
B
et

a
D

ra
ft

Document Number: ARM DUI 0020D
Issued: June 1995

Copyright Advanced RISC Machines Ltd (ARM) 1995

ARM Software Development Toolkit Version 2.0

Reference
Manual

EUROPE
Advanced RISC Machines Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado,
Takatsu-ku, Kawasaki-shi
Kanagawa, 213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@armltd.co.uk

USA
ARM USA
Suite 5, 985 University Avenue
Los Gatos
California 95030
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

Reference Manual
ARM DUI 0020D

ii

B
et

a
D

ra
ft

Proprietary Notice
ARM, the ARM Powered logo and EmbeddedICE are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this manual
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.
The product described in this manual is subject to continuous developments and improvements.
All particulars of the product and its use contained in this manual are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties
or merchantability, or fitness for purpose, are excluded.

This manual is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable
for any loss or damage arising from the use of any information in this manual, or any error or omission
in such information, or any incorrect use of the product.

Change Log
Issue Date By Change
Prelim1 Nov 94 BJH/EH Created
B01 Jan 95 AW Changes to reflect review comments; change of title
B00 Feb 95 AW B01 comments incorporated
C April 95 PB Updated, profiler chapter added
D June 95 BJH/PO Edited

Reference Manual
ARM DUI 0020D

Contents-1

1 Introduction 1-1
1.1 About This Manual 1-2
1.2 Release Components 1-3
1.3 Feedback 1-4

2 C Compiler 2-1
2.1 Introduction 2-2
2.2 About the ARM C Compiler 2-3
2.3 Invoking the Compiler 2-4
2.4 Using the ARM C Compiler 2-5
2.5 Keyword Options 2-8
2.6 Flag Options 2-10
2.7 Processor Selection Options 2-16
2.8 Implementation Details 2-17
2.9 Standard Implementation Definition 2-24
2.10 Portability 2-37
2.11 ANSI C vs K&R C 2-42
2.12 PCC Compatibility Mode 2-47
2.13 Machine-Specific Features 2-50
2.14 Floating Point Support 2-56
2.15 ARM/Thumb interworking 2-57

Contents

Contents

Reference Manual
ARM DUI 0020D

Contents-2

3 Assembler 3-1
3.1 Overview 3-2
3.2 Command Line Options 3-2
3.3 Assembly Language Overview 3-6
3.4 Directives 3-11
3.5 Symbolic Capabilities 3-18
3.6 Expressions and Operators 3-21
3.7 Conditional Assembly—[, | and] 3-24
3.8 Repetitive Assembly—WHILE and WEND 3-24
3.9 Macros 3-25

4 ARM Instruction Set 4-1
4.1 The ARM Instruction Set—Overview 4-2
4.2 Branch Instructions—B and BL 4-7
4.3 Data Processing Instructions 4-8
4.4 PSR Transfer—MSR and MRS 4-11
4.5 Unsigned Word/Byte Data Transfer—LDR and STR 4-12
4.6 Halfword and Signed Data Transfer: LDRH, STRH, LDRSB, LDRSH4-13
4.7 Block Data Transfer—LDM and STM 4-14
4.8 Multiply Instructions—MUL, MLA 4-16
4.9 Long Multiply Instructions—MULL, MLAL 4-17
4.10 Single Data Swap—SWP 4-17
4.11 ARM to Thumb State Exchange—BX 4-18
4.12 Software Interrupt/Supervisor Call—SWI 4-19
4.13 Pseudo-Instructions—ADR and NOP 4-20
4.14 Generic Coprocessor Instructions 4-21
4.15 Floating Point Instructions 4-23

5 Thumb Instruction Set 5-1
5.1 Thumb Instruction Set—Overview 5-2
5.2 Branch Instructions—B and BL 5-5
5.3 Data-processing Instructions 5-7
5.4 Single Data Transfer Instructions—LDR and STR 5-11
5.5 Block Data Transfer Instructions—LDMIA and STMIA 5-14
5.6 Stack Operations—PUSH and POP 5-15
5.7 Thumb to ARM State Exchange—BX 5-16
5.8 Software Interrupt 5-16
5.9 Pseudo Instructions — MOV and NOP 5-17

Contents

Reference Manual
ARM DUI 0020D

Contents-3

6 Linker 6-1
6.1 Introduction 6-2
6.2 Using the Linker 6-3
6.3 Library Module Inclusion 6-10
6.4 Area Placement and Sorting Rules 6-11
6.5 Linker Pre-Defined Symbols 6-12
6.6 The Handling of Relocation Directives 6-13
6.7 ARM Object Format 6-15
6.8 Plain Binary Format 6-16
6.9 ARM Image Format 6-16
6.10 Extended Intellec Hex Format (IHF) 6-18
6.11 ARM Shared Library Format 6-18
6.12 Overlays 6-28
6.13 The Overlay Manager 6-32
6.14 Scatter Loading 6-41

7 Symbolic Debugger 7-1
7.1 About armsd 7-2
7.2 Line-Speed Negotiation 7-2
7.3 Command-line Options 7-3
7.4 Command Language 7-6
7.5 Specifying Source-level Objects 7-6
7.6 Accessing Variables 7-11
7.7 Symbols 7-14
7.8 Accessing and Executing Programs 7-15
7.9 Controlling Execution 7-17
7.10 Program Context 7-22
7.11 Low-level Debugging 7-23
7.12 Coprocessor Support 7-30
7.13 Miscellaneous Commands 7-32
7.14 Automatic Command Execution on Startup 7-35
7.15 Performance simulation using armsd 7-35
7.16 Semihosting under EmbeddedICE 7-41

8 ARM Profiler 8-1
8.1 About armprof 8-2
8.2 Command-line Options 8-2
8.3 Profiler output 8-3

9 ARM Librarian 9-1
9.1 About armlib 9-2
9.2 Command Line Options 9-2

Contents

Reference Manual
ARM DUI 0020D

Contents-4

10 ARM Object Format Decoder 10-1
10.1 About decaof 10-2
10.2 Command-line Options 10-2

11 ANSI to PCC C Translator 11-1
11.1 About topcc 11-2
11.2 Command Line Options 11-2
11.3 Translation Details 11-3
11.4 Issues with topcc 11-4

12 ARM Tool Reconfiguration Utility 12-1
12.1 About reconfig 12-2
12.2 Tool Reconfiguration 12-2
12.3 Using reconfig 12-8
12.4 Reconfiguration Errors 12-10

13 ARM make Utility 13-1
13.1 About armmake 13-2
13.2 Command-line Options 13-3
13.3 Makefile Format for armmake 13-4
13.4 Command Execution 13-6
13.5 Advanced Features 13-7
13.6 Miscellaneous Features 13-9

14 ARMulator 14-1
14.1 About the ARMulator 14-2
14.2 Modelling an ARM-Based System 14-2
14.3 ARMulator Release Components 14-3
14.4 Building an ARMulator Variant 14-4
14.5 Memory Interfacing 14-4
14.6 ANSI C Library 14-5
14.7 The ARMulator Environment 14-5
14.8 Memory Models 14-6
14.9 Co-processor Modelling 14-12
14.10 Modelling an Operating System or Low Level Monitor 14-16
14.11 Accessing ARMulator’s State 14-17
14.12 ARMulator Signals 14-18
14.13 Processor Selection 14-18
14.14 Event Handling 14-18
14.15 The ARM Debug Monitor 14-19

Contents

Reference Manual
ARM DUI 0020D

Contents-5

15 C Library 15-1
15.1 An Introduction to the Run-Time Libraries 15-2
15.2 Porting the ARM C Library 15-3
15.3 Source Organisation 15-4
15.4 Building a Target-Specific Library 15-6
15.5 Retargeting the Library 15-7
15.6 Details of Target-Dependent Code 15-10

16 Software Floating Point 16-1
16.1 Introduction 16-2
16.2 The ARM Floating Point Library 16-2
16.3 Usage 16-3
16.4 Interworking Between hardfp and softfp Systems 16-3
16.5 Calling the Floating Point Library from Assembler 16-3
16.6 Controlling Floating Point Exceptions from C 16-6
16.7 Formats 16-10

17 Demon 17-1
17.1 Introduction 17-2
17.2 Target Memory Map 17-3
17.3 Standard Monitor SWIs 17-4
17.4 The Implementation of Demon for the PIE Card 17-8

18 EmbeddedICE 18-1
18.1 The Effect of EmbeddedICE on the Debuggee 18-2
18.2 Vector Breakpoints 18-2
18.3 Configuration Data 18-2
18.4 Accessing the EmbeddedICE Macrocell Directly 18-3
18.5 Floating Point and Other Coprocessors 18-4

19 ARM Procedure Call Standard 19-1
19.1 Introduction 19-2
19.2 The ARM Procedure Call Standard 19-3
19.3 APCS Variants 19-11
19.4 C Language Calling Conventions 19-14
19.5 Function Entry 19-16
19.6 The APCS in Non-User ARM Modes 19-25

Contents

Reference Manual
ARM DUI 0020D

Contents-6

20 Thumb Procedure Call Standard 20-1
20.1 Introduction 20-2
20.2 Register Names 20-3
20.3 The Stack 20-4
20.4 Control Arrival and Return 20-6
20.5 C Language Calling Conventions 20-8
20.6 Function Entry 20-9
20.7 Function Exit 20-12

21 File Formats 21-1
21.1 ARM Image Format 21-2
21.2 ARM Object Format 21-10
21.3 ARM Object Library Format 21-26
21.4 ARM Symbolic Debug Table Format 21-32

22 Remote Debugging 22-1
22.1 ARM Remote Debug Interface 22-2
22.2 ARM Remote Debug Protocol 22-21

1-1Reference Manual
ARM DUI 0020D

Introduction

This chapter introduces the ARM Software Development Toolkit and its documentation.

1.1 About This Manual 1-2

1.2 Release Components 1-3

1.3 Feedback 1-4

1

Introduction

1-2 Reference Manual
ARM DUI 0020D

1.1 About This Manual

1.1.1 Overview

This manual deals with the following topics:

• the components of the ARM Software Development Toolkit

• an overview of each of the ARM Software Tools and how to invoke them

• an introduction to the Runtime Libraries

• ARM Assembly Language

• Thumb Assembly Language

• simulating a processor

• using the symbolic debugger

Note: This manual does not cover device-specific issues. Please refer to the appropriate ARM device
datasheet.

1.1.2 Conventions

The following typographical conventions are used in this manual:

typewriter denotes text that may be entered at the keyboard: commands,
file and program names and assembler and C source

typewriter-italic shows text which must be substituted with user-supplied
information: this is most often used in syntax descriptions

Oblique is used to highlight important notes and ARM-specific
terminology

Thumb: Boxes like this contain information that applies specifically to Thumb-aware variants of the
ARM toolkit.

