
Spring Term Lecture 5- 1pykc - 28-Jan-00 EE2 Computing

Lecture 5 More on assembly language
programming

� The basic branch instruction is:

� Conditional branch instructions can be used to control loops:

� The CMP instruction gives no results EXCEPT possibly changing
conditional codes in CPSR.

� If r0=0, then Z bit is set (='1'), else Z bit is reset (='0')

B label ; unconditionally branch to label
……
……

label …….

B label ; unconditionally branch to label
……
……

label …….

MOV r0, #10 ; intialize loop counted r0
loop ……. ; start of body of loop

…….
SUB r0, r0, #1 ; decrement loop counter
CMP r0, #0 ; is it zero yet?
BNE loop ; branch if r0 ≠≠≠≠ 0c

MOV r0, #10 ; intialize loop counted r0
loop ……. ; start of body of loop

…….
SUB r0, r0, #1 ; decrement loop counter
CMP r0, #0 ; is it zero yet?
BNE loop ; branch if r0 ≠≠≠≠ 0c

Spring Term Lecture 5- 2pykc - 28-Jan-00 EE2 Computing

The S-bit

� The loop program can be simplied to:

� SUBS instruction is the same as SUB except that the former can
change the cc in CPSR.

� After SUBS instruction, Z-bit is set or cleared depending on the result
of the subtraction.

� All data processing instructions such as ADD, ADC etc. can have S
added to indicate that condition code should be updated.

� We have seen how to use a conditional branch instruction BNE in
loops. There are in fact many more conditional branch instructions.

MOV r0, #10 ; intialize loop counted r0
loop ……. ; start of body of loop

…….
SUBS r0, r0, #1 ; decrement loop counter
BNE loop ; branch if r0 ≠≠≠≠ 0c

MOV r0, #10 ; intialize loop counted r0
loop ……. ; start of body of loop

…….
SUBS r0, r0, #1 ; decrement loop counter
BNE loop ; branch if r0 ≠≠≠≠ 0c

Spring Term Lecture 5- 3pykc - 28-Jan-00 EE2 Computing

Conditional Branch Instructions

� Note that BCC = BLO, BCS = BHS

Spring Term Lecture 5- 4pykc - 28-Jan-00 EE2 Computing

Conditional Execution

� Conditional execution applies not only to branches, but to all ARM
instructions.

� For example:

� Can be replaced by:

� Here the ADDNE and SUBNE instructions are executed only if
Z='0', i.e. the CMP instruction gives non-zero result.

 CMP r0, #5 ; if (r0 != 5) then
 BEQ BYPASS
 ADD r1, r1, r0 ; r1 := r1 + r0 - r2
 SUB r1, r1, r2

BYPASS …..

 CMP r0, #5 ; if (r0 != 5) then
 BEQ BYPASS
 ADD r1, r1, r0 ; r1 := r1 + r0 - r2
 SUB r1, r1, r2

BYPASS …..

CMP r0, #5 ; if (r0 != 5) then
ADDNE r1, r1, r0 ; r1 := r1 + r0 - r2
SUBNE r1, r1, r2

BYPASS …..

CMP r0, #5 ; if (r0 != 5) then
ADDNE r1, r1, r0 ; r1 := r1 + r0 - r2
SUBNE r1, r1, r2

BYPASS …..

Spring Term Lecture 5- 5pykc - 28-Jan-00 EE2 Computing

Conditional Execution - more

� Here is another very clever use of this unique feature in ARM
instruction set. Do remember ALL instructions can be qualified by
the condition codes.

� Note how if the first comparison finds unequal operands, the
second and third instructions are both skipped.

� Also the logical 'and' in the if clause if implemented by making the
second comparison conditional.

� Conditional execution is only efficient if the conditional sequence is
three instructions or fewer. If the conditional sequence is longer,
use a proper loop.

; if ((a==b) && (c==d)) then e := e + 1;
CMP r0, r1 ; r0 has a, r1 has b
CMPEQ r2, r3 ; r2 has c, r3 has d
ADDEQ r4, r4, #1 ; e := e+1

; if ((a==b) && (c==d)) then e := e + 1;
CMP r0, r1 ; r0 has a, r1 has b
CMPEQ r2, r3 ; r2 has c, r3 has d
ADDEQ r4, r4, #1 ; e := e+1

Spring Term Lecture 5- 6pykc - 28-Jan-00 EE2 Computing

Conditional Execution - Summary

Spring Term Lecture 5- 7pykc - 28-Jan-00 EE2 Computing

Shifted Register Operands

� ARM has another very clever feature. In any data processing
instructions, the second register operand can have a shift
operation applied to it. For example:

� Herer LSL means 'logical shift left by the specified number of bits.
� Note that this is still a single ARM instruction, executed in a single

clock cyle.
� In most processors, this is a separate instructions, while ARM

integrates this shifting into the ALU.
� It is also possible to use a register value to specify the number of

bits the second operand should be shifted by:

ADD r3, r2, r1, LSL #3 ; r3 := r2 + 8 x r1ADD r3, r2, r1, LSL #3 ; r3 := r2 + 8 x r1

ADD r5, r5, r3, LSL r2 ; r5 := r5 + r3 x 2**r1ADD r5, r5, r3, LSL r2 ; r5 := r5 + r3 x 2**r1

Spring Term Lecture 5- 8pykc - 28-Jan-00 EE2 Computing

ARM shift operations - LSL and LSR

� Here are all the six possible ARM shift operations you can use:

� LSL: logical shift left by 0 to 31 places; fill the vacated bits at the
least significant end of the word with zeros.

