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Lecture 2
Number Systems used in Computers

◆ Objectives - To understand:
❖ Base of number systems: decimal, binary, octal and hexadecimal
❖ Textual information stored as ASCII

❖ Binary addition/subtraction, multiplication

❖ Binary logical operations
❖ Unsigned and signed binary number systems

❖ Fixed point binary representations

❖ Floating point representations

◆ By the end of the lecture, you should be able to:
❖ Convert between numbers represented in different bases

❖ Convert between fixed point and floating point numbers

❖ Perform simple binary arithmetic and logical operations
❖ Read and interpret hexadecimal numbers with reasonable speed
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Decimal number system

◆ We are familiar with decimal number representation. For example:

◆ The value of this number is calculated as:

◆ In general, the relationship between a
digit, its position, and the base of the
system is given by:
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The bases of a number system

◆ There are no reasons why one should be restricted to using
base-10 (decimal) numbers only.

◆ Computers and digital electronics use a binary number system
where the base (or radix) is 2:

◆ For example, the value of this
binary number is:
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Converting decimal integers to binary

◆ Repeatedly divide the decimal number by 2 (the base of the binary
system).

◆ Division by 2 will either give a remainder of 1 or 0.
◆ Collecting the remainders gives the binary answer.
◆ Convert 1110 into binary

2    11
2       5   r    1
2       2   r    1
2       1   r    0

Answer:  1  0  1  1
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Octal and hexadecimal number systems
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Nibbles, Bytes, Words

◆ Internal datapaths inside computers could be different width - for
example 4-bit, 8-bit, 16-bit or 32-bit.

◆ For example: ARM processor uses 32-bit internal datapath
◆ WORD = 32-bit for ARM

MSB LSB

0781516232432

Word

Byte

Nibble
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Hexadecimal representation

◆ Convenient to divide any size of binary numbers into nibbles
◆ Represent each nibble as hexadecimal - much more compact
◆ Example:

0100 1101 0110 1011  1000  0011 0000 1111
        4       D      6       B        8       3       0       F

◆ All microprocessor instructions are represented in hexadecimal

◆ Convert from decimal to hexadecimal is the same as converting to
binary, except, divide by 16 instead of 2:

16      237
            14    r  13

Answer:   E D h
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Representing Text in ASCII

◆ Textual information must also be stored as binary numbers.
◆ Each character is represented as a 7-bit number known as ASCII

codes (American Standard Code for Information Interchange)
◆ For example, ‘A’ is represented by 41h and ‘a’ by 61h

b6 - b4

b3 - b0
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Signed numbers Basics

◆ So far, numbers are assumed to be unsigned (i.e. positive)
◆ How to represent signed numbers?
◆ Solution 1: Sign-magnitude - Use one bit to represent the sign,

the remain bits to represent magnitude

❖ Problem: need to handle sign and magnitude separately.

◆ Solution 2: One’s complement  - If the number is negative, invert
each bits in the magnitude

❖ Not convenient for arithmetics - add 27 to -27 results in 1111 1111b

❖ Two zero values

s magnitude

067

0 = +ve
1 = -ve

+27 = 0001 1011b
-27 =  1001 1011b

+27 = 0001 1011b
-27 =  1110 0100b
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Two’s complement

◆ Solution 3: Two’s complement - represent negative numbers by
taking its magnitude, invert all bits and add one:

Positive number         +27 = 0001 1011b
Invert all bits                         1110 0100b
Add 1                           -27  = 1110 0101b

Signed 2’s complement s
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Unsigned number
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Why 2’s complement representation?

◆ If we represent signed numbers in 2’s complement form,
subtraction is the same as addition to negative (2’s complemented)
number.

◆ Note that the range for 8-bit unsigned and signed numbers are
different.
❖ 8-bit unsigned:                                         0 ……  +255
❖ 8-bit 2’s complement signed number: -128 …… +127

   27          0001 1011b
-  17          0001 0001b

+ 10           0000 1010b

    +27          0001 1011b
+  - 17          1110 1111b

    +10           0000 1010b
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Sign Extension

◆ How to translate an 8-bit 2’s complement number to a 16-bit 2’s
complement number?

◆ This operation is known as sign extension.

s

2026-27

s ………………………...

2026-215

s

duplicate sign bit
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◆ So far, we have concentrated on integer representation with the
fractional part.

◆ There is an implicit binary point to the right:

◆ In general, the binary point can be in the middle of the word:

Fixed point representation

S

0N-1

 implicit binary point

S

0N-1

binary point
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Idea of floating point representation

◆ Although fixed point representation can cope with numbers with
fractions, the range of values that can represented is still limited.

◆ Alternative: use the equivalent of scientific notation, but in binary:

                                 number =   s  x  m   x   2e

◆ For example:

sign mantissa exponent

   10.5  in fixed point                   1010.1b

     Move binary point to left             1.0101b x 23

                    10.5 =    1.3125  x 8
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IEEE-754 standard floating point

◆ 32-bit single precision floating point:

◆ MSB is sign-bit (same as fixed point)
◆ 8-bit exponent in bias-127 integer format (i.e.  add 127 to it)
◆ 23-bit to represent only the fractional part of the mantissa. The

MSB of the mantissa is ALWAYS ‘1’, therefore it is not stored

S 8-bit exp

31 0

23-bit  frac

222330

single
precision

3838

127

107.110175.1

.121
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