Introduction

1-3Reference Manual
ARM DUI 0020D

1.2 Release Components

1.2.1 Programming and modelling tools

The following tools are described in full in the relevant chapters of this manual. Please note that
your release of the Toolkit may not include all the tools mentioned below—see the Release
Notes for a definitive list of the tools supplied with your release.

armcc The ARM C compiler: ➲Chapter 2, C Compiler.

tcc The Thumb C compiler: ➲Chapter 2, C Compiler.

armasm The ARM assembler ➲Chapter 3, Assembler.

armlink The ARM linker: ➲Chapter 6, Linker.

armsd The ARM symbolic debugger: ➲Chapter 7, Symbolic Debugger.

armlib The ARM object-file librarian: ➲Chapter 9, ARM Librarian.

decaof The ARM-Thumb object-file decoder/dissasembler: ➲Chapter 10, ARM
Object Format Decoder.

topcc A PCC to ANSI C dialect conversion tool: ➲Chapter 11, ANSI to PCC C
Translator.

reconfig The ARM tools reconfiguration utility: ➲Chapter 12, ARM Tool
Reconfiguration Utility.

armmake The ARM make utility: ➲Chapter 13, ARM make Utility.

1.2.2 Retargetable libraries

Two retargetable libraries are supplied:

• The ARM ANSI C library, supplied in both source form and as an object library.

• The minimal standalone C runtime support system. This is supplied as ARM
Assembler, and is all that is needed to support unhosted, ARM-targeted C.

For further information see ➲15.1 An Introduction to the Run-Time Libraries on page 15-2.
Details about porting the ARM-targeted ANSI C Library is given in ➲15.2 Porting the ARM C
Library on page 15-3.

Thumb: The Thumb 16-bit ANSI C library is provided as an object library in both little-endian and
big-endian forms.

Introduction

1-4 Reference Manual
ARM DUI 0020D

1.3 Feedback

1.3.1 Feedback on the Software Development Toolkit

If you have feedback on the Software Development Toolkit, please contact either your supplier
or ARM Ltd. You can send feedback via e-mail to: xdevt@armltd.co.uk.

In order to help us give a rapid and useful response, please give:

• details of which hosting and release of the ARM software tools you are using

• a small sample code fragment which reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

1.3.2 Feedback on this manual

If you have feedback on this manual, please send it via e-mail to: documentation@armltd.co.uk,
giving:

• the manual’s revision number

• the page number(s) to which your comments refer

• a concise explanation of the problem

General suggestions for additions and improvements are also welcome.

2-1Reference Manual
ARM DUI 0020D

C Compiler

This section describes the ARM and Thumb C compilers.

2.1 Introduction 2-2

2.2 About the ARM C Compiler 2-3

2.3 Invoking the Compiler 2-4

2.4 Using the ARM C Compiler 2-5

2.5 Keyword Options 2-8

2.6 Flag Options 2-10

2.7 Processor Selection Options 2-16

2.8 Implementation Details 2-17

2.9 Standard Implementation Definition 2-24

2.10 Portability 2-37

2.11 ANSI C vs K&R C 2-42

2.12 PCC Compatibility Mode 2-47

2.13 Machine-Specific Features 2-50

2.14 Floating Point Support 2-56

2.15 ARM/Thumb interworking 2-57

2

C Compiler

2-2 Reference Manual
ARM DUI 0020D

2.1 Introduction
This chapter includes all the information you need to make effective use of the ARM C system.
It is not intended to be an introduction to C and does not try to teach programming in C, nor is it
a reference manual for the C standard.

The ARM instruction set is documented separately in ARM datasheets. Refer to the datasheet
for the ARM variant you are using.

For details of how to use the ARM assembler, please refer to ➲Chapter 3, Assembler.
ARM assembly language is documented in ➲Assembly Language Overview on page 3-6. If you
only need to understand the assembly language output by the C compilers, refer to the datasheet
for your device.

2.1.1 Recommended texts

C programming guides

Because the ARM C compiler is a compiler for ANSI C, these books are especially relevant but,
where noted in the list, the second edition must be obtained for coverage of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual, (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.
This is a very thorough reference guide to C, including a useful amount of information
on ANSI C.

• Kernighan, B.W. and Ritchie, D.M.,The C Programming Language (second edition,
1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.
Kernighan and Ritchie is the original C bible, updated to cover the essentials of ANSI C.

• Koenig, A, C Traps and Pitfalls, Addison-Wesley, (1989), Reading, Mass.
ISBN 0-201-17928-8.
This explains how to avoid the most common traps and pitfalls in C programming.
It provides informative reading at all levels of competence in C.

ANSI C reference

• ISO/IEC 9899:1990, C Standard. This is also available from ANSI as X3J11/90-013.
The standard is available from the national standards body (eg. AFNOR in France,
ANSI in the USA).

C Compiler

2-3Reference Manual
ARM DUI 0020D

2.2 About the ARM C Compiler
The ARM C compiler is a mature, industrial-strength compiler, based on Codemist Limited’s
multi-target, multi-language compiler suite (also known as the NorCroft C compiler).
Some derived compilers are used by, or distributed by:

• Advanced RISC Machines (for the ARM processor)

• Acorn Computers (for their ARM-based personal workstations)

• INMOS (for the Transputer)

• Hitachi (used internally on IBM 370 compatibles)

• Perihelion Software (for their Helios portable operating system)

2.2.1 Compiler variants

There are two variants of the ARM C compiler:

• armcc which compiles C source into 32-bit ARM code

• tcc which compiles C source into 16-bit Thumb code

Since they have the same basic front end, the descriptions in this chapter apply to both. Where
tcc has added features or restrictions, these are dealt with in Thumb-specific sections.

Note: If you want to link compiled ARM and Thumb code together, please refer to ➲ARM/Thumb
interworking on page 2-57.

2.2.2 Source language modes

By default, the ARM C Compiler compiles ANSI C as defined by ISO/IEC 9899:1990
—C Standard.

pcc mode

You select pcc mode from the compiler’s command line. pcc mode accepts the dialect of C used
by Berkeley Unix. In this mode, the compiler has been used to build a complete ARM-based
BSD Unix system (the RISCiX system, marketed by Acorn Computers Limited, which has also
achieved X/Open branding).

ANSI mode

In ANSI mode, the ARM C compiler has been tested against release 5.00 of the Plum-Hall C
Validation Suite (CVS) which has been adopted by the British Standards Institute for C compiler
Validation in Europe. In the language conformance sections of the CVS, it fails in only two trivial
ways.

C Compiler

2-4 Reference Manual
ARM DUI 0020D

Both are failures to produce required diagnostics:

• an empty initialiser for an aggregate of complete type is not diagnosed
int x[3] = {};

• signed integer constant overflow is not diagnosed, but merely warned of
case INT_MAX+1: ...

Wherever possible, the ARM C compiler adopts widely-used command-line options which should
be familiar to users of both Unix and DOS.

2.3 Invoking the Compiler
The general form of the command for invoking the C compiler is:

toolname options sourcefile

where toolname is armcc or tcc.

By default, the C compiler looks for source files, and creates object, assembler, and listing files
in the current directory.

2.3.1 Command-line options

Many aspects of the compiler’s operation can be controlled via command-line options. All options
are prefixed by a minus sign.

There are two classes of option:

Keywords are recognised in upper case or lower case

Flags A flag is a single letter. Its case is sometimes important to the ARM C compiler.

Case-sensitive options

Because some systems (such as Unix) are case-sensitive, the case of flags is most important
when you are building portable makefiles. By using the conventions common to many
C compilers, you can move a makefile between different environments at minimum cost.

C Compiler

2-5Reference Manual
ARM DUI 0020D

2.4 Using the ARM C Compiler
This section introduces some key concepts.

2.4.1 File naming conventions

The ARM C system uses suffix naming conventions to identify the classes of file involved in the
compilation and linking processes:

Suffix Usage

.c C source file

.h C header file

.o ARM object file

.s ARM or Thumb assembly language

.lst compiler listing file

For example, something.c names the C source of something .

Many host systems support suffix file naming conventions (Unix, MS-DOS, and Macintosh
under MPW), so the names used by the C system on the command line, and as arguments to
the C preprocessor directive #include , map directly to host filenames.

Host systems without filename extensions

Some host systems have no filename extensions and no extension convention. On such
systems, files may be stored in folders (sub-directories) named c , h, o and s . However, the
compiler still understands the something.c notation, both on its command line and when
processing the names of #include files, and it translates names written in standard form to
host system filenames.

For example, under Acorn’s RISC OS system the source something.c is actually stored in the
file called something in subdirectory c . Note, however, that under RISC OS, listing files are
by default created in an l directory, and not a lst directory, as might be expected.

Portability

Portability is an increasingly important issue in the C world. ARM C system supports the use of
multiple file-naming conventions on one host.

In general, follow these guidelines:

• restrict the name of a file or directory to a maximum of 8 lower-case letters and digits,
beginning with a letter

• ensure that extensions are no longer than 3 letters and digits long

• make embedded path names relative, rather than absolute

C Compiler

2-6 Reference Manual
ARM DUI 0020D

In each environment the ARM C system supports:

• native filenames

• pseudo Unix filenames

• Unix filenames

A pseudo Unix filename has the format:

host-volume-name :/ rest-of-unix-file-name

Determining how to parse a name is done heuristically as follows:

• a name starting with volume-name :/ is a pseudo Unix filename

• a name containing / is a Unix filename

• otherwise the name is a host name

This filename interpretation only succeeds if certain rules are adhered to by program authors. For
example, under DOS, a name may not exceed 8 characters in length and character case is not
significant.

2.4.2 Filename validity

The compiler does not check whether the filenames given are acceptable to the host’s filing
system. If the filename is not acceptable, the compiler will report that it could not be opened but
will give no further diagnosis.

2.4.3 Object files

By default, the object file(s) created by the compiler are stored in the current directory.

A C source file (something.c) is compiled into an object file (something.o) written in ARM
Object Format (AOF). AOF is defined in ➲ARM Object Format on page 21-10.

2.4.4 Included files

During a compilation, the compiler may read included header files, conventionally given a .h
suffix, or included C source files, usually given a .c suffix.