� LSR: logical shift right by 0 to 32 places; fill the vacated bits at the
most significant end of the word with zeros.

Spring Term Lecture 5- 9pykc - 28-Jan-00 EE2 Computing

ARM shift operations - ASL and ASR

� ASL: arithmetic shift left; this is the same as LSL
� ASR: arithmetic shift right by 0 to 32 places; fill the vacated bits at

the most significant end of the word with zeros if the source
operand was positive, and with ones it is negative. That is, sign
extend while shifting right.

Spring Term Lecture 5- 10pykc - 28-Jan-00 EE2 Computing

ARM shift operations - ROR and RRX

� ROR: rotate right by 0 to 32 places; the bits which fall off the least
significant end are used to fill the vacated bits at the most
significant end of the word.

� RRX: rotate right extended by 1 place; the vacated bit (bit 31) is
filled with the old value of the C flag and the operand is shifted one
place to the right. This is effectively a 33 bit rotate using the
register and the C flag.

Spring Term Lecture 5- 11pykc - 28-Jan-00 EE2 Computing

A simple assembly language program
- Hello world!

� We will now consider two simple assembly language programs.
The first outputs "Hello World!" on the console window:

AREA helloW, CODE, READONLY ; declare code area
SWI_WriteC EQU &0 ; output character in r0
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point
START ADR r1, TEXT ; r1 -> "Hello World!"
LOOP LDRB r0, [r1], #1 ; get the next byte

CMP r0, #0 ; check for 'null' character
SWINE SWI_WriteC ; if not end, print ….
BNE LOOP ; … and loop back
SWI SWI_Exit ; end of execution

TEXT = "Hello World!", &0a, &0d, 0 ; string + CR + LF + null
END

AREA helloW, CODE, READONLY ; declare code area
SWI_WriteC EQU &0 ; output character in r0
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point
START ADR r1, TEXT ; r1 -> "Hello World!"
LOOP LDRB r0, [r1], #1 ; get the next byte

CMP r0, #0 ; check for 'null' character
SWINE SWI_WriteC ; if not end, print ….
BNE LOOP ; … and loop back
SWI SWI_Exit ; end of execution

TEXT = "Hello World!", &0a, &0d, 0 ; string + CR + LF + null
END

Spring Term Lecture 5- 12pykc - 28-Jan-00 EE2 Computing

Another Example: Block copy

� Here is another example to block copy from one address (TABLE1)
to another (TABLE2), then write it out:

AREA BlkCpy, CODE, READONLY ; declare code area
SWI_WriteC EQU &0 ; output character in r0
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point
START ADR r1, TABLE1 ; r1 -> TABLE1

ADR r2, TABLE2 ; r2 -> TABLE2
ADR r3, T1END ; r3 -> end of TABLE1

LOOP1 LDR r0, [r1], #4 ; get TABLE1 1st word
STR r0, [r2], #4 ; copy into TABLE2
CMP r1, r3 ; finished?
BLT LOOP1 ; if not, do more, else print
ADR r1, TABLE2 ; r1 -> TABLE2

LOOP2 CMP r0, #0 ; check for end of text string
SWINE SWI_WriteC ; if not end, print …
BNE LOOP2 ; …. and loop back
SWI SWI_Exit ; finish

TABLE1 = "This is the right string!", &0a, &0d, 0
T1END

ALIGN ; ensure word alignment
TABLE2 = "This is the wrong string!", 0

END

AREA BlkCpy, CODE, READONLY ; declare code area
SWI_WriteC EQU &0 ; output character in r0
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point
START ADR r1, TABLE1 ; r1 -> TABLE1

ADR r2, TABLE2 ; r2 -> TABLE2
ADR r3, T1END ; r3 -> end of TABLE1

LOOP1 LDR r0, [r1], #4 ; get TABLE1 1st word
STR r0, [r2], #4 ; copy into TABLE2
CMP r1, r3 ; finished?
BLT LOOP1 ; if not, do more, else print
ADR r1, TABLE2 ; r1 -> TABLE2

LOOP2 CMP r0, #0 ; check for end of text string
SWINE SWI_WriteC ; if not end, print …
BNE LOOP2 ; …. and loop back
SWI SWI_Exit ; finish

TABLE1 = "This is the right string!", &0a, &0d, 0
T1END

ALIGN ; ensure word alignment
TABLE2 = "This is the wrong string!", 0

END

