
Spring Term Lecture 7- 1pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Lecture 7 Stacks and Subroutines

� LDR and STR instructions only load/store a single 32-bit word.
� ARM can load/store ANY subset of the 16 registers in a single

instruction. For example:

LDMIA r1, {r0, r2, r4} ; r0 := mem32[r1]
; r2 := mem32[r1+4]
; r4 := mem32[r1+8]

LDMIA r1, {r0, r2, r4} ; r0 := mem32[r1]
; r2 := mem32[r1+4]
; r4 := mem32[r1+8]

r0

base_addrr1

r2

r3

r4

base_addr

base_addr + 4

base_addr + 8

memoryLDMIA r1, {r0, r2, r4}

Spring Term Lecture 7- 2pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Load/Store Multiple Instructions

� Any registers can be specified. However, beware that if you
include r15 (PC), you are effectively forcing a branch in the
program flow.

� The complementary instruction to LDMIA is the STMIA instruction:

STMIA r1, {r0, r2, r4} ; mem32[r1] := r0
; mem32[r1 + 4] := r2
; mem32[r1 + 8] := r4

STMIA r1, {r0, r2, r4} ; mem32[r1] := r0
; mem32[r1 + 4] := r2
; mem32[r1 + 8] := r4

r0

base_addrr1

r2

r3

r4

base_addr

base_addr + 4

base_addr + 8

memorySTMIA r1, {r0, r2, r4}

Spring Term Lecture 7- 3pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Update base address register with Load/Store
Multiple Instructions

� So far, r1, the base address register, has not been changed. You
can update this pointer register by adding ’!’ after it:

LDMIA r1 ! , {r2-r9} ; r2 := mem32[r1]
; …………….
; r9 := mem32[r1+28]
; r1 := r1 + 32

LDMIA r1 ! , {r2-r9} ; r2 := mem32[r1]
; …………….
; r9 := mem32[r1+28]
; r1 := r1 + 32

load multiple

I - increment
base address

load registers r2 to r9

A - base address is
incremented after it is

used

update r1
after used meaning of LDMIA

instruction

Spring Term Lecture 7- 4pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Example of using Load/Store Multiple

� Here is an example to move 8 words from a source memory
location to a destination memory location:-

� When using LDMIA and STMIA instructions, you:-
❖ INCREMENT the address in memory to load/store your data

❖ the increment of the address occurs AFTER the address is used.

� In fact, one could use 4 different form of load/store:
❖ Increment - After LDMIA and STMIA
❖ Increment - Before LDMIB and STMIB
❖ Decrement - After LDMDA and STMDA
❖ Decrement - Before LDMDB and STMDB

ADR r0, src_addr ; initialize src addr
ADR r1, dest_addr ; initialize dest addr
LDMIA r0!, {r2-r9} ; fetch 8 words from mem

; … and update r0 := r0 + 32
STMIA r1, {r2-r9} ; copy 8 words to mem, r1 unchanged

ADR r0, src_addr ; initialize src addr
ADR r1, dest_addr ; initialize dest addr
LDMIA r0!, {r2-r9} ; fetch 8 words from mem

; … and update r0 := r0 + 32
STMIA r1, {r2-r9} ; copy 8 words to mem, r1 unchanged

Spring Term Lecture 7- 5pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

The four variations of the STM instruction

Spring Term Lecture 7- 6pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

The idea of a STACK

� The multiple load/store instructions can be used to implement last-
in-first-out storage called a STACK.

� A stack is a portion of main memory used to store data temporarily
� A PUSH operation which stores a number of registers onto the

stack memory.

memory BEFORE PUSH

high

low

r13

r3

r4

r5

r14

memory AFTER PUSH

low
r13

r1

PUSH {r1, r3-r5, r14}

Spring Term Lecture 7- 7pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

PUSHing onto a Stack

� Note the following properties of the PUSH operation:
❖ r13 is used as the address pointer. We call this STACK POINTER (SP).

We could have used any other registers (except r15) as SP, but it is
good practice to use r13 unless there is a good reason not to do so.

❖ The stack grows down through decreasing memory address, and

❖ The base registers points to the first empty location of the stack. To
store values in memory, the SP is decremented after it is used.

� ARM does not have a PUSH instruction, but we can use one of the
STM instructions to implement a PUSH operation.

� Consider page 6-5, it is clear that we can implement PUSH as
described with a STMDA instruction:

STMDA r13!, {r1, r3-r5, r14} ; Push r1, r3-r5, r14 onto stack
; Stack grows down in mem
; r13 points to next empty loc.

STMDA r13!, {r1, r3-r5, r14} ; Push r1, r3-r5, r14 onto stack
; Stack grows down in mem
; r13 points to next empty loc.

