Lecture 5 Assembly Language Programming
Basics

o The following is a simple example which illustrates some of the
core constituents of an ARM assembler module:

AREA Example, CODE, READONLY ; name this block of code
ENTRY ; mark first instruction
; to execute

start
MOV r0, #15 ; Set up parameters
MOV rl, #20
BL firstfunc ; Call subroutine
SWI 0x11 ; terminate

firstfunc ; Subroutine firstfunc
AD r0, r0, rl ; r0O = r0 + rl

D
MOV pc, 1lr

; Return from subroutine
; with result in ro0
END ; mark end of file

operands
o] )

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 1

General Layout of an Assembly Program

o The general form of lines in an assembler module is:
label <space> opcode <space> operands <space> ; comment

¢ Each field must be separated by one or more <whitespace> (such as a
space or a tab).

¢ Actual instructions never start in the first column, since they must
be preceded by whitespace, even if there is no label.

+ All three sections are optional and the assembler will also accept
blank lines to improve the clarity of the code.

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 2

Description of Module

& The main routine of the program (labelled start ) loads the values
15 and 20 into registers 0 and 1.

+ The program then calls the subroutine firstfunc by using a branch
with link instruction (BL).

¢ The subroutine adds together the two parameters it has received
and places the result back into rO.

+ |t then returns by simply restoring the program counter to the
address which was stored in the link register (r14) on entry.

+ Upon return from the subroutine, the main program simply
terminates using software interrupt (SWI) 11. This instructs the
program to exit cleanly and return control to the debugger.

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 3

AREA, ENTRY & END Assembly Directives

+ Directives are instructions to the assembler program, NOT to the
microprocessors

o AREA Directive - specifies chunks of data or code that are
manipulated by the linker.

“ A complete application will consist of one or more areas. The example
above consists of a single area which contains code and is marked as
being read-only. A single CODE area is the minimum required to
produce an application.

o ENTRY Directive - marks the first instruction to be executed within
an application

< An application can contain only a single entry point and so in a multi-
source-module application, only a single module will contain an
ENTRY directive.

¢ END directive - marks the end of the module

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 4




Creating program and project file

Invoke ARM_SDK program and enter the program as hello.s in the
directory H: \arm_work\hello.s\

Use pulldown command >Project >New to create a new project

called hello.apj

Add all the files belonging to this project as shown (only one file

here)- ~{ ARM Project Manager - H:\_Mywork\...\hello.apj _ x|
Fle Edt View Project Toos Window Hep
Ell= =S E) BN EEE = EREE
i H:\_Mywork?, B[l B3| B ri:\_Myworky_TcTeaching' 15E _lolx|
%8 ARM Execuitable Image a7||[} Exercise 1: A simple program to print =
¥+ Debug Hello World! in the console window
) Sources ;
+ 3 hele RARER  helloW, CODE, RERDONLY ; declare code area
) IncludedFies SWI_WriteC EQU &0 ; output character in r0
 objects SWI_Exit EQU 511 ; finish program
 subProjects ENTRY ; code entry point
 Lbraries START ADR  rl, TEXT 5 rl -> "Hello World!"
S Image _,LI Loop LDRE  r0, [rll, #1 J get the next byte
S Micralanas iy P et
-
< > _'ﬂ [add Files to Project 2x|
< >
Lookin: | 3ISE1_EE2 Computing ~ ek B~
777777 Execute "De wm | =
Debug
TERT = " |10 notes
4 | il B
Build Debug L‘
] :Iﬂ
For Heln. press F1 .
pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5-5

This project has
only one module:
examplel.s

%y IncludedFiles

The assembler produces an
object file (.0) for the linker to
use.

« B hello.axf
& Mifcellanea

[ !., Release

IENS

Linker collects together all the assembled and
compiled modules to form the .axf file for
debugging.

pykc 22-Oct-01

ISE1/EE2 Computing Lecture 5- 6

Build and Run the program

« After building the

project, you can invoke
the debugger program
and step through each
instructions one at a
time.

The debugger program
allows you to control the
execution while viewing
any register and
memory location.

You can also set
breakpoints in the
program.

