Lecture 2
Number Systems used in Computers

+ Objectives - To understand:

< Base of number systems: decimal, binary, octal and hexadecimal
< Textual information stored as ASCII

% Binary addition/subtraction, multiplication

% Binary logical operations

< Unsigned and signed binary number systems

« Fixed point binary representations

+ Floating point representations

+ By the end of the lecture, you should be able to:
< Convert between numbers represented in different bases
% Convert between fixed point and floating point numbers

0

< Perform simple binary arithmetic and logical operations

K3

“ Read and interpret hexadecimal numbers with reasonable speed

pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 1

Decimal number system

¢ We are familiar with decimal number representation. For example:

Hundreds ‘ Tens Ones [Tentns ‘ Hundredths
02| 1ot | 100 01 [102
4 6 | 2 . 1| s

¢ The value of this number is calculated as:

4*102 = 4%100 = 400.
6%101 = 6*10 = 60.
2*100 = 2%*]1 = 2.
1*10-1 = 1%*.1 = 0.1
. . 5%10-2 = 5%.01 = 0.05
+ In general, the relationship between a “ae2 15
digit, its position, and the base of the
system is given by:
DIGIT * BASE POSITION #
pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2- 2

The bases of a number system

o There are no reasons why one should be restricted to using
base-10 (decimal) numbers only.

o Computers and digital electronics use a binary number system

where the base (or radix) is 2: DIGIT * 2 POSITION %
Fours Twos Ones Halves Fourths
22 21 20 2-! 22
1 1 0 . 1 1
¢ For example, the value of this 1%22 = 1%4 = 4.
. . 1 = =
binary number is: ix2% = 1¥2 = 2.
0%20 = 0%1 = 0.
1*2-1 - 1% 5 = 0.5
1%#2-2 = 1*.25 = + 0.25
6.75
pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 3

Converting decimal integers to binary

+ Repeatedly divide the decimal number by 2 (the base of the binary
system).

+ Division by 2 will either give a remainder of 1 or 0.

o Collecting the remainders gives the binary answer.

+ Convert 11,, into binary

211

2.5 r 1
21 2 r 1
2 1r O

Answer: 1 0 1 1

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 4

Octal and hexadecimal number systems

Binary Octal Decimal Hexadecimal

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 10 A

1011 13 11 B

1100 14 12 @

1101 15 13 D

1110 16 14 E

111 17 15 F
Base-2 Base-§ Base-10 Base-16

pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2 -5

Nibbles, Bytes, Words

+ Internal datapaths inside computers could be different width - for
example 4-bit, 8-bit, 16-bit or 32-bit.

¢ For example: ARM processor uses 32-bit internal datapath

o WORD = 32-bit for ARM

32 24 23 16 15 8 7 0

MSB LSB

Nibble

[J
B It

e

| y |

I
Word
pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2- 6

Hexadecimal representation

+ Convenient to divide any size of binary numbers into nibbles
¢ Represent each nibble as hexadecimal - much more compact
¢ Example:

0100 1101 0110 1011 1000 0011 0000 1111
4 D 6 B 8 3 0 F
+ All microprocessor instructions are represented in hexadecimal

+ Convert from decimal to hexadecimal is the same as converting to
binary, except, divide by 16 instead of 2:

16 | 237
1

4 r 13

Answer: ED

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 -7

Representing Text in ASCII

¢ Textual information must also be stored as binary numbers.

+ Each character is represented as a 7-bit number known as ASCII
codes (American Standard Code for Information Interchange)

o Forexample, ‘A’ is represented by 41, and ‘a’ by 61,

b3-b0

o 1 2 X 4 5 & ¥ ©® 9 A B C D E F

0 |MUL|SOH;STHIETH:{EQT {ENQ ACK | BEL| BS | HT { LF i VT | FF | CR | 50| S

1 DLE | DC1iDC2iDCIi0CH|MAK SYN ETE |CAN! EM (SUB[ESC| FS | BG5S | RS | LS

2l V" HSI%E (), -]
bﬁ-b433123456789:;<=>?
s|@AB:C-D:EFGHIJKLMND
sIPORSTUDWRY ZINT ~ _

sl 'abicdefghijklmno
pgrisitiuvwayz{|)} ~m

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 -8

Signed numbers Basics

+ So far, numbers are assumed to be unsigned (i.e. positive)

¢ How to represent signed numbers?

+ Solution 1: Sign-magnitude - Use one bit to represent the sign,
the remain bits to represent magnitude

7 6 0

+27 = 0001 1011,

0=r+ve s magnitude -27 = 1001 1011,

1=-ve

< Problem: need to handle sign and magnitude separately.
+ Solution 2: One’s complement - If the number is negative, invert
each bits in the magnitude

+27 = 0001 1011,
-27 = 1110 0100,

“ Not convenient for arithmetics - add 27 to -27 results in 1111 1111,
% Two zero values

pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 9

Two’s complement

+ Solution 3: Two’s complement - represent negative numbers by
taking its magnitude, invert all bits and add one:

Positive number +27 = 0001 1011,
Invert all bits 1110 0100,
Add 1 -27 =1110 0101,

27 26 20

Unsigned number

.27 06 20

Signed 2’s complement S

x=—by 2" by 2V 1eeetp 2!+ 52"

pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 10

Why 2’s complement representation?

+ If we represent signed numbers in 2’s complement form,
subtraction is the same as addition to negative (2’s complemented)
number.

27 0001 1011,
- 17 0001 0001,

+10 0000 1010,
+27 0001 1011,
+ =17 1110 1111,
+10 0000 1010,
+ Note that the range for 8-bit unsigned and signed numbers are
different.
“ 8-bit unsigned: 0..... +255

% 8-bit 2’s complement signed number: -128

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 11

Sign Extension

¢ How to translate an 8-bit 2’s complement number to a 16-bit 2's

complement number? o7 26 20

S

dupkhcate sign bit

215 «— 26 20

+ This operation is known as sign extension.

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 12

Fixed point representation

+ So far, we have concentrated on integer representation with the
fractional part.

+ There is an implicit binary point to the right:
N-1 0

=]

implicit binary point —T
+ In general, the binary point can be in the middle of the word:

N-1 0

]

L]
binary point _T

pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2 -

Idea of floating point representation

+ Although fixed point representation can cope with numbers with
fractions, the range of values that can represented is still limited.

+ Alternative: use the equivalent of scientific notation, but in binary:

number= s X m x 2°¢

RN

sign mantissa exponent

¢ For example:

10.5 in fixed point 1010.1,
Move binary point to left 1.0101,x 23

10.5= 1.3125 x 8

pyke - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 14

IEEE-754 standard floating point

& 32-bit single precision floating point:

31 30 23 22 0
single | s | 8-bit exp | 23-bit frac |
precision
; 127
= =l 28 < fride

117550185 < Lriddll oty

o MBSB is sign-bit (same as fixed point)
+ 8-bit exponent in bias-127 integer format (i.e. add 127 to i)

¢ 23-bit to represent only the fractional part of the mantissa. The
MSB of the mantissa is ALWAYS ‘1, therefore it is not stored

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 15

