Lecture 2 Number Systems used in Computers

- Objectives To understand:
 - * Base of number systems: decimal, binary, octal and hexadecimal
 - Textual information stored as ASCII.
 - Binary addition/subtraction, multiplication
 - Binary logical operations
 - Unsigned and signed binary number systems
 - Fixed point binary representations
 - Floating point representations
- - Convert between numbers represented in different bases
 - Convert between fixed point and floating point numbers
 - Perform simple binary arithmetic and logical operations
 - Read and interpret hexadecimal numbers with reasonable speed

pvkc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 1

By the end of the lecture, you should be able to:

• In general, the relationship between a digit, its position, and the base of the system is given by:

• We are familiar with decimal number representation. For example:

Hundreds	Tens	Ones	Tenths	Hundredths
102	10 ¹	100	10 ⁻¹	10-2
4	6	2	1	5

The value of this number is calculated as:

Decimal number system

4*10 ²	=	4*100	=	400.
6*10 ¹	=	6*10	=	60.
2*10 ⁰	=	2*1	=	2.
1*10 ⁻¹	=	1*.1	=	0.1
5*10 ⁻²	=	5*.01	=	+ 0.05
				462.15

DIGIT * BASE POSITION #

pvkc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 2

The bases of a number system

- There are no reasons why one should be restricted to using base-10 (decimal) numbers only.
- Computers and digital electronics use a binary number system where the base (or radix) is 2: DIGIT * 2 POSITION #

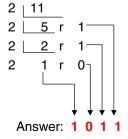
Fours	Twos	Ones		Halves	Fourths
22	21	20		2-1	2-2
1	1	0	•	1	1

• For example, the value of this binary number is:

1*22	=	1*4	=	4.
1*2 ¹	=	1*2	=	2.
0*20	=	0*1	=	0.
1*2-1	=	1*.5	=	0.5
1*2-2	=	1*.25	=	+ 0.25
				6.75

Converting decimal integers to binary

- Repeatedly divide the decimal number by 2 (the base of the binary system).
- Division by 2 will either give a remainder of 1 or 0.
- Collecting the remainders gives the binary answer.
- Convert 11₁₀ into binary



pykc - 12-Oct-01 ISE1/EE2 Computing pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 3 Lecture 2 - 4

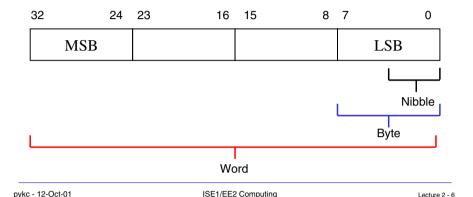
Octal and hexadecimal number systems

Binary	Octal	Decimal	Hexadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	C
1101	15	13	D
1110	16	14	Е
1111	17	15	F
Base-2	Base-8	Base-10	Base-16

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 5

Nibbles, Bytes, Words

- Internal datapaths inside computers could be different width for example 4-bit, 8-bit, 16-bit or 32-bit.
- For example: ARM processor uses 32-bit internal datapath
- WORD = 32-bit for ARM



Hexadecimal representation

- Convenient to divide any size of binary numbers into nibbles
- Represent each nibble as hexadecimal much more compact
- Example:

0100 1101 0110 1011 1000 0011 0000 1111

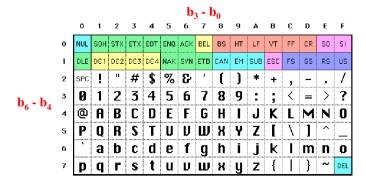
- 4
- D
- •
- 8
- 3
-)
- All microprocessor instructions are represented in hexadecimal
- Convert from decimal to hexadecimal is the same as converting to binary, except, divide by 16 instead of 2:

Answer: **ED**_h

Representing Text in ASCII

pykc - 12-Oct-01

- Textual information must also be stored as binary numbers.
- Each character is represented as a 7-bit number known as ASCII codes (American Standard Code for Information Interchange)
- For example, 'A' is represented by 41_h and 'a' by 61_h



Signed numbers Basics

- So far, numbers are assumed to be unsigned (i.e. positive)
- How to represent signed numbers?
- Solution 1: Sign-magnitude Use one bit to represent the sign, the remain bits to represent magnitude

7	6		0
S		magnitude	

$$+27 = 0001 \ 1011_b$$

 $-27 = 1001 \ 1011_b$

- Problem: need to handle sign and magnitude separately.
- Solution 2: One's complement If the number is negative, invert each bits in the magnitude

$$+27 = 0001 \ 1011_b$$

 $-27 = 1110 \ 0100_b$

- Not convenient for arithmetics add 27 to -27 results in 1111 1111_h
- Two zero values

pykc - 12-Oct-01

ISE1/EE2 Computing

Lecture 2 - 9

Two's complement

 Solution 3: Two's complement - represent negative numbers by taking its magnitude, invert all bits and add one:

> Positive number +27 = $0001\ 1011_b$ Invert all bits 1110 0100_b Add 1 -27 = $1110\ 0101_b$

Unsigned number

2⁷ 2⁶ 2⁰

Signed 2's complement

$$x = -b_{N-1}2^{N-1} + b_{N-2}2^{N-2} + \bullet \bullet \bullet + b_12^1 + b_02^0$$

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 10

Why 2's complement representation?

 If we represent signed numbers in 2's complement form, subtraction is the same as addition to negative (2's complemented) number.

 Note that the range for 8-bit unsigned and signed numbers are different.

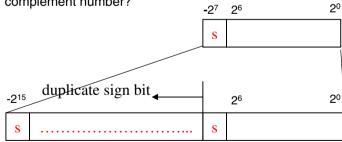
* 8-bit unsigned:

0 +255

♦ 8-bit 2's complement signed number: -128 +127

Sign Extension

How to translate an 8-bit 2's complement number to a 16-bit 2's complement number?



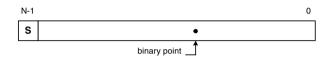
• This operation is known as sign extension.

Fixed point representation

- So far, we have concentrated on integer representation with the fractional part.
- There is an implicit binary point to the right:

N-1	0	
s		•
	implicit binary point —	_

• In general, the binary point can be in the middle of the word:



pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 13

IEEE-754 standard floating point

• 32-bit single precision floating point:

$$x = -1^{s} \times 2^{exp-127} \times 1. frac$$
$$1.175 \times 10^{-38} < |x| < 1.7 \times 10^{38}$$

- MSB is sign-bit (same as fixed point)
- 8-bit exponent in bias-127 integer format (i.e. add 127 to it)
- 23-bit to represent only the fractional part of the mantissa. The MSB of the mantissa is ALWAYS '1', therefore it is not stored

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 15

Idea of floating point representation

- Although fixed point representation can cope with numbers with fractions, the range of values that can represented is still limited.
- Alternative: use the equivalent of scientific notation, but in binary:

For example:

$$10.5 = 1.3125 \times 8$$

pykc - 12-Oct-01 ISE1/EE2 Computing Lecture 2 - 14