
ISE1/EE2 Computer System - Lab 1

pykc – October 2001 1

EE2 Computer Architecture
Laboratory Exercise 1

Getting started with

ARM Software Design Toolkit (SDT) Version 2.2

Objectives
• To introduce the Window-based ARM simulator environment.
• To introduce ARM programming in assembly language

Where to start

• ARM SDT is an easy to use window-based environment for writing and debugging
software for the ARM processor. This program is installed on all the machines on all
undergraduate teaching laboratories on Levels 1 and 3.

• ARM SDT includes an assembler - a program that translate assembly language into
machine instructions, a C-compile, and a symbolic debugger/simulator. The assembly
language source is assumed to be in a file filename.s. You must first create the source
program either using the built-in editor or the excellent free Programmer's File Editor
(pfe32.exe) which is downloadable from my course home page:
(http://www.ee.ic.ac.uk/pcheung/teaching/ee2_computing).

Exercise 1 - "Hello world!"

• Invoke ARM Project Manager program by clicking on the ICON .

• Use the pulldown menu File → New, create a new assembler program. You will see an
Editor window. Type in the following assembly language program save it as hello.s.
This is a simple program that produces the message "Hello world!" in the output
window.

; Exercise 1: A simple program to print
; Hello World! in the console window
;

AREA helloW, CODE, READONLY ; declare code area
SWI_WriteC EQU &0 ; output character in r0
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point
START ADR r1, TEXT ; r1 -> "Hello World!"
LOOP LDRB r0, [r1], #1 ; get the next byte

CMP r0, #0 ; check for 'null' character
SWINE SWI_WriteC ; if not end, print ..
BNE LOOP ; .. and loop back
SWI SWI_Exit ; end of execution

TEXT = "Hello World!", &0a, &0d, 0 ; string + CR + LF + null

END

• Next create a project hello.apj using the Project→New command. Add the file
hello.s to the project. This automatically creates the necessary command line
instructions to assemble and link the file hello.s to form the executable file hello.

• You should see the following screen dump:

•

ISE1/EE2 Computer System - Lab 1

pykc – October 2001 2

• To debug the program, use the command Project -> Debug hello.apj command
to invoke the debugger/simulator. You should see a window as shown below.

• Execute and test the program using single stepping and notice how the register window
values change with each instruction.

ISE1/EE2 Computer System - Lab 1

pykc – October 2001 3

Exercise 2 - Reporting Time

• Now try this second example program. Make sure that you understand what you are
doing. In particular, single step through the HexOut subroutine to make sure that you
understand every single instruction.

AREA Example, CODE, READONLY
SWI_WriteC EQU 0
SWI_ReadC EQU 4
SWI_Clock EQU 0x61 ; report elapse time in cent-seconds

ENTRY ; mark first instruction
; to execute

start NOP
SWI SWI_Clock ; read timer
CMP r1, r0
BEQ start ; if no change, go back
MOV r1, r0
BL HexOut ; … else output it as hex
MOV r0, #&0a ; output CR
SWI SWI_WriteC
MOV r0, #&0d ; output LF
SWI SWI_WriteC
B start

; Subroutine HexOut - Output 32-bit word as 8 hex digits as ASCII characters
; Input parameters: r1 contains the 32-bit word to output
; Return parameters: none
; Registers changed: none
;
HexOut STMED r13!, {r0-r2, r14} ; save working registers on stack

MOV r2, #8 ; r2 has nibble (4-bit digit) count = 8
Loop MOV r0, r1, LSR #28 ; get top nibble

CMP r0, #9 ; if nibble <= 9, then
ADDLE r0, r0, #"0" ; convert to ASCII numeric char
ADDGT r0, r0, #"A"-10 ; else convert to ASCII alphabet char
SWI SWI_WriteC ; print character
MOV r1, r1, LSL #4 ; shift left 4 bits to get to next

nibble
SUBS r2, r2, #1 ; decrement nibble count
BNE Loop ; if more, do next nibble
LDMED r13!, {r0-r2, pc} ; retrieve working registers from stack

; … and return to calling program
END

Exercise 3 - Subroutine StrLen

The subroutines in Exercises 3 & 4 are useful for future use.

Write and test a subroutine to count the number of characters in a null-terminated string. The
subroutine interface is:

; Subroutine StrLen - Return the length of a null-terminated string
; Input parameters: r1 contains the address of the string
; Return parameters: r0 contains the length of string including null character
; Registers changed: r0

ISE1/EE2 Computer System - Lab 1

pykc – October 2001 4

Exercise 4 - Subroutine StrOut

Write and test a subroutine to output a null terminated string in the console window. The
subroutine interface is:

; Subroutine StrOut - Output a null-terminated string to console window
; Input parameters: r1 contains the address of the string
; Return parameters: none
; Registers changed: none

Related documents

• Reference CARD for ARM assembly language
• ARM System Call Summary
• Notes for Lectures 3-6

These can be downloaded from the course web page:

http://www.ee.ic.ac.uk/pcheung/teaching/ee2_computing

