variables are used to describe the state of a sequential circuit either directly or by deriving state variables from them

Synchronous and Asynchronous Sequential Logic

- Synchronous
- the timing of all state transitions is controlled by a common clock
- changes in all variables occur simultaneously
- Asynchronous
- state transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
- changes in more than one output do not necessarily occur simultaneously
- Clock
- A clock signal is a square wave of fixed frequency
- Often, transitions will occur on one of the edges of clock pulses
- i.e. the rising edge or the falling edge

Flip-Flops

- Flip-flops are the fundamental element of sequential circuits
- bistable
- (gates are the fundamental element for combinational circuits)
- Flip-flops are essentially 1-bit storage devices
- outputs can be set to store either 0 or 1 depending on the inputs
- even when the inputs are de-asserted, the outputs retain their prescribed value
- Flip-flops have (normally) 2 complimentary outputs - Q and \bar{Q}
- Three main types of flip-flop
- R-S
J-K
D-type

Imperial College

London
Flip-Flop

(b)

FF = latch = bistable circuit

NAND Gate Latch

A NAND latch has two possible resting states when SET = CLEAR = 1 .

Negative Pulse on SET input put the latch in a HIGH (SET) state

Negative Pulse on CLEAR input put the latch in a LOW (Clear or RESET) state

Imperial College
 London

NAND Gate Latch (cont.)

(a)

Set	Clear	Output
1	1	No change
0	1	$Q=1$
1	0	$Q=0$
0	0	Invalid*
*produces $\mathrm{Q}=\overline{\mathrm{Q}}=1$		

(b)

Truth table for the NAND Set-Clear (Set-Reset or SR) Latch

SR Latch to deglitch a switch

E1.2 Digital Electronics I
(b)
9.13

Clock Signals and Clocked FFs

Imperial College

London

- Digital systems can operate

- Asynchronously: output can change state whenever inputs change
- Synchronously: output only change state at clock transitions (edges)
- Clock signal
- Outputs change state at the transition (edge) of the input clock
- Positive-going transitions (PGT)
- Negative-going transitions (NGT)

(a)

(b)

NOR gate Latch

- Made of two cross-coupled NOR gates

(a)

(b)

9.14

Imperial College

London

Control inputs must be held stable for (a) a time t_{s} prior to active clock transition and for (b) a time t_{H} after the active block transition.

Clocked S-C FF

Imperial College
Internal Circuitry of S-C FF
Simplified version of the internal circuitry for an edge-triggered S-C FF
(a) Clocked S-C FF that responds only to the positive-going edge of a clock pulse;
(b) truth table;
(c) Typical waveforms.

Clocked J-K FF

(a) Clocked J-K flip-flop that responds only to the positive edge of the clock; (b) waveforms.

$\mathrm{J}=\mathrm{K}=1$ condition does not result in an ambiguous output

Imperial College

 LondonInternal circuitry of edge-triggered J-K flip-flop

D FF that triggers only on positive-going transitions; (b) waveforms.

21

(a)

(b)

Imperial College
London

Parallel Data Transfer using D-FF

*After occurrence of NGT

Imperial College London

Transparent Latch Timing

Imperial College London

Asynchronous Inputs to FF

The S, C, J, K, and D inputs is called synchronous inputs because their effects on the output are synchronized with the CLK input.
Asynchronous inputs (override inputs) operate independently of the synchronous inputs and clock and can be used to set the FF to $1 / 0$ states at any time.

Imperial College

London

Asynchronous Inputs cont.

(a)

$$
\begin{array}{c||l}
\hline \text { Point } & \text { Operation } \\
\hline \text { a } & \text { Synchronous toggle on NGT of } \overline{\text { CLK }} \\
\text { b } & \text { Asynchronous set on } \overline{\text { PRE }}=0 \\
\text { c } & \text { Synchronous toggle } \\
\text { d } & \text { Syncronous toggle } \\
\text { e } & \text { Asynchronous clear on वLR }=0 \\
\mathrm{f} & \text { CLR over-rides the NGT of CLK } \\
\mathrm{g} & \text { Synchronous toggle } \\
\hline
\end{array}
$$