A special feature of the ARM C system is that the ANSI library headers are built into the
C compiler (in a special, textually-compressed, in-memory filing system) and are used from there
by default. By placing a filename in angle brackets, you indicate that the included file is a system
file and ensure that the compiler looks first in its built-in filing system. In this example, the ARM
C compiler does not look for system files in the current directory by default:

#include <stdio.h>

By enclosing a filename in double quotes in its #include directive, you indicate that it is not a
system file. In this example, the ARM C compiler does look for non-system files in the current
directory, by default:

#include "myfile.h"

C Compiler

2-7Reference Manual
ARM DUI 0020D

The way the compiler looks for included files depends on three factors:

• whether the filename is an absolute filename, rather than a relative filename

• whether the filename is between angle brackets or double quotes

• use of the -I and -j flags and the special directory name :mem

The search path

The order of directories on the search path is:

1 the compiler’s own in-memory filing system (for filenames enclosed in angle brackets,
but only if the -j flag is not used)

2 the current place (see ➲The current place, below) (not for filenames enclosed in angle
brackets)

3 arguments to -I flags, if used (for filenames enclosed in angle brackets or double
quotes)

4 arguments to the -j flag, if used (for filenames enclosed in angle brackets or double
quotes)

5 the compiler’s own in-memory filing system (for filenames enclosed in angle brackets,
but only if the -j flag is used)

Note: The in-memory filing system can be specified explicitly by -I or -j by using the directory name
:mem.

The current place

The current place is the directory containing the source file (C source or #include header)
currently being processed by the compiler. This is often the current directory.

When a file is found relative to an element of the search path, the name of the directory
containing that file becomes the new current place. When the compiler has finished processing
that file it restores the old current place. At each instant, there is a stack of current places
corresponding to the stack of nested #include directives.

For example, let us suppose that the current place is /me/include and the compiler is seeking
the #include file "sys/defs.h" . This is found as /me/include/sys/defs.h . The new
current place is now /me/include/sys and any file #included by defs.h whose name is
not absolute, will be sought relative to /me/include/sys .

This is the search rule used by BSD Unix systems. If required, the stacking of current places can
be disabled with the compiler -fK option, which makes the compiler use the search rule
described originally by Kernighan and Ritchie in The C Programming Language. Under this rule
all non-rooted user includes are sought relative to the directory containing the source file being
compiled.

C Compiler

2-8 Reference Manual
ARM DUI 0020D

2.5 Keyword Options
-help Give a summary of the compiler’s command line options.

-pcc Compile (BSD 4.2) portable C compiler C. This dialect is based
on the original Kernighan and Ritchie (K&R) definition of C, and
is the one used on Unix systems. The -pcc keyword alters the
language accepted by the compiler, but the built-in ANSI
headers are still used. For more details see section ➲PCC
Compatibility Mode on page 2-47.

-fussy or -strict Be extra strict about enforcing conformance to ANSI standard or
pcc conventions (for example, prohibit the volatile qualifier in pcc
mode).

-list Create a listing file. This consists of lines of source interleaved
with error and warning messages. You can gain finer control over
the contents of this file using the -f flag (see ➲2.6.6 Controlling
additional compiler features on page 2-13).

-via file If this option is specified, the file is opened and more command
line arguments are read in from it. This is intended mainly for
hostings (such as the PC) where command-line length is
severely limited.

-errors file This writes the compiler error output to file. This is useful in an
MS-DOS environment (or any host for which stderr cannot be
easily redirected) when error output needs to be logged.

-littleend or -li Compile code for an ARM operating with little-endian memory
(least significant byte has lowest address).

-bigend or -bi Compile code for an ARM operating with big-endian memory
(most significant byte has lowest address).

By default, the ARM C compiler compiles code with the same
byte order as the host system. However, most releases of the
ARM C compiler, for most hosts, allow this default to be
configured when the compiler is installed, so it is not usually
necessary to use either the -bigend or -littleend option
(see ➲About reconfig on page 12-2).

-apcs [3]q ualifiers Specify which variant of the ARM Procedure Call Standard is to
be used by the compiler. The default is set up when the compiler
is configured, and for ease of use can be reconfigured using the
reconfig tool—see ➲About reconfig on page 12-2. Alternatively
the default can be changed by use of this keyword option.

C Compiler

2-9Reference Manual
ARM DUI 0020D

There must be a space between -apcs and the first qualifier. At
least one qualifier must be present, and there must be no space
between qualifiers. The following qualifiers are permitted:

/26[bit] 26-bit APCS variant.*

/32[bit] 32-bit APCS variant.*

/reent[rant] Re-entrant APCS variant.*

/nonreent[rant] Non re-entrant APCS variant.*

/swst[ackcheck] Software stack checking APCS variant.*

/noswst[ackcheck] No software stack checking APCS
variant.*

/fp Use a dedicated frame-pointer register.*

/nofp Do not use a frame-pointer.*

/fpe2 Floating-point emulator 2 compatibility.*

/fpe3 Floating-point emulator 3 compatibility.*

/fpr[egargs] FP arguments passed in FP registers.*

/nofpr[egargs] FP arguments are not passed in FP
registers.*

/inter[work] Compile code for ARM/Thumb
interworking. See ➲ARM/Thumb
interworking on page 2-57.

/nointer[work] Do not compile code which is suitable for
ARM/Thumb interworking.

/softfp Call software floating point library
functions.*

/hardfp Generate ARM coprocessor instructions
for floating point (may also specify
fpe2 /fpe3 and fpr /nofpr .)*

Thumb: The options marked with a * are not applicable to Thumb.

C Compiler

2-10 Reference Manual
ARM DUI 0020D

2.6 Flag Options
The flag options are listed below. Some of these are followed by an argument. Whenever this is
the case, the ARM C compiler allows space between the flag letter and the argument.

Note: This is not always true of other C compilers, so the following descriptions show the form that
would be acceptable to a Unix C compiler. They show the case of the letter that would be
accepted by a Unix C compiler.

The descriptions are divided into the following subsections, so that flags controlling related
aspects of the compiler’s operation are grouped together:

• Controlling the linker

• Preprocessor flags

• Controlling code generation

• Controlling warning messages

• Suppressing error messages

• Controlling additional compiler features

2.6.1 Controlling the linker

-c Do not perform the link step. This just compiles the source
program(s), leaving the object file(s) in the current directory (or
as directed by the -o flag). Note that this option is different from
the -C option.

2.6.2 Preprocessor flags

-I directory-name adds the specified directory to the list of places which are
searched for included files (after the in-memory or source file
directory, depending on the type of include file). The directories
are searched in the order they are given, by multiple -I options.
See ➲Included Files on page 2-6 for full details.

-j directory-list is a comma-separated list of search directories. This option adds
the list of directories specified to the end of the search path (for
example, after all directories specified by -I options), but
otherwise in the same way as -I . It also makes the compiler
search the in-memory filing system after all other searches have
failed.

Note that the in-memory filing system can be specified in -I and
-j options by :mem.

-j is an ARM-specific flag and is not portable to other C
systems. There may be at most one -j option on a command
line. See ➲Included Files on page 2-6 for full details.

C Compiler

2-11Reference Manual
ARM DUI 0020D

-E If this flag is specified, only the preprocessor phase of the
compiler is executed. The output from the preprocessor is sent
to the standard output stream. It can be redirected to a file using
the stream redirection notations common to Unix and MS-DOS:

toolname -E something.c > rawc

where toolname is either armcc or tcc .

By default, comments are stripped from the output, (but see the
-C flag, below).

-C When used in conjunction with -E above, -C retains comments
in preprocessor output. Note that this option is different from the
-c flag, which suppresses the link operation.

-M If this flag is specified, only the preprocessor phase of the
compiler is executed (as with armcc -E) but the only output
produced is a list, on the standard output stream, of makefile
dependency lines suitable for use by a make utility. This can be
redirected to a file using standard Unix/MS-DOS notation. For
example:

toolname -M xxx.c >> Makefile

where toolname is either armcc or tcc .

-D symbol=value Define symbol as a preprocessor macro, as if by a line

#define symbol

value at the head of the source file.

-D symbol Define symbol as a preprocessor macro, as if by a line
#define symbol at the head of the source file.

-U symbol Undefine symbol , as if by a line #undef symbol at the head
of the source file.

2.6.3 Controlling code generation

-g Letters This flag specifies that debugging tables for use by the ARM Source Level
Debugger (armsd) should be generated. It is followed by an optional set of
letters which specify the level of information required. If no letters are present,
any available information is generated. However, the tables can occupy large
amounts of memory, so it can be useful to limit what is included, as follows.

-gf Generate information on functions and top-level variables (those
declared outside of functions) only.

-gl Generate information describing each line in the source file(s).
-gv Generate information describing all variables.

The last three modifiers may be specified in any combination.
For example: -gfv .

C Compiler

2-12 Reference Manual
ARM DUI 0020D

-o file The argument to the -o flag gives the name of the file which will hold the final
output of the compilation step. In conjunction with -c , it gives the name of the
object file; in conjunction with -S , it gives the name of the assembly language
file. Otherwise, it names the final output of the link step.

-Ospace Perform optimisations to reduce image size at the expense of increased
execution time.

-Otime Perform optimisations to reduce execution time at the expense of a larger
image.

-S If the -S flag is specified, no object code is generated, but a listing of the
assembly language is written to a file. By default, the file is called name.s in
the current directory (where name.c is the name of the source file stripped of
any leading directory names). The default can be overridden using the -o flag.

2.6.4 Controlling warning messages

The -W option controls the suppression of warning messages. The compiler uses warnings to
indicate potential portability problems or other hazards. You can avoid having too many warning
messages in the early stages of porting a program written in old-style C by disabling warnings.

-W If no modifier letters are given, all warnings are suppressed. If one or more
letters follow the flag, then only the warnings controlled by those letters are
suppressed.

-Wa Give no “Use of = in a condition context” warning. This warning is given when
the compiler encounters a statement such as:

if (a = b) {...

where it is possible that the author really did intend
if ((a = b) != 0) {...

or that the author intended the following, but missed a key stroke.

if (a == b) {...

In new code, avoid the deliberate use of if (a = b) ...

This warning is also suppressed in -pcc mode.

-Wd Give no “Deprecated declaration foo() - give arg types” message, given when
a declaration without argument types is encountered in ANSI mode (the
warning is suppressed in -pcc mode).

In ANSI C, declarations like this are deprecated, and a future version of the C
standard may ban them. They are already illegal in C++. However, it is
sometimes useful to suppress this warning when porting old code.

-Wf Give no “Inventing extern int foo()” message, which may be useful when
compiling old-style C in ANSI mode. Warning is suppressed in -pcc mode.

C Compiler

2-13Reference Manual
ARM DUI 0020D

-Wn Give no “Implicit narrowing cast” warning. This warning is issued when the
compiler detects the implicit narrowing of a long expression in an int or char
context, or the implicit narrowing of a floating-point expression in an integer
or narrower floating-point context. Such implicit narrowings are almost always
a source of problems when moving code developed using a fully 32-bit
system (such as ARM C) to a C system in which ints occupy 16 bits and longs
32 bits (as is common on the IBM PC, Apple Macintosh, etc.)

