
Lecture 5- 1pykc 22-Oct-01 ISE1/EE2 Computing

Lecture 5 Assembly Language Programming
Basics

◆ The following is a simple example which illustrates some of the
core constituents of an ARM assembler module:

label opcode

operands
comment

Lecture 5- 2pykc 22-Oct-01 ISE1/EE2 Computing

General Layout of an Assembly Program

◆ The general form of lines in an assembler module is:

 label <space> opcode <space> operands <space> ; comment

◆ Each field must be separated by one or more <whitespace> (such as a
space or a tab).

◆ Actual instructions never start in the first column, since they must
be preceded by whitespace, even if there is no label.

◆ All three sections are optional and the assembler will also accept
blank lines to improve the clarity of the code.

Lecture 5- 3pykc 22-Oct-01 ISE1/EE2 Computing

Description of Module

◆ The main routine of the program (labelled start) loads the values
15 and 20 into registers 0 and 1.

◆ The program then calls the subroutine firstfunc by using a branch
with link instruction (BL).

◆ The subroutine adds together the two parameters it has received
and places the result back into r0.

◆ It then returns by simply restoring the program counter to the
address which was stored in the link register (r14) on entry.

◆ Upon return from the subroutine, the main program simply
terminates using software interrupt (SWI) 11. This instructs the
program to exit cleanly and return control to the debugger.

Lecture 5- 4pykc 22-Oct-01 ISE1/EE2 Computing

AREA, ENTRY & END Assembly Directives

◆ Directives are instructions to the assembler program, NOT to the
microprocessors

◆ AREA Directive - specifies chunks of data or code that are
manipulated by the linker.
❖ A complete application will consist of one or more areas. The example

above consists of a single area which contains code and is marked as
being read-only. A single CODE area is the minimum required to
produce an application.

◆ ENTRY Directive - marks the first instruction to be executed within
an application
❖ An application can contain only a single entry point and so in a multi-

source-module application, only a single module will contain an
ENTRY directive.

◆ END directive - marks the end of the module

Lecture 5- 5pykc 22-Oct-01 ISE1/EE2 Computing

Creating program and project file

◆ Invoke ARM_SDK program and enter the program as hello.s in the
directory H:\arm_work\hello.s\

◆ Use pulldown command >Project >New to create a new project
called hello.apj

◆ Add all the files belonging to this project as shown (only one file
here):

Lecture 5- 6pykc 22-Oct-01 ISE1/EE2 Computing

How to interpret the Project File (.apj)?

This project has
only one module:
example1.s

The assembler produces an
object file (.o) for the linker to
use.

Linker collects together all the assembled and
compiled modules to form the .axf file for
debugging.

Lecture 5- 7pykc 22-Oct-01 ISE1/EE2 Computing

Build and Run the program

◆ After building the
project, you can invoke
the debugger program
and step through each
instructions one at a
time.

◆ The debugger program
allows you to control the
execution while viewing
any register and
memory location.

◆ You can also set
breakpoints in the
program.

Lecture 5- 8pykc 22-Oct-01 ISE1/EE2 Computing

Data Processing Instructions

◆ Three types of instructions:
❖ Data Processing
❖ Data Movement

❖ Control Flow

◆ Rules apply to ARM data processing instructions:
❖ All operands are 32 bits, come either from registers or are specified as

constants (called literals) in the instruction itself

❖ The result is also 32 bits and is placed in a register

❖ 3 operands - 2 for inputs and 1 for result

◆ Example:
ADD r0, r1, r2 ; r0 := r1 + r2

◆ Works for both unsigned and 2's complement signed
◆ This may produce carry out signal and overflow bits, but ignored by

default
◆ Result register can be the same with input operand register

Lecture 5- 9pykc 22-Oct-01 ISE1/EE2 Computing

Data Processing Instructions - Arithmetic
operations

◆ Here are ARM's arithmetic operations:

◆ RSB stands for reverse subtraction
◆ Operands may be unsigned or 2's complement signed integers
◆ 'C' is the carry (C) bit in the CPSR - Current Program Status Reg

ADD r0, r1, r2 ; r0 := r1 + r2
ADC r0, r1, r2 ; r0 := r1 + r2 + C
SUB r0, r1, r2 ; r0 := r1 - r2
SBC r0, r1, r2 ; r0 := r1 - r2 + C - 1
RSB r0, r1, r2 ; r0 := r2 - r1
RSC r0, r1, r2 ; r0 := r2 - r1 + C - 1

