Lecture 12 - System Buses: Interfacing **Processors and Peripherals**

- System interconnection structures may support these transfers:
 - Memory to processor: the processor reads instructions and data from memory
 - Processor to memory: the processor writes data to memory
 - I/O to processor: the processor reads data from I/O device
 - Processor to I/O: the processor writes data to I/O device
 - * I/O to or from memory: I/O module allowed to exchange data directly with memory without going through the processor - Direct Memory Access (DMA)

Reference: Computer Organization & Architecture (5th Ed), William Stallings

ISE1 / EE2 Computing

Traditional Bus Architecture

Lecture 12 - 1

pykc/gac - 4-Dec-01

ISE1 / EE2 Computing

Lecture 12 - 3

Signals found on a bus

- Data lines
- Control lines:
 - Memory write: data on the bus written into the addressed location
 - * Memory read: data from the addressed location placed on the bus
 - I/O write: data on the bus output to the addressed I/O port
 - * I/O read: data from the addressed I/O port placed on the bus
 - Bus REQ: indicates a module needs to gain control of the bus
 - * Bus GRANT: indicates that requesting module has been granted control of the bus
 - Interrupt REQ: indicates that an interrupt is pending
 - Interrupt ACK: Acknowledges that pending interrupt has been recognized
 - Reset: Initializes everything connected to the bus
 - * Clock: on a synchronous bus, everything is synchronized to this signal

pvkc/gac - 4-Dec-01

pykc/gac - 4-Dec-01

ISE1 / EE2 Computing

Lecture 12 - 4

Polling and Interrupt

- Both are methods to notify processor that I/O device needs attention
- Polling
 - simple, but slow
 - processor check status of I/O device regularly to see if it needs attention
 - similar to checking a telephone without bells!
- Interrupt
 - fast, but more complicated
 - processor is notified by I/O device (interrupted) when device needs attention
 - similar to a telephone with bells

Techniques for Inputting a Block of Data

Direct Memory Access

- Interrupt & programmed I/O requires processor to transfer data between memory and I/O module.
- Processor is tied up in performing the transfer by executing a number of instructions - SLOW!!!
- I/O module can contain autonomous hardware to perform transfer DMA
- DMA is stealing bus cycles from processor a technique known as cycle stealing

Lecture 12 - 7

Direct Memory Access (con't)

	38	
37	题	
SOL	STIA -	R.
5		AME .
O'CEA	10 BON	/

Lecture 12 - 10

Lecture 12 - 12