-Wp Give no “non-ANSI #include <...>” warning. ANSI requires that you should
only use #include <...> for ANSI headers, but it is useful to disable this
warning when compiling code not conforming to this aspect of the standard.

-Wv Give no “Implicit return in non-void context” warning. This is most often
caused by a return from a function which was assumed to return int (because
no other type was specified) but is being used as a void function. Because the
practice is widespread in old-style C, the warning is suppressed in -pcc
mode.

2.6.5 Suppressing error messages

These options force the compiler to accept C source which would normally produce errors. If
you use any of these options, it means that the C source does not conform to the ANSI C
standard (the compiler normally generates precisely the diagnostics required by ANSI).

-e letters Suppresses a range of compile time errors.

-ec Suppresses all implicit cast errors, eg. “implicit cast of non-0 int to pointer”.

-ep Suppresses the error which occurs if there are extraneous characters at the
end of a preprocessor line.

-ez Suppresses the error if a zero-length array is used.

-ef Suppresses errors for unclean casts such as short to pointer.

-ei Suppresses syntax checking for skipped #if statements.

-el Suppress errors about linkage disagreements where functions are implicitly
declared extern and later defined as static.

2.6.6 Controlling additional compiler features

There are a number of additional compiler features which control areas such as code generation
and special portability options. These options are described here.

-f Letters The -f flag described in this section controls a variety of
compiler features, including certain checks more rigorous than
usual. Like the -W flag it is followed by a string of modifier
letters. At least one letter is required, though several may be
given at once, for example, -ffah .

C Compiler

2-14 Reference Manual
ARM DUI 0020D

-fa Check for certain types of data flow anomalies. The compiler
performs data flow analysis as part of code generation.
The checks enabled by this option indicate when an automatic
variable could have been used before it has been assigned a
value. The check is pessimistic and will sometimes report an
anomaly where there is none, especially in code like the
following:

int initialised = 0, value;
...
if (initialised) { int v = value; ...
...
value = ...; initialised = 1;

Here, we know that value is read only if initialised has
been set. As this is a semantic deduction, not a data flow
implication, -fa will report an anomaly. In general, it is useful to
check all code using -fa at some stage during its development.

-fc Enable the “limited pcc” option, designed to support the use of
pcc-style header files in an otherwise strict ANSI mode (for
example, when using libraries of functions implemented in
old-style C from an application written in ANSI C). This allows
characters after #else and #endif preprocessor directives
(which are ignored).

The “limited pcc” option also supports system programming in
ANSI mode by suppressing warnings about explicit casts of
integers to function pointers, and permitting the dollar character
in identifiers, (linker-generated symbols often contain “$$” and all
external symbols containing “$$” are reserved to the linker).

-fe Check that external names used within the file are still unique
when reduced to six case-insensitive characters. Some linkers
support as few as six significant characters in external symbol
names. This can cause problems with clashes if a system uses
two names such as getExpr1 and getExpr2 , which are only
unique in the eighth character. The check can only be made
within a single compilation unit (source file), so it cannot catch all
such problems. Since ARM C allows external names of up to 256
characters, this is strictly a portability aid.

-ff Do not embed function names in the code area (see -fn option).
This option is enabled by default to reduce the size of the code
area.

-fh Check that all external objects are declared before use, and that
all file-scoped static objects are used. If external objects are only
declared in included header files (never in-line in a C source file)
then these checks directly support good modular programming
practices.

C Compiler

2-15Reference Manual
ARM DUI 0020D

-fi In the listing file, list the lines from any files included with
directives of the form:

#include "file"

-fj As above, but for files included by lines of the form:

#include <file>

-fk Use K&R search rules for locating included files (the current
place is defined by the original source file and is not stacked;
see section ➲Included Files on page 2-6 for details).

-fm Report on preprocessor symbols defined but not used during
the compilation.

-fn Embed function names in the code area (see -ff option).
This improves the readability of the output produced by the
stack backtrace run-time support function and the
_mapstore() function. However, it does increase the size of
the code area by around 5%. In general it is not useful to specify
-ff with -p . (see ➲Controlling code generation on page 2-11).

-fp Report on explicit casts of integers into pointers, eg.

char *cp = (char *) anInteger;

This warning indicates potential portability problems in future.
Casting explicitly between pointers and integers, although not
clean, is not harmful on the ARM where both are 32-bit types.

(Implicit casts are reported anyway, unless suppressed by the
-Wc option).

-fu List unexpanded source. By default, if -list is specified, the
compiler lists the source text as seen by the compiler after
preprocessing. If -fu is specified then the unexpanded source
text, as written by the user, is listed. For example, consider the
line:

p = NULL; /* assume NULL #defined to be (0) */

By default, this is listed as p = (0) ; with -fu specified, as
p = NULL; .

-fv Report on all unused declarations, including those from
standard headers.

-fw Allow string literals to be writeable, as expected by some Unix
code, by allocating them in the program’s data area rather than
the notionally read-only code area. Note that this also stops the
compiler re-using a multiple-occurring string literal.

C Compiler

2-16 Reference Manual
ARM DUI 0020D

When writing high quality production software, you are
encouraged to use at least the -fah options in the later stages
of program development (the extra diagnostics produced can be
annoying in the earlier stages).

-zp LetterDigit This flag can be used to emulate #pragma directives. The letter
and digit which follow it are the same characters that would
follow the ‘-’ of a #pragma directive. See ➲Pragma directives on
page 2-50 for details.

-zr Number This flag allows the size of most LDMs and all STMs to be
controlled between the limits of 3 and 16 registers transferred.
This can help control interrupt latency where this is critical.

2.7 Processor Selection Options
- processor Tells the compiler to compile code for the specified processor.

The compiler may take advantage of certain features of the
selected processor which may make the code incompatible with
other processors, for example, the use of halfword instructions.

- processor should be specified in the form -ARMN[options]
where N is the processor number, for example 6, 60, 600 and
options is a list of single letter processor options, for example
T, M.

Currently, the only option that has any effect is the T (Thumb)
option although future releases of the compiler may recognise
other options.

Thumb: If you specify a Thumb-aware processor (eg. -ARM7TDMI) to armcc this will not cause
armcc to generate Thumb code. Instead it will generate ARM code which uses the new
halfword ARM instructions.
This option is not available with tcc as tcc always generates Thumb code.

C Compiler

2-17Reference Manual
ARM DUI 0020D

2.8 Implementation Details
This section gives details of those aspects of the compiler and C library which the ANSI standard
for C identifies as implementation-defined, together with other points of interest to programmers.

2.8.1 Character sets and identifiers

An identifier can be of any length. The compiler truncates an identifier after 256 characters, all
of which are significant (the standard requires a minimum of 31 significant characters).

The source character set expected by the compiler is 7-bit ASCII. Within comments, string
literals, and character constants, the full ISO 8859-1 (Latin 1) 8-bit character set is recognised.

In its generic configuration, as delivered, the C library processes the full ISO 8859-1 (Latin-1)
8-bit character set, except that the default locale is the C locale (see ➲Standard Implementation
Definition on page 2-24). The ctype functions therefore all return 0 when applied to codes in
the range 160 to 255.

Calling setlocale(LC_CTYPE, "ISO8859-1") makes the isupper and islower
functions behave as expected over the full 8-bit Latin-1 alphabet, rather than over the 7-bit ASCII
subset.

Upper and lower case characters are distinct in all internal and external identifiers.

In pcc mode (-pcc option) and “limited pcc” or “system programming” mode (-fc option), an
identifier may also contain a dollar character.

2.8.2 Data Elements

Integers are represented in two’s complement form.

Data items of type char are unsigned by default, though in ANSI mode they may be explicitly
declared as signed char or unsigned char.

In the compiler’s pcc mode there is no signed keyword, so chars are signed by default and
may be declared unsigned if required.

Type Size in bits Type Size in bits

char 8 float 32

short 16 double 64

int 32 long double 64 (subject to change)

long 32 all pointers 32

 Table 2-1: Size of data elements

C Compiler

2-18 Reference Manual
ARM DUI 0020D

Floating-point quantities are stored in the IEEE format. In double and long double quantities, the
word containing the sign, the exponent and the most significant part of the mantissa is stored at
the lower machine address.

2.8.3 Arithmetic limits (limits.h and float.h)

The ANSI C standard defines two header files (limits.h and float.h) which contain
constants describing the ranges of values that can be represented by the arithmetic types.
The standard also defines minimum values for many of these constants.

This subsection gives the values and significance of these two headers for the ARM.

Number of bits in the smallest object that is not a bit field (ie. a byte):

CHAR_BIT 8

Maximum number of bytes in a multibyte character, for any supported locale:

MB_LEN_MAX 1

For the following integer ranges, the middle column gives the numerical value of the range’s
endpoint, while the right hand column gives the bit pattern (in hexadecimal) that would be
interpreted as this value in ARM C. When entering constants you must be careful about the size
and signed-ness of the quantity. Constants are interpreted differently in decimal and
hexadecimal/octal. See the ANSI C standard or any of the recommended textbooks on the
C programming language for more details.

Range End-point Hex Representation

CHAR_MAX 255 0xff

CHAR_MIN 0 0x00

SCHAR_MAX 127 0x7f

SCHAR_MIN -128 0x80

UCHAR_MAX 255 0xff

SHRT_MAX 32767 0x7fff

SHRT_MIN -32768 0x8000

USHRT_MAX 65535 0xffff

INT_MAX 2147483647 0x7fffffff

INT_MIN -2147483648 0x80000000

LONG_MAX 2147483647 0x7fffffff

 Table 2-2: ARM C compiler integer ranges

C Compiler

2-19Reference Manual
ARM DUI 0020D

Characteristics of floating point

FLT_RADIX 2

FLT_ROUNDS .1

The base (radix) of the ARM floating-point number representation is 2, and floating-point
addition rounds to nearest.

Ranges of floating types
FLT_MAX 3.40282347e+38F
FLT_MIN 1.17549435e-38F
DBL_MAX 1.79769313486231571e+308
DBL_MIN 2.22507385850720138e-308
LDBL_MAX 1.79769313486231571e+308
LDBL_MIN 2.22507385850720138e-308

Ranges of base two exponents
FLT_MAX_EXP 128
FLT_MIN_EXP (-125)
DBL_MAX_EXP 1024
DBL_MIN_EXP (-1021)
LDBL_MAX_EXP 1024
LDBL_MIN_EXP (-1021)

Ranges of base ten exponents
FLT_MAX_10_EXP 38
FLT_MIN_10_EXP (-37)
DBL_MAX_10_EXP 308
DBL_MIN_10_EXP (-307)
LDBL_MAX_10_EXP 308
LDBL_MIN_10_EXP (-307)

Decimal digits of precision
FLT_DIG 6
DBL_DIG 15
LDBL_DIG 15

LONG_MIN -2147483648 0x80000000

ULONG_MAX 4294967295 0xffffffff

Range End-point Hex Representation

 Table 2-2: ARM C compiler integer ranges

C Compiler

2-20 Reference Manual
ARM DUI 0020D

Digits (base two) in mantissa (binary digits of precision)
FLT_MANT_DIG 24
DBL_MANT_DIG 53
LDBL_MANT_DIG 53

Smallest positive values such that (1.0 + x != 1.0)
FLT_EPSILON 1.19209290e-7F
DBL_EPSILON 2.2204460492503131e-16
LDBL_EPSILON 2.2204460492503131e-16L

2.8.4 Structured data types

The ANSI C standard leaves details of the layout of the components of a structured data type to
each implementation. The following points apply to the ARM C compiler:

• Structures are aligned on word boundaries.

