
Lecture 3 - 1pykc - 14-Oct-01 ISE1/EE2 Computing

Lecture 3 A Very Simple Processor

◆ Based on von Neumann model
◆ Instruction for the

microprocessor (stored program)
and the data for computation are
both stored in memory

◆ Microprocessing Unit (MPU)
contains:
❖ Arithmetic/Logic Unit (ALU)
❖ Control Unit

❖ Registers

MPU

Memory

I/O

◆ Input/output block interfaces to the outside world (e.g. user, disc
storage etc.)

◆ The communication between memory, MPU and I/O is through the
microprocessor bus

microprocessor
bus

Lecture 3 - 2pykc - 14-Oct-01 ISE1/EE2 Computing

Memory

◆ Most microprocessors uses one unique address for each byte of
storage.

◆ Multiple locations can be concatenated to form a larger data word
(for example, 4 locations to form one 32-bit word).

◆ In this case, the memory word is identified by the lowest byte
address (in this case, addresses 0, 4 ,8 …. etc.).

unique address to identify
memory location

0123

4567

891011 The content stored here is
called data (assumed to be

8-bit in size)

Simple view of memory as pigeon holes
Data can occupy more than

one location (e.g. 4
locations here)

Control
(Read/Write)

Lecture 3 - 3pykc - 14-Oct-01 ISE1/EE2 Computing

Memory

◆ Look into memory, see ‘1’s and ‘0’s. Meaning depends on context.
◆ The width of the address bus determines the size of memory (i.e. how

many location).
◆ The width of the data bus determines the size of content (i.e. how many

bits can each location store).

Address bus
A11:0

Memory

Data bus
D15:0

R/W

Enable

Control bus

◆ Computers communicate with
memory using 3 types of signals
(buses):
❖ address bus - determines the

location of memory
❖ data bus - carries the contents of the

location
❖ control bus - governs the

information transfer

Lecture 3 - 4pykc - 14-Oct-01 ISE1/EE2 Computing

Memory, registers and ALU

◆ A microprossor (MPU) must contain:
❖ An Arithmetic and Logic Unit (ALU) to perform computation
❖ Some internal storages called Registers to store temporary data and

instructions

◆ To run a program, the MPU must:
❖ 1) Fetch instruction - Supply instruction address and read an instruction

from memory on the data bus

❖ 2) Decode instruction - Stored instruction is interpreted by MPU
❖ 3) Fetch operand - Supply address of data and read data into MPU

❖ 4) Execution instruction - Perform the necessary action by MPU

Address bus
A11:0

Memory

Data bus
D15:0 Control bus

ALU

Registers

MPU

Data bus
D15:0

Control bus

Lecture 3 - 5pykc - 14-Oct-01 ISE1/EE2 Computing

MU0 - A Very Simple Processor

◆ Let us design a simple processor MU0 with 16-bit instruction and
minimal hardware:-
❖ Program Counter (PC) - holds address of the next instruction to execute
❖ Accumulator (ACC) - holds data being processed

❖ Arithmetic Logic Unit (ALU) - performs operations on data

❖ Instruction Register (IR) - holds current instruction code being executed

PC
PC

IR
IR

ACC
ACCALU

Memory

address bus

data bus

control

Lecture 3 - 6pykc - 14-Oct-01 ISE1/EE2 Computing

Instruction execution step 1: Instruction Fetch

◆ MPU outputs value of program counter (PC) on address bus.
◆ Memory puts contents at the instruction address on the data bus.
◆ Instruction is stored in instruction registers (IR).

PC
PC

IR
IR

ACC
ACCALU

Memory

address bus

data bus

control

Lecture 3 - 7pykc - 14-Oct-01 ISE1/EE2 Computing

Step 2: Instruction Decode

◆ The instruction word stored in IR is decoded by internal logic to provide
control signals to ALU and other internal circuits inside MPU.

◆ Program counter value (PC) is pushed onto the address bus, the ALU
increment this value by k and put it back into the Program Counter.

PC := PC+ k
PC := PC+ k

IR
IR

ACC
ACCALU

Memory

address bus

data bus

control

Lecture 3 - 8pykc - 14-Oct-01 ISE1/EE2 Computing

Step 3: Operand Fetch

◆ The instruction register provides the address of the data to be
processed (i.e. operand address).

◆ Memory supplies the operand data on the data bus to the MPU, ready
for processing either by the ALU or the ACC.

PC
PC

IR
IR

ACC
ACCALU

Memory

address bus

data bus

control

Lecture 3 - 9pykc - 14-Oct-01 ISE1/EE2 Computing

Step 4: Execute instruction

◆ Processing is performed on the operand by the ALU according to the
instruction.

◆ The result is put back into the Accumulator (ACC).

PC
PC

IR
IR

ACC
ACCALU

Memory

address bus

data bus

control

Lecture 3 - 10pykc - 14-Oct-01 ISE1/EE2 Computing

Step 5: Write-back (may not exist)

◆ This step may not be needed.
◆ The result from the Accumulator is written back into memory. In many

processors, this will be done as a separate instruction.

PC
PC

IR
IR

ACC
ACCALU

Memory

address bus

data bus

control

Lecture 3 - 11pykc - 14-Oct-01 ISE1/EE2 Computing

MU0 instructions

◆ Let us further assume that the processor only has 8 instructions and
can only access a maximum of 8k byte (212) of memory. This implies
that the address bus is only 12-bit wide.

◆ We also assume that this is a 16-bit MPU and ALL instructions are
16 bits wide.