Fle Edt Search Yiew Execute Options Window Hep

| D5 B [arer =] EBIEEE B0 0] @AM o el

-0 0=00000000
Il 0xz000080a7
2 0x00000020
I3 0z00000000

=1k

e 0:x00000000

TS 0:x00000000
e 0x00000000
=7 0=00000000
vatz) 0:z00000000
9 0:=00000000
10 |0=00000000
r11 |0=00000000
r12 |0=000080a8
13 |0=00000000
r14 |0=00008010
b 0:x00008094
psr [EnZCvift_User3z

[ERMed Command Interface
Debug :

. Executing hello.s
1

; Ezercise 1: A sinmple program te
2 : Hello World! in the console
3
4 AREA  helloW, CODE, REAI
s SWI_WriteC EQU &0 :
6 SWI_Exit EQU &11
7 ENTRY
B START  ADR r1, TEXT
E] Lo0P  LDRE  rd, [rl]. #1
10 CHP r0, #0
11 SWINE — SWI_WriteC
12 BHE LOOP

swT SWI_Exit
14
15 [TEXT = "Hello World!", &0a, &0d, |
16 END

[:=] Console window

RMulator 2.07 [Apr 7 1998]

FM7IDM, 4GB, Dummy MMU, Soft Angsl 1.4 [
Profiler, Tracer, Pagetables, Little er
ello World!

pykc 22-Oct-01

ISE1/EE2 Computing

Lecture 5-7

Data Processing Instructions

L 4

*
*

*

Three types of instructions:
« Data Processing
< Data Movement
< Control Flow
Rules apply to ARM data processing instructions:

< All operands are 32 bits, come either from registers or are specified as
constants (called literals) in the instruction itself

< The result is also 32 bits and is placed in a register
% 3 operands - 2 for inputs and 1 for result
Example:
ADD r0,r1,r2 ;r0:=r1 +1r2
Works for both unsigned and 2's complement signed

This may produce carry out signal and overflow bits, but ignored by
default

Result register can be the same with input operand register

pykc 22-Oct-01

ISE1/EE2 Computing Lecture 5- 8




Data Processing Instructions - Arithmetic
operations

¢ Here are ARM's arithmetic operations:

ADD 1r0,r1,r2 ;r0:=r1 +r2

ADC r0,r1,r2 ;r0:=r1+r2+C
SUB 1r0,r1,r2 ;r0:=r1-r2

SBC 1r0,r1,r2 ;r0:=r1-r2+C-1
RSB 1r0,r1,r2 ;r0:=r2-r1

RSC r0,r1,r2 ;r0:=r2-rt+C-1

o RSB stands for reverse subtraction
¢ Operands may be unsigned or 2's complement signed integers

o 'C'is the carry (C) bit in the CPSR - Current Program Status Reg

pykc 22-Oct-01 ISE1/EE2 Computing

Lecture 5-9

Data Processing Instructions - Logical operations [& -

¢ Here are ARM's bit-wise logical operations:

AND 1r0,r1,r2
ORR 1r0,r1,r2
EOR 1r0,r1,r2
BIC r0, r1, r2

; 0 :=r1 and r2 (bit-by-bit for 32 bits)
;r0:=r1orr2

; 10 :=r1 xor r2

; r0 :=r1 and not r2

+ BIC stands for 'bit clear', where every '1' in the second operand
clears the corresponding bit in the first:

r1: 0101 0011 10101111 1101 10100110 1011
re: 1111 1111 1111 1111 0000 0000 0000 0000
r0: 0000 0000 0000 0000 1101 10100110 1011
pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 10

Data Processing Instructions - Register Moves

¢ Here are ARM's register move operations:

MOV r0, r2 ;10 :=r2
MVN r0, r2 ; 10 := not r2

¢ MVN stands for 'move negated'

r2: 0101 0011 1010 1111 1101 1010 0110 1011
r0: 1010 1100 0101 0000 0010 0101 1001 0100

pykc 22-Oct-01 ISE1/EE2 Computing

Lecture 5- 11

Data Processing Instructions - Comparison
Operations

¢ Here are ARM's register comparison operations:

CMP r1,r2 ;setcconrl-r2
CMN r1,r2 ;setcconrl +1r2
TST r1, r2 ; setcconrl and r2
TEQ r1,r2 ; set cc on r1 xor r2

+ Results of subtract, add, and, xor are NOT stored in any registers

+ Only the condition code bits (cc) in the CPSR are set or cleared by

these instructions:
31 2827 8 7 6 5 4 0

|NZCV| unused |IF|T| mode |

¢ Take CMP r1,r2 instruction:
% N=1 if MSB of (r1 - r2) is '1'
@ Z=11if (rM-r2)=0
% C=1if (r1, r2) are both unsigned integers AND (r1 < r2)
% V=1 if (r1, r2) are signed integers AND (r1 < r2)

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 12




Data Transfer Instructions - single register
load/store instructions

¢ Three basic forms of data transfer instructions:
% Single register load/store instructions
% Multiple register load/store instructions
% Single register swap instructions
¢ Use avalue in one register (called the base register) as a memory
address and either loads the data value from that address into a
destination register or stores the register value to memory:

LDR O, [r1] ; 10 1= memy,[r]
STR 10, [r1] ; memg,[r1] :=r0
o This is called register-indirect addressing
¢ LDR r0,[r1] memory
ro DDDD DDDD  «
— AAAA AAAA| DDDD DDDD
r1 AAAA AAAA
pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 13

Data Transfer Instructions - Set up the address
pointer

+ Need to initialize address in r1 in the first place. How?