• Structures are arranged with the first-named component at the lowest address.

• A component with a char type is packed into the next available byte.

• A component with a short type is aligned to the next even-addressed byte.

• All other arithmetic-type components are word-aligned, as are pointers and integers
containing bitfields.

• The only valid types for bitfields are (signed) int and unsigned int. (In -pcc mode, char,
unsigned char, short, unsigned short, long and unsigned long are also accepted.)

• A bitfield of type int is treated as unsigned by default (signed by default in -pcc mode).

• A bitfield must be wholly contained within the 32 bits of an int.

• Bitfields are allocated within words so that the first field specified occupies
the-lowest-addressed bits of the word, depending on configuration:

little-endian lowest-addressed means least significant

big-endian lowest addressed means most significant

2.8.5 Pointers

The following remarks apply to pointer types:

• Adjacent bytes have addresses which differ by one.

• The macro NULL expands to the value 0.

• Casting between integers and pointers results in no change of representation.

• The compiler warns of casts between pointers to functions and pointers to data (but not
in -pcc mode).

C Compiler

2-21Reference Manual
ARM DUI 0020D

2.8.6 Pointer subtraction

When two pointers are subtracted, the difference is obtained as if by the expression:

((int)a - (int)b) / (int)sizeof(type pointed to)

If the pointers point to objects whose size is no greater than four bytes, the alignment of data
ensures that the division will be exact in all cases. For longer types, such as doubles and
structures, the division may not be exact unless both pointers are to elements of the same array.
Moreover, the quotient may be rounded up or down at different times, leading to potential
inconsistencies.

2.8.7 Arithmetic operations

The compiler performs the usual arithmetic conversions set out in the ANSI C standard. The
following points apply to operations on the integral types:

• All signed integer arithmetic uses a two’s complement representation.

• Bitwise operations on signed integral types follow the rules which arise naturally from
two’s complement representation.

• Right shifts on signed quantities are arithmetic.

• Any quantity which specifies the amount of a shift is treated as an unsigned 8-bit value.

• Any value to be shifted is treated as a 32-bit value.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from a shift of an unsigned or positive
signed value; they yield -1 from a shift of a negative signed value.

• The remainder on integer division has the same sign as the divisor.

• If a value of integral type is truncated to a shorter signed integral type, the result is
obtained as if by masking the original value to the length of the destination, and then
sign extending.

• A conversion between integral types never causes an exception to be raised.

• Integer overflow does not raise an exception.

• Integer division by zero raises an exception.

By default, the following points apply to operations on floating-point types:

• When a double or long double is converted to a float, rounding is to the nearest
representable value.

• A conversion from a floating type to an integral type causes an exception to be raised
only if the value cannot be represented in a long int, (or unsigned long int in the case
of conversion to an unsigned int).

• Floating-point underflow is not detected; any operation which underflows returns zero.

C Compiler

2-22 Reference Manual
ARM DUI 0020D

• Floating-point overflow raises an exception.

• Floating-point divide by zero raises an exception.

See ➲Controlling Floating Point Exceptions from C on page 16-6.

2.8.8 Expression evaluation

The compiler performs the usual arithmetic conversions (promotions) set out in the ANSI C
standard before evaluating an expression. The following should be noted:

• The compiler may re-order expressions involving only associative and commutative
operators of equal precedence, even in the presence of parentheses. For example,
a + (b – c) may be evaluated as (a + b) – c .

• Between sequence points, the compiler may evaluate expressions in any order,
regardless of parentheses. Thus the side effects of expressions between sequence
points may occur in any order.

• Similarly, the compiler may evaluate function arguments in any order.

Any detail of order of evaluation not prescribed by the ANSI C standard may vary between
releases of the ARM C compiler.

2.8.9 Implementation limits

The ANSI C standard sets out certain minimum limits which a conforming compiler must accept.
You should be aware of these when porting applications between compilers. A summary is given
➲Implementation limits on page 2-23. The mem limit indicates that no limit is imposed by the ARM
C compiler other than that imposed by the availability of memory.

C Compiler

2-23Reference Manual
ARM DUI 0020D

Note: When running on 16-bit hosts, the ARM C compiler may impose a limit on the size of an object.
Generally, this limit will be 65535 bytes in a single object file rather than 32767 bytes in a single
C-language object. 32-bit hosted versions do not have this limit.

Description Required ARM C

Nesting levels of compound statements and iteration / selection
control structures.

15 mem

Nesting levels of conditional compilation. 8 mem

Declarators modifying a basic type. 31 mem

Expressions nested by parentheses. 32 mem

Significant characters:

in internal identifiers and macro names 31 256

in external identifiers 6 256

External identifiers in one source file. 511 mem

Identifiers with block scope in one block. 127 mem

Macro identifiers in one source file. 1024 mem

Parameters in one function definition / call. 31 mem

Parameters in one macro definition / invocation. 31 mem

Characters in one logical source line. 509 no limit

Characters in a string literal. 509 mem

Bytes in a single object. 32767 mem
[see Note, below)]

Nesting levels for #included files. 8 mem

Case labels in a switch statement. 257 mem

Members in a single struct or union, enumeration constants in a
single enum.

127 mem

Nesting of struct / union in a single declaration. 15 mem

 Table 2-3: Implementation limits

C Compiler

2-24 Reference Manual
ARM DUI 0020D

2.9 Standard Implementation Definition
This section discusses aspects of the ARM C compiler and ANSI C library not defined by the
ISO C standard, and which are implementation-defined.

Appendix A.6 of the ISO C standard collects together information about portability issues; section
A.6.3 lists those points which must be defined by each implementation. This section corresponds
to appendix A.6.3, dealing with the points listed there, under the same headings and in the same
order.

2.9.1 Translation

Diagnostic messages produced by the compiler are of the form:

"source-file", line-number : severity : explanation

where severity is one of:

Warning This is not a diagnostic in the ANSI sense, but a helpful message
from the compiler.

Error This is a violation of the ANSI specification from which the
compiler was able to recover by guessing the user’s intentions.

Serious error This is a violation of the ANSI specification from which no
recovery was possible because the compiler could not reliably
guess what was intended.

Fatal This is not really a diagnostic but an indication that the compiler’s
limits have been exceeded or that the compiler has detected a
fault in itself (for example, not enough memory).

2.9.2 Environment

The mapping of a command line from the ARM-based environment into arguments to main() is
implementation-specific. The generic ARM C library supports the following:

main()

The arguments given to main() are the words of the command line (not including I/O
redirections, covered below), delimited by white space, except where the white space is
contained in double quotes. A white space character is any character of which isspace() is
true. A double quote or backslash character (\) inside double quotes must be preceded by a
backslash character. An I/O redirection will not be recognised inside double quotes.

C Compiler

2-25Reference Manual
ARM DUI 0020D

Interactive device

In an unhosted implementation of the ARM C library, the term interactive device may be
meaningless. The generic ARM C library supports a pair of devices, both called :tt , intended
to handle a keyboard and a VDU screen. In the generic implementation:

• No buffering is done on any stream connected to :tt unless I/O redirection has taken
place.

• If I/O redirection other than to :tt has taken place, full file buffering is used except
where both stdout and stderr have been redirected to the same file, in which case
line buffering is used.

Standard input, output and error streams

Using the generic ARM C library, the standard input, output and error streams, stdin , stdout ,
and stderr can be redirected at run time in the way shown. For example, if mycopy is a
program which simply copies the standard input to the standard output, the following line:

mycopy < infile > outfile 2> errfile

runs the program, redirecting the files as follows:

stdin is redirected to infile

stdout is redirected to outfile

stderr is redirected to errfile

The following shows the permitted redirections:

0< filename read stdin from filename

< filename read stdin from filename

1> filename write stdout to filename

> filename write stdout to filename

2> filename write stderr to filename

2>&1 write stderr to same place as stdout

>& filename write both stdout and stderr to filename

>> filename append stdout to filename

>>& filename append both stdout and stderr to filename

C Compiler

2-26 Reference Manual
ARM DUI 0020D

2.9.3 Identifiers

256 characters are significant in identifiers without or without external linkage. Allowed
characters are letters, digits, and underscores.

Case distinctions are significant in identifiers with external linkage.

In pcc mode (-pcc option) and “limited pcc” or “system programming” mode (-fc option), the
character $ is also valid in identifiers.

2.9.4 Characters

The characters in the source character set are assumed to be ISO 8859-1 (Latin-1 Alphabet),
a superset of the ASCII character set. The printable characters are those in the range 32 to 126
and 160 to 255. Any printable character may appear in a string or character constant, and in a
comment.

Other properties of the source character set are host specific, except that the ARM C compiler
has no support for multi-byte character sets.

The properties of the execution character set are target specific. In its generic form, the ARM
C library supports the ISO 8859-1 (Latin-1) character set, so these points are valid:

• The execution character set is identical to the source character set.

• There are four chars/bytes in an int. If the memory system is:

little-endian the bytes are ordered from least significant at the lowest
address to most significant at the highest address.

big-endian the bytes are ordered from least significant at the highest
address to most significant at the lowest address.

• A character constant containing more than one character has the type int. Up to four
characters of the constant are represented in the integer value. The first character in the
constant occupies the lowest-addressed byte of the integer value; up to three following
characters are placed at ascending addresses. Unused bytes are filled with the NUL (or
‘\0’) character.

• There are eight bits in a character in the execution character set.

• All integer character constants that contain a single character or character escape
sequence are represented in both the source and execution character sets (by an
assumption which may be violated in any given retargeting of the generic ARM
C library).

• Characters of the source character set in string literals and character constants map
identically into the execution character set (by an assumption which may be violated in
any given retargeting of the generic ARM C library).

C Compiler

2-27Reference Manual
ARM DUI 0020D

• No locale is used to convert multibyte characters into the corresponding wide
characters (codes) for a wide character constant (not relevant to the generic
implementation).

• A plain char is treated as unsigned (but as signed in -pcc mode).

The character escape codes are shown in ➲Escape codes on page 2-27.