◆ The 16-bit instruction code (machine code) has a format:

◆ Note that top 4 bits define the operation code (opcode), i.e. it defines
what operation the instruction is to perform.

◆ The bottom 12 bits define the memory address of the operand data.

Lecture 3 - 12pykc - 14-Oct-01 ISE1/EE2 Computing

MU0 Instruction Set

Instruction Opcode Effect
LDA S 0000 ACC := mem16[S]

STO S 0001 mem16[S]:= ACC

ADD S 0010 ACC := ACC + mem16[S]

SUB S 0011 ACC := ACC - mem16[S]

JMP S 0100 PC := S

JGE S 0101 If ACC ≥ 0, PC := S

JNE S 0110 If ACC ≠ 0, PC := S

STP 0111 stop

◆ 2 load/store instructions: LDA, STO
◆ 2 computation instructions: ADD, SUB
◆ 4 control flow instructions: JMP, JGE, JNE, STP

Lecture 3 - 13pykc - 14-Oct-01 ISE1/EE2 Computing

Caught in the Act!

◆ CPU reading the first op-code (the following slides are to be
completed during lecture).

PC

ACC

IR

decoder

ALU

addr reg
data reg

MU0
000 LDA 02E 0 02E

nmemonic
machine

code

001 ADD 02F 2 02F
002 STO 030 1 030
003 STP 7 000
004 --

005

006

--
--

02E ABCD ABCD
02F 4321 4321
030 -- --

...

--

--

--

Lecture 3 - 14pykc - 14-Oct-01 ISE1/EE2 Computing

Instruction 1: LDA 02E

PC

ACC

IRdecoder

ALU

addr reg
data reg

MU0

0 02E

machine
code

2 02F

1 030

7 000

--

--

--

--

PC

ACC

IRdecoder

ALU
addr reg

data reg

MU0

Cycle 1

Cycle 2

000

001

002

003

004

005

006

02E

02F

030

...

ABCD
4321

Lecture 3 - 15pykc - 14-Oct-01 ISE1/EE2 Computing

Instruction 2: ADD 02F

PC

ACC

IRdecoder

ALU

addr reg
data reg

MU0

0 02E

machine
code

2 02F

1 030

7 000

--

--

--

--

PC

ACC

IRdecoder

ALU

addr reg
data reg

MU0

Cycle 1

Cycle 2

000

001

002

003

004

005

006

02E

02F

030

...

ABCD
4321

Lecture 3 - 16pykc - 14-Oct-01 ISE1/EE2 Computing

Instruction 3: ST0 030

PC

ACC

IRdecoder

ALU

addr reg
data reg

MU0

0 02E

machine
code

2 02F

1 030

7 000

--

--

--

PC

ACC

IRdecoder

ALU

addr reg
data reg

MU0

Cycle 1

Cycle 2

000

001

002

003

004

005

006

02E

02F

030

...

ABCD
4321
EEEE

Lecture 3 - 17pykc - 14-Oct-01 ISE1/EE2 Computing

Instruction 4: STP

PC

ACC

IRdecoder

ALU

addr reg
data reg

MU0

0 02E

machine
code

2 02F

1 030

7 000

--

ABCD

4321

EEEE

--

--
Cycle 1

000

001

002

003

004

005

006

02E

02F

030

...

Lecture 3 - 18pykc - 14-Oct-01 ISE1/EE2 Computing

Operation of the processor

◆ The operation of most processors are governed by a clock signal.
◆ For MU0, we assume that:

❖ The number of clock cycles taken by an instruction is the same as the
number of memory access it makes.

❖ LDA, STO, ADD, SUB therefore takes 2 clock cycles each: one to
fetch (and decode) the instruction, a second to fetch (and operate on)
the data.

❖ JMP, JGE, JNE, STP only need one memory read and therefore can
be executed in one clock cycle.

❖ Program Counter (PC) - its content is incremented every time it is
used (i.e. it also points to the next instruction).

❖ No PC incrementer circuit is needed for MU0.
❖ The processor must start from a known state. Therefore, there is

always a reset signal to initialise the processor on power-up.
❖ Assume MU0 will always reset to start execution from address 00016.

Lecture 3 - 19pykc - 14-Oct-01 ISE1/EE2 Computing

Summary of key points

◆ Microprocessors performs operations depending on instruction
codes stored in memory.

◆ Instruction usually has two parts:
❖ Opcode - determines what is to be done

❖ Operand - specifies where/what is the data

◆ Program Counter (PC) - address of current instruction code
◆ PC incremented automatically each time it is used.
◆ The number of clock cycles taken by an instruction is the same as

the number of memory access it makes.
❖ LDA, STO, ADD, SUB therefore takes 2 clock cycles each: one to

fetch (and decode) the instruction, a second to fetch (and operate on)
the data.

❖ JMP, JGE, JNE, STP only need one memory read and therefore can
be executed in one clock cycle.

Lecture 3 - 20pykc - 14-Oct-01 ISE1/EE2 Computing

Key points (con’t)

◆ Memory contains both program and data. A peek into memory will
tell you very little except a bunch of ‘1’s and ‘0’s.

◆ Program area and data area in memory are usually well separated.
◆ ALU is responsible for arithmetic and logic functions.
◆ There is always at least one register known as accumulator where

the result from ALU is stored.
◆ There is usually one or more general purpose register for storing

results or memory addresses.
◆ Fetching data from inside the CPU is much faster than from

external memory.
◆ The processor must start from a known state. Therefore, there is

always a reset signal to initialise the processor on power-up.
◆ Assume MU0 will always reset to start execution from address

00016.