ADD r0, r1, r2 ; r0 := r1 + r2
ADC r0, r1, r2 ; r0 := r1 + r2 + C
SUB r0, r1, r2 ; r0 := r1 - r2
SBC r0, r1, r2 ; r0 := r1 - r2 + C - 1
RSB r0, r1, r2 ; r0 := r2 - r1
RSC r0, r1, r2 ; r0 := r2 - r1 + C - 1

Lecture 5- 10pykc 22-Oct-01 ISE1/EE2 Computing

Data Processing Instructions - Logical operations

◆ Here are ARM's bit-wise logical operations:

◆ BIC stands for 'bit clear', where every '1' in the second operand
clears the corresponding bit in the first:

r1: 0101 0011 1010 1111 1101 1010 0110 1011

r2: 1111 1111 1111 1111 0000 0000 0000 0000

r0: 0000 0000 0000 0000 1101 1010 0110 1011

AND r0, r1, r2 ; r0 := r1 and r2 (bit-by-bit for 32 bits)
ORR r0, r1, r2 ; r0 := r1 or r2
EOR r0, r1, r2 ; r0 := r1 xor r2
BIC r0, r1, r2 ; r0 := r1 and not r2

AND r0, r1, r2 ; r0 := r1 and r2 (bit-by-bit for 32 bits)
ORR r0, r1, r2 ; r0 := r1 or r2
EOR r0, r1, r2 ; r0 := r1 xor r2
BIC r0, r1, r2 ; r0 := r1 and not r2

Lecture 5- 11pykc 22-Oct-01 ISE1/EE2 Computing

Data Processing Instructions - Register Moves

◆ Here are ARM's register move operations:

◆ MVN stands for 'move negated'

r2: 0101 0011 1010 1111 1101 1010 0110 1011

r0: 1010 1100 0101 0000 0010 0101 1001 0100

MOV r0, r2 ; r0 := r2
MVN r0, r2 ; r0 := not r2

MOV r0, r2 ; r0 := r2
MVN r0, r2 ; r0 := not r2

Lecture 5- 12pykc 22-Oct-01 ISE1/EE2 Computing

Data Processing Instructions - Comparison
Operations

◆ Here are ARM's register comparison operations:

◆ Results of subtract, add, and, xor are NOT stored in any registers
◆ Only the condition code bits (cc) in the CPSR are set or cleared by

these instructions:

◆ Take CMP r1,r2 instruction:
❖ N = 1 if MSB of (r1 - r2) is '1'
❖ Z = 1 if (r1 - r2) = 0

❖ C = 1 if (r1, r2) are both unsigned integers AND (r1 < r2)

❖ V = 1 if (r1, r2) are signed integers AND (r1 < r2)

CMP r1, r2 ; set cc on r1 - r2
CMN r1, r2 ; set cc on r1 + r2
TST r1, r2 ; set cc on r1 and r2
TEQ r1, r2 ; set cc on r1 xor r2

CMP r1, r2 ; set cc on r1 - r2
CMN r1, r2 ; set cc on r1 + r2
TST r1, r2 ; set cc on r1 and r2
TEQ r1, r2 ; set cc on r1 xor r2

Lecture 5- 13pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions - single register
load/store instructions

◆ Three basic forms of data transfer instructions:
❖ Single register load/store instructions
❖ Multiple register load/store instructions

❖ Single register swap instructions

◆ Use a value in one register (called the base register) as a memory
address and either loads the data value from that address into a
destination register or stores the register value to memory:

LDR r0, [r1] ; r0 := mem32[r1]
STR r0, [r1] ; mem32[r1] := r0

◆ This is called register-indirect addressing
◆ LDR r0, [r1]

DDDD DDDD

AAAA AAAA

r0

r1
DDDD DDDDAAAA AAAA

memory

Lecture 5- 14pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions - Set up the address
pointer

◆ Need to initialize address in r1 in the first place. How?
◆ Use ADR pseudo instruction - looks like normal instruction, but it

does not really exists. Instead the assembler translates it to one or
more real instructions.