¢ Use ADR pseudo instruction - looks like normal instruction, but it
does not really exists. Instead the assembler translates it to one or
more real instructions.

¢ The following example copies data from TABLE 1 to TABLE2

copy ADR r1, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR ro0, [r1] ; load first value ....
STR ro0, [r2] ; and store it in TABLE2
TABLE1 ... ; <source of data>
TABLE2 = ...... ; <destination of data>

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 14

Data Transfer Instructions - ADR instruction

real

pseudo . g
instructions

J instructions

0000 8000 | ADR ri1,table1 —>  ADD r1, pc, #0x08
0000 8004 | ADR r2table2 —>  ADD r2, pc, #0x10

—> 0000 8090 XXXXX

—>» 0000 809C VYYYy

¢ How does ADR instruction works? Address is 32-bit, difficult to put
a 32-bit address value in a register in the first place

# Solution: Program Counter PC (r15) is often close to the desired
data address value

¢ ADR ri1, TABLE1 istranslated into an instruction that add or
subtract a constant to PC (r15), and put the results in r1

¢ This constant is known as PC-relative offset, and it is calculated
as: addr_of_table1 - (PC_value + 8)

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 15

Data Transfer Instructions - Base plus offset
addressing

+ Extend the copy program further to copy NEXT word:

copy ADR r1, TABLE1 ; 11 points to TABLE1
ADR r2, TABLE2 ; 2 points to TABLE2
LDR ro, [r1] ; load first value ....
STR ro, [r2] ; and store it in TABLE2
ADD ri, rl, #4 ; step r1 onto next word
ADD r2, r2, #4 ; step r2 onto next word
LDR ro, [r1] ; load second value ...
STR ro, [r2] ; and store it

+ Simplify with pre-indexed addressing mode

LDR/rO,LH, #< ; 10 := memy, [r1 + 4]

base effective

address address

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 16




Data Transfer Instructions - pre-indexed with
auto-indexing

¢ A simplified version is:

copy ADR ri, TABLE1 ; r1 points to TABLE1
ADR r2, TABLE2 ; r2 points to TABLE2
LDR r0, [r1] ; load first value ....
STR r0, [r2] ; and store it in TABLE2
LDR r0, [r1, #4] ; load second value ...
STR r0, [r2, #4] ; and store it

¢ Pre-indexed addressing does not change r1. Sometimes, it is
useful to modify the base register to point to the new address. This
is achieve by adding a '!', and is pre-indexed addressing with auto-
indexing:

LDR rO, [r1, #4]! ; 10 :=memy, [r1 + 4]
;rl:=r1+4

¢ The """ indicates that the instruction should update the base register
after the data transfer

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 17

Data Transfer Instructions - post-indexed
addressing

¢ Another useful form of the instruction is:

LDR rO, [r1], #4 ; 10 : = mem,, [r1]
;rl:=r1+4

+ This is called: post-indexed addressing - the base address is used
without an offset as the transfer address, after which it is auto-
indexed.

+ Using this, we can improve the copy program more:

copy ADR r1, TABLE1 ; r'1 points to TABLE1
ADR r2, TABLE2 ; 2 points to TABLE2
loop LDR r0, [r1], #4 ; get TABLE1 1st word ....
STR r0, [r2], #4 ; copy it to TABLE2
?2?? ; if more, go back to loop
TABLE1 = ...... ; < source of data >
pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 18

Data Transfer Instructions Summary

¢ Size of data can be reduced to 8-bit byte with:
LDRB r0, [r1] ; r0:=memg[rl] |

& Summary of addressing modes:

LDR r0, [r1] ; register-indirect addressing
LDR r0, [r1, # offset] ; pre-indexed addressing
LDR r0, [r1 , # offset]! ; pre-indexed, auto-indexing

LDR r0, [r1], # offset ; post-indexed, auto-indexing
ADR r0, address_label ; PC relative addressing

pykc 22-Oct-01 ISE1/EE2 Computing Lecture 5- 19