2.9.5 Integers

The representations and sets of values of the integral types are set out in ➲Data Elements on
page 2-17. Note also:

• The result of converting an integer to a shorter signed integer (if the value cannot be
represented) is as if the bits in the original value which cannot be represented in the
final value are masked out, and the resulting integer sign-extended. The same applies
when an unsigned integer is converted to a signed integer of equal length.

• Bitwise operations on signed integers yield the expected result given two’s
complement representation. No sign extension takes place.

• The sign of the remainder on integer division is the same as defined for the function
div() .

• Right shift operations on signed integral types are arithmetic.

Escape sequence Char value Description

\a 7 Attention (bell)

\b 8 Backspace

\f 9 Form feed

\n 10 Newline

\r 11 Carriage return

\t 12 Tab

\v 13 Vertical tab

\xnn 0xnn ASCII code in hexadecimal

\nnn 0nnn ASCII code in octal

 Table 2-4: Escape codes

C Compiler

2-28 Reference Manual
ARM DUI 0020D

2.9.6 Floating-point types

The representations and ranges of values of the floating-point types have been given in ➲Data
Elements on page 2-17. Note also that:

• When a floating-point number is converted to a shorter floating point one, it is rounded
to the nearest representable number.

• The properties of floating-point arithmetic accord with IEEE 754.

2.9.7 Arrays and pointers

The ISO standard specifies three areas in which the behaviour of arrays and pointers must be
documented. The points to note here are:

• the type size_t is unsigned int (signed int in -pcc mode)

• casting pointers to integers and vice versa involves no change of representation

• the type ptrdiff_t is defined as (signed int)

2.9.8 Registers

Using the ARM C compiler, you can declare any number of objects to have the storage class
register . Depending on which variant of the ARM Procedure Call Standard is in use, there are
between five and seven registers available. Declaring more than this number of objects with
register storage class must result in at least one of them not being held in a register. In general,
it is advisable to declare no more than four. The valid types are:

• any integer type

• any pointer type

• any integer-like structure (any one word struct or union in which all addressable fields
have the same address or any one word structure containing only bitfields)

• a floating-point type, if software floating point is used

Notes: Other variables, not declared with the register storage class, may be held in registers for
extended periods, and register variables may be held in memory for some periods.

The double precision floating type double occupies two ARM registers.

There is a #pragma which assigns a file-scope variable to a specified register everywhere within
a compilation unit.

2.9.9 Qualifiers

An object that has volatile-qualified type is accessed if any word or byte of it is read or written.
For volatile-qualified objects, reads and writes occur as directly implied by the source code, in the
order implied by the source code.

The effect of accessing a volatile-qualified short is undefined.

C Compiler

2-29Reference Manual
ARM DUI 0020D

2.9.10 Declarators

The number of declarators that may modify an arithmetic, structure or union type is limited only
by available memory.

2.9.11 Statements

The number of case values in a switch statement is limited only by memory.

2.9.12 Structure packing

Non-packed structs

By default, structures are aligned on word boundaries. Characters are aligned in bytes, shorts
are aligned on even-numbered byte boundaries, and all other types, except bitfields, are aligned
on word boundaries. Bitfields are subfields of ints, themselves aligned on word boundaries.

Structures may contain internal padding to ensure:

• members are correctly aligned

• the structure occupies a whole number of words

An example of a Conventional (Non-packed) struct is given in ➲Figure 2-1: Conventional
(non-packed) struct example.

 Figure 2-1: Conventional (non-packed) struct example

Packed structs

A packed struct is one in which there is neither padding between fields to ensure the natural
alignment of each field, nor trailing padding to ensure the natural alignment of a following struct
within an array.

example

0 1 2 3 4 5 6 7 8 9 10 11
c x s

word
boundary

byte

sizeof(example) == 12 (3 words)

struct {char c; int x; short s;} example;

padding padding

C Compiler

2-30 Reference Manual
ARM DUI 0020D

Many applications read data from and write data to networks and computer buses in formats
defined by international standards and by other programs executing on different processors. The
data format is fixed. Data read and data to be written can be precisely mapped in C using packed
structs. However, packed structs cannot support reading values of the wrong endianness.

On the ARM, access to unaligned data can be expensive (taking up to 7 instructions and 2 extra
work registers). Data accesses via packed structs should be minimised to avoid performance
loss. Generally, internal data structures should not be padded.

Usage

There is no command-line option to change the default packing of structures. Packed structures
must be specified with be a new type qualifier: __packed .

If you require packed rather than __packed , then use:

#define packed __packed

__packed behaves as a type qualifier (like volatile) and may qualify any non floating point
type.

While there is no difference between int x and __packed int x , there is a significant
difference between int *px an d __packed int *px when px is de-referenced. In the latter
case, an int will be correctly loaded from a location of unknown alignment.

Floating types may not be fields of packed structures.

A packed struct or union type must be declared explicitly. It is a different type from the
corresponding non packed type and its packedness is an attribute of its struct tag (so __packed
is more than just a type qualifier). Any variables declared using a packed tag automatically
inherits the packed attribute, so __packed does not have to be specified:

__packed struct P { ... };

struct P pp; /* pp is a packed struct */

In consequence, the following will be faulted:

struct Foo { ... };

__packed struct Foo PackedFoo; /* illegal */

or

struct Foo { ... };

typedef __packed struct Foo PackedFoo; /* illegal */

This ensures that a packed struct can never be assignment compatible with an unpacked struct.
This could happen if __packed were merely a type qualifier like volatile and const .

Each field of a packed struct or packed union inherits the packed qualifier.

There are no packed array types. A packed array is simply an array of objects of packed type
(there is no inter-element padding).

C Compiler

2-31Reference Manual
ARM DUI 0020D

The effect of casting away __packed is undefined. For example:

int f(__packed int *px)
{

return *(int *)px; /* undefined behaviour */
}

All top level objects (global or local) are word-aligned and occupy an integral number of words
of store, so there may be padding between separately declared top level packed structs. This
does not matter, because the layout in store of top-level objects is not specified by the ANSI
standard.

Sub-structs of packed structs

A struct (or union) sub-field of a packed struct or union must be declared to have packed struct
(or packed union) type.

struct S {...};
__packed struct P {...};

struct T {
struct S ss; /* OK */
struct P pp; /* OK */

};

__packed struct Q {
struct S ss; /* faulted - sub-structs must be packed */
struct P pp; /* OK */

};

The sub-structs are abutted without any intermediate padding, and they contain no internal
padding themselves (because they must be packed).

 Figure 2-2: Sub-struct padding

Q

0 1 2 3 4 5 6 7 8 9 10
c x x

byte
z c

X Y

__packed struct P {char c; int x;};
__packed struct {

struct P X;
char z;
struct P Y;

} Q

Note: The structure contains no padding.

C Compiler

2-32 Reference Manual
ARM DUI 0020D

2.9.13 Unions

When a member of a union is accessed using a member of a different type, the resulting value
can be predicted from the representation of the original type. No error is given.

2.9.14 Enumerations

An object of enum type will normally be implemented in the smallest integral type that contains
the range of the enum.

The type of an enum will be unsigned char , signed char , unsigned short , signed
short , unsigned int or signed int , according to the range of the enum. This feature can
reduce the size of the data area.

The command line flag -fy sets the underlying type of enum to signed int.

2.9.15 Bitfields

The ARM C compiler handles bitfields in the following way:

• a plain bitfield (declared as int) is treated as unsigned int (signed int in pcc mode)

• a bitfield which does not fit into the space remaining in the current int is placed in the
next int

• the order of allocation of bitfields within ints means that the first field specified occupies
the lowest-addressed bits of the word

• bitfields do not straddle storage unit (int) boundaries

2.9.16 Preprocessing directives

A single-character constant in a preprocessor directive cannot have a negative value.

The ANSI standard header files are contained within the compiler itself and may be referred to in
the way described in the standard (using, for example, #include <stdio.h> , etc.).

Quoted names for includable source files are supported. The rules for directory searching are
given in ➲Included Files on page 2-6. The compiler will accept host filenames or Unix filenames.
In the latter case, on non-Unix hosts, the compiler does its best to translate the filename to a local
equivalent. See ➲File naming conventions on page 2-5 for more details.

The recognized #pragma directives and their meanings are described in ➲Pragma directives on
page 2-50.

The date and time of translation are always available, so __DATE__ and __TIME__ always give
the date and time respectively.

C Compiler

2-33Reference Manual
ARM DUI 0020D

2.9.17 Library functions

The precise attributes of a C library are specific to a particular implementation of it. The generic
ARM C library has or supports the following features:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error may occur when the
program is linked with the standard libraries. If it is not linked with standard libraries, no
error will be detected.

• The assert() function prints the following message and then calls the abort()
function:

*** assertion failed: expression, file filename , line linenumber

These functions usually test only for characters whose values are in the range 0 to 127
(inclusive):

isalnum()
isalpha()
iscntrl()
islower()
isprint()
isupper()
ispunct()

Characters with values greater than 127 return a result of 0 for all of these functions except
iscntrl() which returns non-zero for 0 to 31, and 128 to 255.

Setlocale call

After the call setlocale(LC_CTYPE, "ISO8859-1"), the following statements also apply
to character codes and affect the results returned by the ctype functions:

Code Description

128-159 control characters

192 to 223 (except 215) upper case

224 to 255 (except 247) lower case

160 to 191, 215 and 247 punctuation

C Compiler

2-34 Reference Manual
ARM DUI 0020D

Mathematical functions

The mathematical functions return the following values on domain errors:

Where - HUGE_VAL is written above, a number is returned which is defined in the header
math.h . Consult the errno variable for the error number.

The mathematical functions set errno to ERANGE on underflow range errors.

A domain error occurs if the second argument of fmod is zero, and -HUGE_VAL is returned.

Signal function

The set of signals for the generic signal() function is as follows:

Signal Description

SIGABRT abort

SIGFPE arithmetic exception

SIGILL illegal instruction

SIGINT attention request from user

SIGSEGV bad memory access

SIGTERM termination request

SIGSTAK stack overflow

The default handling of all recognised signals is to print a diagnostic message and call exit .
This default behaviour applies at program start-up.

Function Condition Returned value

log(x) x <= 0 -HUGE_VAL

log10(x) x <= 0 -HUGE_VAL

sqrt(x) x < 0 -HUGE_VAL

atan2(x,y) x = y = 0 -HUGE_VAL

asin(x) abs(x) > 1 -HUGE_VAL

acos(x) abs(x) > 1 -HUGE_VAL

pow(x,y) x=y=0 -HUGE_VAL

 Table 2-5: Mathematical functions

C Compiler

2-35Reference Manual
ARM DUI 0020D

When a signal occurs, if func points to a function, the equivalent of signal(sig, SIG_DFL)
is first executed. If the SIGILL signal is received by a handler specified to the signal function,
the default handling is reset.