◆ The following example copies data from TABLE 1 to TABLE2

 copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ….
STR r0, [r2] ; and store it in TABLE2

 …….
TABLE1 …… ; <source of data>

……
TABLE2 …… ; <destination of data>

 copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ….
STR r0, [r2] ; and store it in TABLE2

 …….
TABLE1 …… ; <source of data>

……
TABLE2 …… ; <destination of data>

Lecture 5- 15pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions - ADR instruction

◆ How does ADR instruction works? Address is 32-bit, difficult to put
a 32-bit address value in a register in the first place

◆ Solution: Program Counter PC (r15) is often close to the desired
data address value

◆ ADR r1, TABLE1 is translated into an instruction that add or
subtract a constant to PC (r15), and put the results in r1

◆ This constant is known as PC-relative offset, and it is calculated
as: addr_of_table1 - (PC_value + 8)

ADR r1,table10000 8000

..........

xxxxx0000 8090

ADR r2,table20000 8004

..........

yyyyy0000 809C
..........

ADD r1, pc, #0x08

ADD r2, pc, #0x10

pseudo
instructions

real
instructions

Lecture 5- 16pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions - Base plus offset
addressing

◆ Extend the copy program further to copy NEXT word:

◆ Simplify with pre-indexed addressing mode
LDR r0, [r1, #4] ; r0 := mem32 [r1 + 4]

 copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ….
STR r0, [r2] ; and store it in TABLE2
ADD r1, r1, #4 ; step r1 onto next word
ADD r2, r2, #4 ; step r2 onto next word
LDR r0, [r1] ; load second value …
STR r0, [r2] ; and store it
…...

 copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ….
STR r0, [r2] ; and store it in TABLE2
ADD r1, r1, #4 ; step r1 onto next word
ADD r2, r2, #4 ; step r2 onto next word
LDR r0, [r1] ; load second value …
STR r0, [r2] ; and store it
…...

base
address

offset effective
address

Lecture 5- 17pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions - pre-indexed with
auto-indexing

◆ A simplified version is:

◆ Pre-indexed addressing does not change r1. Sometimes, it is
useful to modify the base register to point to the new address. This
is achieve by adding a '!', and is pre-indexed addressing with auto-
indexing:

◆ The '!' indicates that the instruction should update the base register
after the data transfer

 copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ….
STR r0, [r2] ; and store it in TABLE2
LDR r0, [r1, #4] ; load second value …
STR r0, [r2, #4] ; and store it
…...

 copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ….
STR r0, [r2] ; and store it in TABLE2
LDR r0, [r1, #4] ; load second value …
STR r0, [r2, #4] ; and store it
…...

LDR r0, [r1, #4]! ; r0 : = mem32 [r1 + 4]
; r1 := r1 + 4

LDR r0, [r1, #4]! ; r0 : = mem32 [r1 + 4]
; r1 := r1 + 4

Lecture 5- 18pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions - post-indexed
addressing

◆ Another useful form of the instruction is:

◆ This is called: post-indexed addressing - the base address is used
without an offset as the transfer address, after which it is auto-
indexed.

◆ Using this, we can improve the copy program more:

copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2

loop LDR r0, [r1], #4 ; get TABLE1 1st word ….
STR r0, [r2], #4 ; copy it to TABLE2
??? ; if more, go back to loop
……

TABLE1 …… ; < source of data >

copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2

loop LDR r0, [r1], #4 ; get TABLE1 1st word ….
STR r0, [r2], #4 ; copy it to TABLE2
??? ; if more, go back to loop
……

TABLE1 …… ; < source of data >

LDR r0, [r1], #4 ; r0 : = mem32 [r1]
; r1 := r1 + 4

LDR r0, [r1], #4 ; r0 : = mem32 [r1]
; r1 := r1 + 4

Lecture 5- 19pykc 22-Oct-01 ISE1/EE2 Computing

Data Transfer Instructions Summary

◆ Size of data can be reduced to 8-bit byte with:

◆ Summary of addressing modes:

LDR r0, [r1] ; register-indirect addressing
LDR r0, [r1 , # offset] ; pre-indexed addressing
LDR r0, [r1 , # offset]! ; pre-indexed, auto-indexing
LDR r0, [r1], # offset ; post-indexed, auto-indexing
ADR r0, address_label ; PC relative addressing

LDR r0, [r1] ; register-indirect addressing
LDR r0, [r1 , # offset] ; pre-indexed addressing
LDR r0, [r1 , # offset]! ; pre-indexed, auto-indexing
LDR r0, [r1], # offset ; post-indexed, auto-indexing
ADR r0, address_label ; PC relative addressing

LDRB r0, [r1] ; r0 : = mem8 [r1]LDRB r0, [r1] ; r0 : = mem8 [r1]

