

How to improve on MU0?

- Larger address space than MU0 12-bit address gives 8k byte of memory. Therefore use 16-bit, 32-bit or wider address bus.
- Addition addressing modes addressing modes are the different ways that the operand address may be specified. (See later)
- Subroutine call mechanism this allows writing modular programs.
- Additional internal registers this reduces the need for accessing external memory.
- Other system support mechanism such as interrupts, direct memory access, cache memory, memory management etc.
- Allows coprocessors to be added (such as floating point processor).

pykc 18-Oct-01	ISE1/EE2 Computing	Lecture 4- 1

How to make CPU faster?

- Wide instruction code and as few words (bytes) as possible
 8 bit / 16 bit / 32 bit / 64 bit processors
- Each instruction uses as few clock cycles as possible
- Keep as much data inside CPU as possible (many internal registers)
- Make each clock cycle as short as possible (high clock rate)
- Get each instruction to do as much as possible (?)
- What do you mean by "fast" anyway?

Instruction formats

4-address instruction format (not used in ARM)

f bits	n bits	n bits	n bits	n bits
function	op 1 addr.	op 2 addr.	dest. addr.	next_i addr.

3-address instruction format (used by ARM processor)

f bits n bits		n bits	n bits		
function	op 1 addr.	op 2 addr.	dest. addr.		

2-address instruction format (used by the Thumb instruction set of ARM)
 f bits n bits n bits

ISE1/EE2 Computing

function	op 1 addr.	dest. addr.

 1-address instruction format (used in MU0 and some 8-bit microcontrollers such as MC6811)
 f bits n bits

function op 1 addr.

```
pykc 18-Oct-01
```

Lecture 4- 2

Design Approaches

- Complex Instruction Set Computers (CISC)
 - dense code, simple compiler
 - powerful instruction set, variable format, multi-word
 - multi-cycle execution, low clock rate
- Reduced Instruction Set Computers (RISC)
 - high clock rate, low development cost (?)
 - easy to move to new technology
 - simple instructions, fixed format, complex optimising compiler
- Fast local storage
 - Register file, on-chip memory, intelligent-RAM
- Concurrent execution of instructions
 - multiple function units super scalar
 - "production line" arrangement pipeline
- Direct hardware implementation
 - reconfigurable computing no fetch/decode

pykc 18-Oct-01

A First Look at the ARM Processor

- Main Features
 - Load-Store architecture
 - Fixed-length (32-bit) instructions
 - 3-address instruction formats (2 source operand registers, 1 result operand register)
 - Conditional execution of ALL instructions
 - Multiple Load-Store register instructions
 - A single-cycle n-bit shift with ALU operation
 - Coprocessor instruction interfacing
 - Thumb architecture (dense 16-bit compressed instruction set)

ISE1/EE2 Computing

The ARM Programmer's Model

The ARM Programmer's Model (con't)

Lecture 4-5

- R0 to R14 are general purpose registers (32-bits)
 Used by programmer for (almost) any purpose without restriction
- R15 is the Program Counter (PC)
- The remaining shaped ones are system mode registers used during interrupts, exceptions or system programming (to be considered in later lectures)
- Current Program Status Register (CPSR) contains conditional flags and other status bits

ARM CPSR format

31 28	27 8	76	5	4	0
NZCV	unused	١F	Т	mode	

ARM's memory organization

- Maximum 2³² bytes of memory
- A word = 32-bits, half-word = 16 bits
- Words aligned on 4-byte boundaries
- Half words aligned on even byte boundaries

pvkc 18-Oct-01

ISE1/EE2 Computing

Key features of the ARM instruction set

- Load-store architecture
- 3-address data processing instructions
- Conditional execution of EVERY instruction
- Inclusion of load and store multiple register instructions
- Perform a general shift operation and a general ALU operation in a single instruction executed in one cycle
- Can extend instruction set through the coprocessor instruction set, including adding new registers and data types
- Dense 16-bit compressed representation of instruction set in the Thumb architecture (to be consider much later)
- Combines the best of RISC and the best of CISC

ARM I/O System

- Handles all input/output peripherals (such as printer, disk and network) as memory-mapped devices
- Two types of interrupt support normal interrupt and fast interrupt (considered in later lecture)
- Direct memory access (DMA) hardware support for high-bandwidth data transfer (also later)
- We will consider:
 - Parallel Peripheral Interface 82C55
 - Counter/Timer Interface 82C54
 - Universal Asynchronous Rx/Tx (UART) 16C450
 - Pulse Width Modulator
 - Interrupt Controller

