ISE1/EE2 Computer System - Lab 1

EE2 Computer Architecture
Laboratory Exercise 1

Getting started with
ARM Software Design Toolkit (SDT) Version 2.2

Objectives
e To introduce the Window-based ARM simulator environment.
e To introduce ARM programming in assembly language

Where to start

e ARM SDT is an easy to use window-based environment for writing and debugging
software for the ARM processor. This program is installed on all the machines on all
undergraduate teaching laboratories on Levels 1 and 3.

e ARM SDT includes an assembler - a program that translate assembly language into
machine instructions, a C-compile, and a symbolic debugger/simulator. The assembly
language source is assumed to be in a file filename.s. You must first create the source
program either using the built-in editor or the excellent free Programmer's File Editor
(pfe32.exe) which is downloadable from my course home page:
(http://www.ee.ic.ac.uk/pcheung/teaching/ee2_computing).

Exercise 1 - "Hello world!"

e Invoke ARM Project Manager program by clicking on the ICON

e Use the pulldown menu File — New, create a new assembler program. You will see an
Editor window. Type in the following assembly language program save it as hello.s.
This is a simple program that produces the message "Hello world!" in the output
window.

; Exercise 1: A simple program to print

; Hello World! in the console window
i
AREA helloW, CODE, READONLY ; declare code area
SWI_WriteC EQU &0 ; output character in r0
SWI_Exit EQU &11 ; finish program
ENTRY ; code entry point
START ADR rl, TEXT ; rl -> "Hello World!"
LOOP LDRB ro, [r1l], #1 ; get the next byte
CMP r0, #0 ; check for 'null' character
SWINE SWI_WriteC ; if not end, print
BNE LOOP ;.. and loop back
SWI SWI_Exit ; end of execution
TEXT = "Hello World!", &0a, &0d, O ; string + CR + LF + null
END

e Next create a project hello.apj using the Project—New command. Add the file
hello.s to the project. This automatically creates the necessary command line
instructions to assemble and link the file hello. s to form the executable file hello.

® You should see the following screen dump:

pykc — October 2001

ISE1/EE2 Computer System - Lab 1

ARM Project Manager] _I_I— [m] 5‘
Fle Edit view Project Tools Window Help
= TR — = T =)
] ISE1_EE2 Com)j =] 9|
S ARM Execuitzble Image Exercise 1: A simple program to print =
B o DebLg B Hello World! in the console window
=] § Sources ;
+ [l hellc ARER helloW, CODE, REARDONLY : declare code area
& IncludedFiles SWI_WriteC EQU &0 ; output character in r0
 Cbects SWI Exit EQU &1l ; finish program
© SubProjects ENTRY ; code entry point
Sy Libraries START ADR rl, TEXT ; rl -» "Hello World!l™
§ mage = LoOP LDRE 0, [rl], #1 ; get the next byte
« ‘“""'"‘"‘“"“I _'IJ' CMP rl, #0 ; check for 'null' character
1 _"_I SWINE SWI WritsC ; if not end, print ..
- BME LOOP ;.. and loop back
—————— Execute "De SWI SWI_Exit ; end of execution
« »]|[TEXT = "Hello world!", &la, &id, 0 ; string + CR + LF + null
Build Debug END
| | -
[T
For Help, press F1 ILn:17 Coli1 [[[4

e To debug the program, use the command Project -> Debughello.apj command
to invoke the debugger/simulator. You should see a window as shown below.

e Execute and test the program using single stepping and notice how the register window
values change with each instruction.

