
Lecture 11- 1pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Lecture 11 Exceptions and Interrupts

� ARM processor can work in one of many operating modes. So
far we have only considered user mode, which is the "normal"
mode of operation.

� The processor can also enter "privileged" operating modes which
are used to handle exceptions and supervisor calls (i.e.
software interrupts SWI’s)

� The Current Processor Status Register CPSR has 5 bits [bit4:0] to
indicate which mode the processor is in:-

Lecture 11- 2pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

How are exceptions generated?

� By default, the processor is usually in user mode
� It enters one of the exception modes when unexpected events

occurs.
� There are three different types of exceptions (some are called

interrupts):-
❖ 1. As a direct result of executing an instruction, such as:

➤Software Interrupt Instruction (SWI)

➤Undefined or illegal instruction
➤Memory error during fetching an instruction

❖ 2. As a side-effect of an instruction, such as:
➤Memory fault during data read/write from memory

➤Arithmetic error (e.g. divide by zero)

❖ 3. As a result of external hardware signals, such as:
➤Reset
➤Fast Interrupt (FIQ)

➤Normal Interrupt (IRQ)

Lecture 11- 3pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Shadow Registers

� As the processor enters an exception mode, some new registers
are automatically switched in:-

Lecture 11- 4pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Shadow Registers (con’t)

� For example, an external event (such as movement of the mouse)
occurs that generates a Fast Interrupt (on the FIQ pin), the
processor enters FIQ operating mode.

� It sees the same r0 - r7 as before, but sees a new set of r8 - r14,
and in addition, an extra register called the Saved Processor
Status Register (SPSR).

� By swapping to some new registers, it makes it easier for the
programmer to preserve the state of the processor. For example,
during FIQ mode, r8 - r14 can be used freely. On returning back to
user mode, the original values of r8 - r14 will be automatically
restored.

Lecture 11- 5pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

What happens when an exception occurs?

� ARM completes current instruction as best it can.
� It departs from current instruction sequence to handle the

exception by performing the following steps:-
❖ 1. It changes the operating mode corresponding to the particular

exception.
❖ 2. It saves the current PC in the r14 corresponding to the new

mode. For example, if FIQ occurs, the PC value is stored in
r14(FIQ).

❖ 3. It saves the old value of CPSR in the Saved Processor Status
Register of the new mode.

❖ 4. It disables exceptions of lower priority (to be considered
later).

❖ 5. It forces the PC to a new value corresponding to the exception.
This is effectively a forced jump to the Exception Handler or
Interrupt Service Routine.

Lecture 11- 6pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Where is the exception handler routine?

� Exceptions can be viewed as "forced" subroutine calls.
❖ When and if an exception occurs is not predictable (unless it is a

SWI exception).

❖ A unique address is pre-defined for each exception handler (IRQ,
FIQ, etc), and a branch is made to this address.

❖ The address to which the processor is forced to branch to is called the
exception/interrupt vector.

Lecture 11- 7pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Exception vector addresses

� Each vector (except FIQ) is 4 bytes long (i.e. one instruction)
� You put a branch instruction at this address:

B exception_handler
� FIQ is special in two ways:-

❖ 1. You can put the actual FIQ handler (also called Fast Interrupt
Service Routine) at 0x0000001C onwards, because FIQ vector
occupies the highest address

❖ 2. FIQ has many more shadow registers. So you don’t have to save as
many registers on the stack as other exceptions - faster.

Lecture 11- 8pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Exception Return

� Once the exception has been handled (by the exception handler),
the user task is resumed.

� The handler program (or Interrupt Service Routine) must restore
the user state exactly as it was before the exception occurred:
❖ 1. Any modified user registers must be restored from the handler’s

stack
❖ 2. The CPSR must be restored from the appropriate SPSR

❖ 3. PC must be changed back to the instruction address in the user
instruction stream

� Steps 1 and 3 are done by user, step 2 by the processor
� Restoring registers from the stack would be the same as in the

case of subroutines
� Restoring PC value is more complicated. The exact way to do it

depends on which exception you are returning from.

Lecture 11- 9pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Exception Return (con’t)

� We assume that the return address was saved in r14 before
entering the exception handler.

� To return from a SWI or undefined instruction trap, use:
❖ MOVS pc, r14

� To return from an IRQ, FIQ or prefetch abort, use:
❖ SUBS pc, r14, #4

� To return from a data abort to retry the data access, use:
❖ SUBS pc, r14, #8

� Note the ‘S’ modifier is NOT used to set the flags, but instead to
restore the CPSR, if the destination register is the PC.

� The differences between these three methods of return is due to
the pipeline architecture of the ARM processor. The PC value
stored in r14 can be one or two instructions ahead due to the
instruction prefetch pipeline.

Lecture 11- 10pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

Exception Priorities

� Since exceptions can arise at the same time, a priority order has to
be clearly defined. For the ARM processor this is:
❖ Reset (highest priority)

❖ Data abort (i.e. Memory fault in read/write data)
❖ Fast Interrupt Request (FIQ)

❖ Normal Interrupt Request (IRQ)

❖ Prefetch abort
❖ Software Interrupt (SWI), undefined instruction

� Consider the case when a FIQ and an IRQ occurring at the same
time. The processor will process the FIQ handler first and
“remember” that there is IRQ pending.

� On return from FIQ, the process will immediately go to the IRQ
handler.

Lecture 11- 11pykc/gac - 4-Dec-01 ISE1 / EE2 Computing Lecture 11- 12pykc/gac - 4-Dec-01 ISE1 / EE2 Computing