Generic ARM C library

The generic ARM C library also has the following characteristics relating to I/O, (but note that
any particular targeting of it may not have):

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline character
do appear when read back in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end of the
file.

• A write to a text stream does not cause the associated file to be truncated beyond that
point (device dependent).

• The characteristics of file buffering are as intended by section 4.9.3 of the
ANSI C standard.

• A zero-length file (on which no characters have been written by an output stream) does
exist.

• The same file can be opened many times for reading, but only once for writing or
updating. A file cannot be open for reading on one stream and for writing or updating
on another.

• Local time zones and Daylight Saving Time are not implemented. The values returned
will always indicate that the information is not available.

• fprintf() prints %p arguments in hexadecimal format (lower case) as if a precision
of 8 had been specified. If the variant form (%#p) is used, the number is preceded by
the character ‘@’.

• fscanf() treats %p arguments identically to %x arguments.

• fscanf() always treats the character ‘-’ in a %...[...] argument as a literal character.

• ftell() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the following messages:

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number to signal()
or raise()

others Error code number has no associated message

C Compiler

2-36 Reference Manual
ARM DUI 0020D

• calloc() , malloc() and realloc() , if the size of area requested is zero, return
NULL.

• abort() closes all open files, and deletes all temporary files.

• The status returned by exit() is the same value that was passed to it. For definitions
of EXIT_SUCCESS and EXIT_FAILURE refer to the header file stdlib.h

• The error messages returned by the strerror() function are identical to those given
by the perror() function.

Unspecified characteristics : The following characteristics, required to be specified in an
ANSI-compliant implementation, are unspecified in the generic ARM C library:

• the validity of a filename

• whether remove() can remove an open file

• the effect of calling the rename() function when the new name already exists

• the effect of calling getenv() (the default is to return NULL—no value available)

• the effect of calling system()

• the value returned by clock() .

C Compiler

2-37Reference Manual
ARM DUI 0020D

2.10 Portability
The C programming language has gained a reputation for being portable across machines,
while still providing machine-specific capabilities. However, the fact that a program is written in
C gives little indication of the effort required to port it from one machine to another or, indeed,
from one C system to another.

The most effort-consuming task is porting between two entirely different hardware
environments, running different operating systems with different compilers. Because many
users of the ARM C compiler will face this situation, this section deals with the issues that you
should be aware of when porting software to or from the ARM C system environment:

• general portability considerations

• the differences between ANSI C and the well-known K&R C

• using the ARM C compiler in pcc compatibility mode

• environmental aspects of portability

In addition, a tool called topcc is supplied as part of the ARM Software Development Toolkit.
This translates ANSI C to PCC-style C. For details refer to ➲Chapter 11, ANSI to PCC C
Translator.

If code is to be used on a variety of different systems, there are certain points that you should
observe to make porting an easy and relatively error-free process. It is essential to identify and
avoid practices which may make software system-specific. The rest of this section documents
the general portability issues for C programs.

2.10.1 Fundamental data types

The size of fundamental data types (such as char , int , long int , short int and float)
depend mainly on the underlying architecture of the machine on which the C program is to run.
Compiler writers usually implement these types in a way which is natural for the target.
For example, Release 5 of the Microsoft C Compiler for DOS has int , short int and
long int , occupying 2, 2 and 4 bytes respectively, while the ARM C Compiler uses 4, 2 and 4
bytes, respectively.

Certain relationships are guaranteed by the ISO C standard; for example:

(sizeof(long int) >= sizeof(short int))

but code which makes any assumptions about whether int and long int have the same size,
are not portable.

A common non-portable assumption is embedded in the use of hexadecimal constant values:

int i = 0xffff;/*-1 if sizeof(int) == 2;
65535 if sizeof(int) == 4... */

C Compiler

2-38 Reference Manual
ARM DUI 0020D

Argument passing

In non-ANSI dialects of C there are pitfalls with argument passing. For example:

int f(x)
long int x;
{...}

and the (careless) invocation of f() :

f(1); /*f(1L) was intended/required */

If sizeof(int) == sizeof(long int) this gives no problem. If not, there may be a
catastrophe.

A dual problem afflicts the format string of the printf() family, even in ANSI C. For example:

long int l1, l2, l3;
...
printf("L1 = %d, L2 = %d, L3 = %d\n", l1, l2, l3);

/* "...%ld...%ld...%ld..." is intended/required */

Again, this causes problems if sizeof(int) != sizeof(long) .

Character signs

Another common assumption is about the signedness of characters, especially if chars are
expected to be 7-bit rather than 8-bit quantities. For example, consider:

static char tr_tab[256] = {...};
...
int i, ch;
...
 i = fgetc(f); /* should be i = (unsigned char) fgetc(f) */
 ch = tr_tab[i]; /* WRONG if chars are signed... */

Note that declaring i to be unsigned int does not help (it merely causes ch = tr_tab[i]
to index a very long way off the other end of the array!).

In non-ANSI dialects of C there is no way to explicitly declare a signed char, so plain chars tend
to be signed by default (as with the ARM C compiler in -pcc mode). In ANSI C, a char may be
plain, signed or unsigned, so a plain char tends to be whatever is most natural for the target
(unsigned char on the ARM).

C Compiler

2-39Reference Manual
ARM DUI 0020D

2.10.2 Byte ordering

A highly non-portable feature of many C programs is the implicit or explicit exploitation of byte
ordering within a word of store. Such assumptions tend to arise when:

• copying objects word by word (rather than byte by byte)

• inputting and outputting binary values

• extracting bytes from, or inserting bytes into, words using a mixture of shift-and-mask
and byte addressing

A contrived example which illustrates the essential pitfalls is:

unsigned a;
char *p = (char *)&a;
unsigned w = AN_ARBITRARY_VALUE;
while (w != 0)/* put w in a */
{ *p++ = w;/* or, maybe, w byte-reversed... */
 w >>= 8;
}

This code will only work on a machine with little-endian byte order.

The best solution to this class of problems is either to write code which does not rely on byte
order, or to have separate code to deal appropriately with the different byte orders.

2.10.3 Store alignment

The only guarantee given in the ANSI C Standard regarding the alignment of members of a
struct is that a hole (caused by padding) cannot occur at the beginning of the struct.

The values of holes created by alignment restrictions are undefined, and you should not make
assumptions about these values. Strictly, two structures with identical members, each having
identical values, will only be found to be equal if field-by-field comparison is used; a
byte-by-byte, or word-by-word, comparison cannot be guaranteed to indicate equality.

In practice, this can be a real problem for both auto structs and structs allocated dynamically
using malloc . If byte-by-byte comparability of such structures is required, they must be zeroed
using memset() before assigning field values.

Padding may also have implications for the space required by a large array of structs.
For example:

#define ARRSIZE 10000
typedef struct
{ int i;
 short s;
} ELEM;
ELEM arr[ARRSIZE];

C Compiler

2-40 Reference Manual
ARM DUI 0020D

may require 40KB, 60KB or 80KB depending on the size and alignment of ints and shorts
(assume a short occupies 2 bytes, 2-byte aligned; then consider a 2-byte int, a 4-byte int 2-byte
aligned, and a 4-byte int 4-byte aligned). For more information, refer to ➲Packed structs on page
2-29

2.10.4 Pointers and pointer arithmetic

A deficiency of the original definition of C, and of its subsequent use, has been the relatively
unrestrained conversion between pointers to different data types and integers or longs. Much
existing code makes the assumption that a pointer can safely be held in either a long int or an int
variable. While this may be true in many implementations on many machines, it is a highly
non-portable feature. Also, there is no single arithmetic type which is guaranteed to hold a pointer
(long or unsigned long is probably safer than int or unsigned int).

The problem is further compounded when taking the difference of two pointers by performing a
subtraction. When the difference is large, this approach is full of potential errors. ANSI C defines
a type ptrdiff_t , which is capable of reliably storing the result of subtracting two pointer values
of the same type; a typical use of this mechanism would be to apply it to pointers into the same
array.

Although the difference between any two pointers of similar type may be meaningful in a flat
address space, only the difference between two pointers into the same object need be
meaningful in a segmented address space.

Evaluation order

Finally, there are problems of evaluation order with address arithmetic:

long int base, offset;
char *p1, *p2;
....
offset = base + (p2 - p1);/* intended effect */

If the expression were:

offset = (base + p2) - p1;

in a flat address space without holes the expressions are equivalent. In a segmented address
space, (p2 - p1) may well be a valid offset within a segment, whereas (base + p2) may be an
invalid address. If, in the second case, the validity is checked before subtracting p1, then the
expression will fault. This latter class of problem will be familiar to MS-DOS programmers, but
alien to those whose main experience is of Unix.

C Compiler

2-41Reference Manual
ARM DUI 0020D

2.10.5 Function-argument evaluation

While the evaluation of operands to operators as ‘,’ and || is defined to be strictly left-to-right
(including all side-effects), the same does not apply to function-argument evaluation.
For example, in the following function call, it is unclear whether the call is f(3, 3) or f(4, 3) :

i = 3;
f(i, i++);

It is generally unwise for argument expressions to have side effects, for many reasons.

2.10.6 System-specific code

The direct use of operating system calls is obviously non-portable, though often necessary.
It helps to isolate such code in target-specific modules, behind target-independent interfaces.

Filenames and filename processing are common sources of non-portability which are often
difficult to deal with. Again, the best approach is to localise all such processing.

Binary data files are inherently non-portable. Often the only solution to this problem may be the
use of some portable external representation.

C Compiler

2-42 Reference Manual
ARM DUI 0020D

2.11 ANSI C vs K&R C
The ISO C Standard has tightened the definition of many of the vague areas of K&R C.
This results in a much clearer definition of a correct C program. However, if programs have been
written to exploit particular vague features of K&R C, their results may not be as expected when
porting to an ANSI C environment. In the following sections, there is a list of the major language
differences between ANSI and K&R C. Library differences are discussed in a later section.

2.11.1 Lexical elements

In ANSI C, the ordering of phases of translation is well defined. Of special note is the
preprocessor which is conceptually token-based (which does not yield the same results as might
be expected from pure text manipulation, because the boundaries between juxtaposed tokens
are visible). A number of new keywords have been introduced into ANSI C, as shown in
➲New ANSI C keywords on page 2-43.

The following lexical changes have also been made:

• Each struct and union has its own distinct name space for member names.

• Suffixes U and L (or u and l), can be used to explicitly denote unsigned and long
constants (eg. 32L , 64U, 1024UL etc.). The U suffix is new to ANSI C.

• The use of octal constants 8 and 9 (previously defined to be octal 10 and 11
respectively) is no longer supported.

