
Lecture 4- 1pykc 18-Oct-01 ISE1/EE2 Computing

Lecture 4 Introduction to the ARM Processor

How to improve on MU0?
◆ Larger address space than MU0 - 12-bit address gives 8k byte of

memory. Therefore use 16-bit, 32-bit or wider address bus.
◆ Addition addressing modes - addressing modes are the different

ways that the operand address may be specified. (See later)
◆ Subroutine call mechanism - this allows writing modular

programs.
◆ Additional internal registers - this reduces the need for

accessing external memory.
◆ Other system support mechanism such as interrupts, direct

memory access, cache memory, memory management etc.
◆ Allows coprocessors to be added (such as floating point

processor).

Lecture 4- 2pykc 18-Oct-01 ISE1/EE2 Computing

Instruction formats

◆ 4-address instruction format (not used in ARM)

◆ 3-address instruction format (used by ARM processor)

◆ 2-address instruction format (used by the Thumb instruction set of
ARM)

◆ 1-address instruction format (used in MU0 and some 8-bit
microcontrollers such as MC6811)

Lecture 4- 3pykc 18-Oct-01 ISE1/EE2 Computing

How to make CPU faster?

◆ Wide instruction code and as few words (bytes) as possible
❖ 8 bit / 16 bit / 32 bit / 64 bit processors

◆ Each instruction uses as few clock cycles as possible
◆ Keep as much data inside CPU as possible (many internal

registers)
◆ Make each clock cycle as short as possible (high clock rate)
◆ Get each instruction to do as much as possible (?)
◆ What do you mean by “fast” anyway?

Lecture 4- 4pykc 18-Oct-01 ISE1/EE2 Computing

Design Approaches

◆ Complex Instruction Set Computers (CISC)
❖ dense code, simple compiler
❖ powerful instruction set, variable format, multi-word

❖ multi-cycle execution, low clock rate

◆ Reduced Instruction Set Computers (RISC)
❖ high clock rate, low development cost (?)

❖ easy to move to new technology
❖ simple instructions, fixed format, complex optimising compiler

◆ Fast local storage
❖ Register file, on-chip memory, intelligent-RAM

◆ Concurrent execution of instructions
❖ multiple function units - super scalar

❖ “production line” arrangement - pipeline

◆ Direct hardware implementation
❖ reconfigurable computing - no fetch/decode

Lecture 4- 5pykc 18-Oct-01 ISE1/EE2 Computing

A First Look at the ARM Processor

◆ Main Features
❖ Load-Store architecture
❖ Fixed-length (32-bit) instructions

❖ 3-address instruction formats (2 source operand registers, 1 result
operand register)

❖ Conditional execution of ALL instructions
❖ Multiple Load-Store register instructions

❖ A single-cycle n-bit shift with ALU operation

❖ Coprocessor instruction interfacing
❖ Thumb architecture (dense 16-bit compressed instruction set)

Lecture 4- 6pykc 18-Oct-01 ISE1/EE2 Computing

The ARM Programmer's Model

Lecture 4- 7pykc 18-Oct-01 ISE1/EE2 Computing

The ARM Programmer's Model (con't)

◆ R0 to R14 are general purpose registers (32-bits)
❖ Used by programmer for (almost) any purpose without restriction

◆ R15 is the Program Counter (PC)
◆ The remaining shaped ones are system mode registers - used

during interrupts, exceptions or system programming (to be
considered in later lectures)

◆ Current Program Status Register (CPSR) contains conditional flags
and other status bits

Lecture 4- 8pykc 18-Oct-01 ISE1/EE2 Computing

ARM's memory organization

◆ Maximum 232 bytes of memory
◆ A word = 32-bits, half-word = 16 bits
◆ Words aligned on 4-byte boundaries
◆ Half words aligned on even byte boundaries

Lecture 4- 9pykc 18-Oct-01 ISE1/EE2 Computing

Key features of the ARM instruction set

◆ Load-store architecture
◆ 3-address data processing instructions
◆ Conditional execution of EVERY instruction
◆ Inclusion of load and store multiple register instructions
◆ Perform a general shift operation and a general ALU operation in a

single instruction executed in one cycle
◆ Can extend instruction set through the coprocessor instruction set,

including adding new registers and data types
◆ Dense 16-bit compressed representation of instruction set in the

Thumb architecture (to be consider much later)
◆ Combines the best of RISC and the best of CISC

Lecture 4- 10pykc 18-Oct-01 ISE1/EE2 Computing

ARM I/O System

◆ Handles all input/output peripherals (such as printer, disk and
network) as memory-mapped devices

◆ Two types of interrupt support - normal interrupt and fast interrupt
(considered in later lecture)

◆ Direct memory access (DMA) hardware support for high-bandwidth
data transfer (also later)

◆ We will consider:
❖ Parallel Peripheral Interface 82C55

❖ Counter/Timer Interface 82C54

❖ Universal Asynchronous Rx/Tx (UART) 16C450
❖ Pulse Width Modulator

❖ Interrupt Controller

Lecture 4- 11pykc 18-Oct-01 ISE1/EE2 Computing

ARM Development tools

Lecture 4- 12pykc 18-Oct-01 ISE1/EE2 Computing

ARM Development tools

◆ ARM C compiler - ANSI standard, fast, integrated
◆ ARM Assembler - translate assembly instructions to ARM

instructions
◆ Linker

❖ Takes one or more object files (from C compiler or ARM assembler)
and combines them into one executable program

❖ Resolve symbolic references (i.e. names of variables or routines are
turned into actual memory addresses)

◆ ARM symbolic debugger - full control on execution and viewing of
registers

◆ ARMulator - emulate the ARM processes with a system
❖ Instruction-accurate modelling
❖ Cycle-accurate modelling

❖ Timing-accurate modelling

◆ Window User's interface

