Lecture 10 - Cache Memory

¢ SRAM:

< value is stored on a pair of inverting gates

< very fast but takes up more space (4 to 6 transistors per bit) than DRAM
¢ DRAM:

< value is stored as charge on a capacitor (must be refreshed)

< very small but slower than SRAM (factor of 5 to 10)
¢ Memory vs Logic Performance

< memory speed improves much slower than logic speed

< consequently, very fast memory is expensive

< applications eat up more and more memory (without necessarily providing
better functionality)

¢ Users want large and fast memories!
< SRAM access times are 2 - 25ns at cost of $100 to $250 per Mbyte
< DRAM access times are 60-120ns at cost of $2 to $5 per Mbyte
< Disk access times are 10 to 20 million ns at cost < $0.05 to $.10 per Mbyte

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 1

Exploiting Memory Hierarchy

¢ Question:

< how to organize memory to improve performance without the cost?
¢ Answer:

< build a memory hierarchy

Speed CPU Size Cost (£/bit)

Fastest Smallest Highest
Memory

Slowest Memory Biggest Lowest

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 2

Exploiting Memory Hierarchy

nearest to CPU

memory type size access speed
_ 64 to 256 bytes 1-5nsec
_ 8 - 32 Kbytes ~ 10 nsec
_ 128 - 512 Kbytes 10's nsec
_ 16M - 4G bytes ~ 100 nsec
_ 10’s - 100’s Ghytes 10’s - 100’s msec

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 3

Memory transfer between levels of hierarchy

CPU

Processor
r 3
- Increasing distance v
Level 1 from the CPU in
access lime —H_—
Levels in the Level 2 : :
memory hierarchy Y
Data are transferred
A\ 4
Level n
Size of the memory at each level : :

+ Every pair of levels in memory of hierarchy can be thought of as having an
upper and lower level

+ Within each level, the unit of information that is present or not is called a block.
¢ Usually an entire block is transferred between levels

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 4

Principle of Locality

*

The principle of locality makes having a memory hierarchy a good idea
If an item is referenced,
% temporal locality: it will tend to be referenced again soon
“ spatial locality: nearby items will tend to be referenced soon.
Why does code have locality?
Memory hierarchy can be multiple levels
Data is copied between two adjacent levels at a time
We will focus on two levels:
“ Upper level (closer to the processor, smaller but faster)
“ Lower level (further from the processor, larger but slower)
¢ Some terms used in describing memory hierarchy:
“ block: minimum unit of data to transfer - also called a cache line
< hit: data requested is in the upper level
% miss: data requested is not in the upper level

*

L 2R 2R 2N 4

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 5

The Basics of Caches

¢ Assuming that we try to reference a data item Xn from cache and it is
not there. This reference causes a miss that forces the cache to fetch
xn from memory lower in the hierarchy and insert into the cache:

X4 X4
X1 X1
Xn-2 Xn-2
Xn-1 Xn-1
X2 X2

Xn
X3 X3

a. Before the reference to Xn

b. After the reference to Xn

pykc/gac - 23-Nov-01

ISE1 / EE2 Computing

Spring Term Lecture 10 - 6

Unified instruction and data cache

+ Single cache shared between instruction and data:

FF..FF 4
registers
processor
dd instructions
address and data
data
instructions address
data
memory
cache
i i 00..00
instructions 16
and data

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 7

Separate data and instruction caches

- FF.FF g
copies of
instructions address
instructions
cache
address instructions . .
instructions
processor
address >
copies of
memory
cache 00..00,6

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing

Spring Term Lecture 10 - 8

The Basics of Caches Direct Mapped Cache

. ¢ Mapping: address is modulo the number of blocks in the cache
¢ Two issues:

Cache
< How do we know if a data item is in the cache? (Is it a hit or a miss?) czc=gso-
SZgz=:z
% If itis there (a hit), how do we find it? T
+ Our first example:
% block size is one word of data /?i\x
< we will consider the "direct mapped" approach 5(
For each item of data at the lower level, 7 >< N
there is exactly one location in the cache where it might be. /1 L N N
_)) -'/ -(A \\
Lots of items at the lower level share locations in the upper level
00oor 00101 O1ooi O1ior 10001 10101 1Moo 11101
Memory
pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 9 pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 10

Cache Contents - A walk-through Organization of Direct-mapped cache

I ndex Valid bit (V) Tag Data | address : : |
000 N | I
001 N
010 N / T T T
011 N tag RAM | data RAM |
100 N I | I
110 N =
111 N e : : :
+ Initial state on power-ON | I |
+ After handling miss at address 10110 q I | I
1 1 1
+ After handling miss at address 11010 U {} {}
+ After handling miss at address 10000
+ After handling miss at address 00011 \ mux
¢ After handling miss at address 10010 v
hit data

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 11 pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 12

Direct Mapped Cache

¢ A particular memory item is stored in a unique location in the cache.
¢ To check if a particular memory item is in cache, the relevant address bits
are used to access the cache entry.

¢ The top address bits are then compared with the stored tag. If they are
equal, we have got a hit.

¢ Two items with the same cache address field will contend for use of that
location.

¢ Only those bits of the address which are not used to select within the line
or to address the cache RAM need be stored in the tag field.

¢ When a miss occurs, data cannot be read from the cache. A slower read
from the next level of memory must take place, incurring a miss penalty.

¢ A cache line is typically more than one word. It shows 4 words in the
diagram here. A large cache line exploits principle of spatial locality -
more hit for sequential access. It also incurs higher miss penalty.

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 13

Hits vs. Misses

¢ Read hits
«» this is what we want!

¢ Read misses
« stall the CPU, fetch block from memory, deliver to cache, restart

¢ Write hits:
< can replace data in cache and memory (write-through)
< write the data only into the cache (write-back to the cache later)

¢ Write misses:
< read the entire block into the cache, then write the word

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 14

Write Strategies in Caches

¢ Cache write is more complicated than cache read because even if you
have a hit, you have to decide if and when you write it back to main
memory. This is of utmost importance in multiprocessor systems.
¢ Three strategies are used:
< 1. Write-through
» All write are passed to main memory immediately
» If there is a hit, the cache is updated to hold new value
» Processor slow down to main memory speed during write
% 2. Write-through with buffered write
» Use a buffer to hold data to write back to main memory
» Processor only slowed down to write buffer speed (which is fast)
» Write buffer transfers data to main memory (slowly), processor continues its tasks
< 3. Copy-back
» Write operation updates the cache, but not main memory
» Cache remember that it is different from main memory via a dirty bit
> Itis copied back to main memory only when the cache line is used by new data

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 15

pykc/gac - 23-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 10 - 16