Spring Term Lecture 7- 8pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Stack view of STM instructions

� In ARM terminology, STM instruction used to implement a stack
can have a different name. The STMDA instruction as we have
seen is equivalent to a STMED instruction:

STMED r13! , {r1, r3-r5, r14} ; push r1,r3,r4,r5,r14 onto stack
; stack descending in mem
; r13 points to next empty loc.

STMED r13! , {r1, r3-r5, r14} ; push r1,r3,r4,r5,r14 onto stack
; stack descending in mem
; r13 points to next empty loc.

store multiple

E- SP points to
empty location

store r1,r3,r4,r5 & r14

D - Stack grows down
in memory

update r13
after used

Spring Term Lecture 7- 9pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

POP operation

� The complementary operation of PUSH is the POP operation.

� ARM does not have a POP instruction. In this case, we can use:

� This is equivalent to the stack manipulation instruction:

POP {r1, r3-r5, r14}

(r3)

(r4)

(r5)

(r14)

memory AFTER POP

high

low

r13

(r1)

r3

r4

r5

r14

memory BEFORE POP

low
r13

r1

LDMIB r13!, {r1, r3-r5, r14} ; Pop r1, r3-r5, r14 from stackLDMIB r13!, {r1, r3-r5, r14} ; Pop r1, r3-r5, r14 from stack

LDMED r13!, {r1, r3-r5, r14} ; Pop r1, r3-r5, r14 from stackLDMED r13!, {r1, r3-r5, r14} ; Pop r1, r3-r5, r14 from stack

Spring Term Lecture 7- 10pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

The four different ways of implementing a stack

� Ascending/Descending: A stack is able to grow upwards, starting
from a low address and progressing to a higher address—an
ascending stack, or downwards, starting from a high address and
progressing to a lower one—a descending stack.

� Full/Empty: The stack pointer can either point to the top item in
the stack (a full stack), or the next free space on the stack (an
empty stack).

Spring Term Lecture 7- 11pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Relationship between the two different views of
LDM/STM instructions

Spring Term Lecture 7- 12pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Subroutines

� Subroutines allow you to modularize your code so that they are
more reusable.

� The general structure of a subroutine in a program is:

....

....
BL SUB1 ; call subroutine SUB1
ADD r0, r1, r2 ;
....

 SUB1 ; body of the subroutine
....
MOV pc,r14 ; return to calling program

call
return

main program

Spring Term Lecture 7- 13pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Subroutine (con’t)

� BL subroutine_name (Branch-and-Link) is the instruction to
jump to subroutine. It performs the following operations:
❖ 1) It saves the PC value (which points to the next instruction) in r14.

This is the return address.

❖ 2) It loads PC with the address of the subroutine. This performs a
branch.

� BL always uses r14 to store the return address. r14 is called the
link register (can be referred to as lr or r14).

� Return from subroutine is simple: - just put r14 back into PC (r15).

Spring Term Lecture 7- 14pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Nested Subroutines

� Since the return address is held in register r14, you should not call
a further subroutine without first saving r14.

� It is also a good software engineering practice that a subroutine
does not change any register values except when passing results
back to the calling program.

� This is the principle of information hiding: try to hide what the
subroutine does from the calling program.

� How do you achieve these two goals? Use a stack to:
❖ Preserve r14
❖ Save, then retrieve, the values of registers used inside subroutine

Spring Term Lecture 7- 15pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Preserve things inside subroutine with STACK

BL SUB1
…..

SUB1 STMED r13!, {r0-r2, r14} ; push work & link registers
….
BL SUB2 ; jump to a nested subroutine
…
LDMED r13!, {r0-r2, r14} ; pop work & link registers
MOV pc, r14 ; return to calling program

BL SUB1
…..

SUB1 STMED r13!, {r0-r2, r14} ; push work & link registers
….
BL SUB2 ; jump to a nested subroutine
…
LDMED r13!, {r0-r2, r14} ; pop work & link registers
MOV pc, r14 ; return to calling program

(r1)

(r2)

(r14)

when return from SUB1
high

low

r13’

(r0)

r1

r2

r14

on entry to SUB1

low
r13’

r0

highr13

r13

SP moves
down

STMED r13!, {r0-r2, r14} LDMED r13!, {r0-r2, r14}

Spring Term Lecture 7- 16pykc/gac - 9-Nov-01 ISE1 / EE2 Computing

Effect of subroutine nesting

� SUB1 calls another subroutine SUB2. Assuming that SUB2 also
saves its link register (r14) and its working registers on the stack, a
snap-shot of the stack will look like:-

SUB1 link reg

SUB2 link reg

stack for
SUB1

stack for
SUB2

initial SP
position

SP when
inside SUB2

SP when
inside SUB1

stack memory