=1olx]

File Edit Search “iew Execute Options Window Help

=]]| | F [arm -] BIEARE B @3] @ AR

BT [bcooneios) i

0z 00000000 ; Exercise 1: A simple program to print

0=000080a7 Hello World! in the console window

0z00000020 B

0=00000000 AREA helloW, CODE, READONWLY : declare code area
0z 00000000 SWI_WriteC EQU &0 ; output character in r0
0x00000000 [SWI_Exit EQU &11 ; finish program
0=00000000 ENTRY ; code entry point

0=00000000 ISTART ADR rl, TEXT ; rl -» "Hello World!"
0z00000000 LOOP LDRE r0, [rl]. #1 ; get the next byte
0x00000000 CMP rl, #0 ; check for 'null' character
0z 00000000 SWINE SWI_Writel ; if not end, print ..
0z 00000000 ENE LOQP ;.. and loop back
020000808 TER B i SWI_Exit : end of execution
0z00000000 14

0=00008010 15 [TEXT = "Hello World!", &0a,. &04, O : string + CR + LF + null
0z00008094 16 END

PmZCvift_User32

R corsewnaon —hix

ARMsd Command Interface

RMulator 2.07 [Apr 7 1998]

Debug : RM7TDM, 4GB, Dummy MMU, Soft Angel 1.4 [Angel SWIs, Demon SWIs], FPE.
Profiler, Tracer, Pagetables, Little endian.
ello World!
-
For Help, press F1 BRMulate || I 4

pyke — October 2001 2

ISE1/EE2 Computer System - Lab 1 ISE1/EE2 Computer System - Lab 1

Exercise 2 - Reporting Time Exercise 4 - Subroutine StrOut
e Now try this second example program. Make sure that you understand what you are Write and test a subroutine to output a null terminated string in the console window. The
doing. In particular, single step through the HexOut subroutine to make sure that you subroutine interface is:

understand every single instruction.
Subroutine StrOut - Output a null-terminated string to console window
Input parameters: rl contains the address of the string

AREA Example, CODE, READONLY : Return paramotors: none
SWI_WriteC EQU 0 ! - :
SWI_ReadC EQU 4 ; Registers changed: none
SWI_Clock EQU 0x61 ; report elapse time in cent-seconds
ENTRY ; mark first instruction
i to execute Related documents
start NOP
SWI SWI_Clock ; read timer
CMP rl, ro e Reference CARD for ARM assembly language
BEQ start ; if no change, go back e ARM System Call Summary
Mov rl, 0) e Notes for Lectures 3-6
BL HexOut ; .. else output it as hex
MOV r0, #&0a ; output CR
SWI SWI_WriteC These can be downloaded from the course web page:
MOV r0, #&0d ; output LF
:WI S‘Q’If‘grltec http://www.ee.ic.ac.uk/pcheung/teaching/ee2 computing
star

; Subroutine HexOut - Output 32-bit word as 8 hex digits as ASCII characters
; Input parameters: rl contains the 32-bit word to output

; Return parameters: none

; Registers changed: none

i

HexOut STMED rl3!, {r07r2, rl4} ; save working registers on stack

MOV r2, #8 ; r2 has nibble (4-bit digit) count = 8
Loop MOV r0, rl, LSR #28 ; get top nibble

CMP r0, #9 ; if nibble <= 9, then

ADDLE r0, r0, #"O" ; convert to ASCII numeric char

ADDGT r0, r0, #"A"-10 ; else convert to ASCII alphabet char

SWI SWI_WriteC ; print character

MOV rl, rl, LSL #4 ; shift 1left 4 bits to get to next
nibble

SUBS r2, r2, #1 ; decrement nibble count

BNE Loop ; 1f more, do next nibble

LDMED r13!, {r0-r2, pc} ; retrieve working registers from stack

; .. and return to calling program
END

Exercise 3 - Subroutine StrLen
The subroutines in Exercises 3 & 4 are useful for future use.

Write and test a subroutine to count the number of characters in a null-terminated string. The
subroutine interface is:

Subroutine StrLen - Return the length of a null-terminated string

; Input parameters: rl contains the address of the string

; Return parameters: r0 contains the length of string including null character
; Registers changed: r0

pykc — October 2001 3 pyke — October 2001