• Literal strings are considered read-only, and identical strings may be stored as one
shared value (as indeed they are, by default, by the ARM C Compiler). For example:

char *p1 = "hello";
char *p2 = "hello";

p1 and p2 will point at the same store location, where the string “hello” is held. Programs
must not, therefore, modify literal strings, (beware of Unix’s tmpnam() and similar
functions, which do this).

• Variadic functions (those which take a variable number of actual arguments) are
declared explicitly using an ellipsis (...). For example:

int printf(const char *fmt, ...);

• Empty comments /**/ are replaced by a single space, (use the preprocessor directive
to do token-pasting if you previously used /**/ to do this).

Note: The K&R C practice of using long float to denote double is outlawed in ANSI C.

C Compiler

2-43Reference Manual
ARM DUI 0020D

2.11.2 Arithmetic

ANSI C uses value-preserving rules for arithmetic conversions (whereas K&R C
implementations tend to use unsigned-preserving rules). The following example does signed
division, where unsigned-preserving implementations would do unsigned division:

int f(int x, unsigned char y)
{
 return (x+y)/2;
}

Apart from value-preserving rules, arithmetic conversions follow those of K&R C, with additional
rules for long double and unsigned long int. You can now perform float arithmetic without
widening to double, (note, however, that the ARM C system does not yet do this).

Floating-point values truncate towards zero when they are converted to integral types.

Keyword Type Description

volatile type qualifier Means that the qualified object may be modified in ways unknown
to the implementation, or that access to it may have other unknown
side effects. Examples of objects correctly described as volatile
include device registers, semaphores and data shared with
asynchronous signal handlers. In general, expressions involving
volatile objects cannot be optimised by the compiler.

const type qualifier Indicates that an object’s value will not be changed by the
executing program (and in some contexts permits a language
system to enforce this by allocating the object in read-only store).

void type specifier Indicates a non-existent value for an expression.

void * type specifier Describes a generic pointer to or from which any pointer value can
be assigned, without loss of information.

signed type specifier May be used wherever unsigned is valid (eg. to specify signed char
explicitly).

long double This is a new floating-point type.

 Table 2-6: New ANSI C keywords

C Compiler

2-44 Reference Manual
ARM DUI 0020D

It is illegal to assign function pointers to data pointers and vice versa. An explicit cast must be
used. The only exception to this is for the value 0, as in:

int (*pfi)();
pfi = 0;

Assignment compatibility between structs and unions is now stricter. For example:

struct {char a; int b;} v1;
struct {char a; int b;} v2;
v1 = v2; /* illegal because v1 and v2 have different types */

To the compiler, v1 and v2 have different types because they have not been declared with the
same tag. You can do this correctly as follows:

struct mytag {char a; int b;};
struct mytag v1;
struct mytag v2;
v1 = v2;

2.11.3 Expressions

Structs and unions may be passed by value as arguments to functions.

Given a pointer to a function declared as for example, int (*pfi)() , the function to which it
points can be called either by pfi() ; or (*pfi)() .

Because of the use of distinct name spaces for struct and union members, absolute machine
addresses must be explicitly cast before being used as struct or union pointers:

((struct io_space *)0x00ff)->io_buf;

2.11.4 Declarations

Perhaps the greatest impact on C of the ISO Standard has been the adoption of function
prototypes. A function prototype declares the return type and argument types of a function.
The following example declares a function returning int, with one int and one float argument:

int f(int, float);

This means that a function’s argument types are part of the type of the function, giving the
advantage of stricter type-checking, especially between separately-compiled source files.

A function definition (which is also a prototype) is similar except that identifiers must be given for
the arguments, for example, int f(int i, float f) . You can still use old-style function
declarations and definitions, but it is advisable to convert to the new style. It is also possible to
mix old and new styles of function declaration. If the function declaration which is in scope is an
old style one, normal integral promotions are performed for integral arguments, and floats are
converted to double. If the function declaration which is in scope is a new-style one, arguments
are converted as in normal assignment statements.

Empty declarations are now illegal.

Arrays cannot be defined to have zero or negative size.

C Compiler

2-45Reference Manual
ARM DUI 0020D

2.11.5 Statements

ANSI has defined the minimum attributes of control statements. For example:

• the minimum number of case limbs which must be supported by a compiler

• the minimum nesting of control constructs

These minimum values are not particularly generous and may prove troublesome if highly
portable code is required.

In general, the only limit imposed by the ARM C compiler is that of available memory. A future
release may support an option to warn if any of the ANSI-guaranteed limits are violated.

A value returned from main() is guaranteed to be used as the program’s exit code.

Values used in the controlling statement and labels of a switch can be of any integral type.

2.11.6 Preprocessor

Preprocessor directives cannot be redefined.

There is a new ## directive for token-pasting.

There is a directive # which produces a string literal from its following characters. This is useful
when you want to embed a macro argument in a string.

The C compiler allows use of C++ style to introduce comments except in _strict mode.

The order of phases of translation is well defined and is as follows for the preprocessing phases:

1 Map source file characters to the source character set (this includes replacing
trigraphs).

2 Delete all newline characters which are immediately preceded by \.

3 Divide the source file into preprocessing tokens and sequences of white space
characters (comments are replaced by a single space).

4 Execute preprocessing directives and expand macros.

Any #include files are passed through steps 1-4 recursively.

C Compiler

2-46 Reference Manual
ARM DUI 0020D

2.11.7 Predefined macros

Macro Value Notes

__STDC__ 1 defined when in ANSI mode (not for pcc)

__arm 1 defined if using armcc

__thumb 1 defined if using tcc

__SOFTFP__ 1 defined if compiling for software floating point library (see
-apcs option and ➲Chapter 16, Software Floating Point)

_cplusplus 1 defined if using armcpp

__CLK_TCK 100 centisecond clock definition

__LINE__ <line number> as defined by ANSI

__FILE__ <filename string> as defined by ANSI

__DATE__ <date string> as defined by ANSI

__TIME__ <time string> as defined by ANSI

__CC_NORCROFT 1 set by all Norcroft (Codemist) compilers

 Table 2-7: Predefined macros

C Compiler

2-47Reference Manual
ARM DUI 0020D

2.12 PCC Compatibility Mode
This section discusses the differences apparent when the compiler is used in pcc mode.

When given the -pcc command-line flag, the C compiler accepts (Berkeley) Unix-compatible
C, as defined by the implementation of the Portable C Compiler and subject to the restrictions
which are noted below.

In essence, PCC-style C is K&R C, together with a small number of extensions, and some
clarifications of language features.

2.12.1 Language and preprocessor compatibility

In pcc mode, the ARM C compiler accepts K&R C, but it does not accept many of pcc’s old-style
compatibility features, whose use has been deprecated. The differences are:

• Compound assignment operators where the = sign comes first are accepted (with a
warning) by some PCCs. An example is =+ instead of +=. ARM C does not allow this
ordering of the characters in the token.

• The = sign before a static initialiser was not required by some very old C compilers.
ARM C does not support this idiom.

• The following usage is found in some Unix tools pre-dating Unix Version 7:
struct {int a, b;};
double d;
d.a = 0; d.b = 0x....;

This is accepted by some Unix PCCs and may cause problems when porting old code:

• Enums are less strongly typed than is usual under PCCs. Enum is an extension to
K&R C which has been standardised by ANSI somewhat differently from the BSD PCC
implementation.

• Chars are signed by default in pcc mode (unsigned in ANSI mode).

• In pcc mode, the compiler permits the use of the ANSI “...” notation which signifies that
a variable number of formal arguments follow.

• In order to cater for PCC-style use of variadic functions, a version of the PCC header
file varargs.h is supplied with the release.

With the exception of enums, the compiler’s type checking is generally stricter than PCC, much
more like lint’s. The ARM C compiler attempts to strike a balance between giving too many
warnings when compiling known, working code, and warning of poor or non-portable
programming practices.

C Compiler

2-48 Reference Manual
ARM DUI 0020D

Many PCCs compile code which cannot execute in even a slightly different environment. ARM
has tried to help those who need to port C among machines where the following varies:

• the order of bytes within a word (little-endian ARM, VAX, Intel versus big-endian
Motorola, IBM370)

• the default size of int (four bytes versus two bytes in many PC implementations)

• the default size of pointers (not always the same as int)

• whether values of type char default to signed or unsigned char

• the default handling of undefined and implementation-defined aspects of the C
language

The compiler’s preprocessor is believed to be equivalent to a BSD Unix cpp except for the points
listed below. Unfortunately, cpp is only defined by its implementation, and although equivalence
has been tested over a large body of Unix source code, completely identical behaviour cannot
be guaranteed. Some of the points listed below only apply when the -E option is used with the
cc command:

• there is a different treatment of white space sequences (benign)

• newline is processed by cc -E , but passed by cpp (making lines longer than expected
(cc -E only)

• cpp breaks long lines at a token boundary; cc -E does not
This may break line-size constraints when the source is later consumed by another
program (cc -E only).

• the handling of unrecognised directives is different (this is mostly benign)

2.12.2 Standard headers and libraries

Use of the compiler in pcc mode does not preclude the use of the standard ANSI headers built in
to the compiler or the use of the run-time library supplied with the C compiler. The ANSI library
does not contain the whole of the Unix C library, but it does contain many commonly used
functions. However, watch for functions with different names, or a slightly different definition, or
those in different standard places. Unless you direct otherwise using -j , the C compiler will
attempt to satisfy references to stdio.h from its built-in filing system, for example.

Listed below are a number of differences between the ANSI C Library and the BSD Unix library.
They are placed under headings corresponding to the ANSI header files:

ctype.h There are no isascii() and toascii() functions, since
ANSI C is not character-set specific.

errno.h On BSD systems sys_nerr and sys_errlist() are defined
to give error messages corresponding to error numbers. ANSI C
does not have these, but provides similar functionality via
perror(const char *s) . This displays the string pointed to
by s followed by a system error message corresponding to the
current value of errno . There is also char *strerror(int
errnum) which, when given a value of errno , returns its textual

C Compiler

2-49Reference Manual
ARM DUI 0020D

equivalent.

math.h The #defined value HUGE, found in BSD libraries, is called
HUGE_VAL in ANSI C. ANSI C does not have asinh() ,
acosh() or atanh() .

signal.h In ANSI C the signal() function’s prototype is:

extern void (*signal(int, void(*func)(int)))(i nt);

signal() therefore expects its second argument to be a
pointer to a function returning void with one int argument. In
BSD-style programs it is common to use a function returning int
as a signal handler. The PCC-style function definitions shown
below therefore produce a compiler warning about an implicit
cast between different function pointers (since f() defaults to
int f()). This is just a warning, and the correct code is
generated.

f(signo)
int signo;
...
main()
{ extern f();
 signal(SIGINT, f);
...

stdio.h sprintf() returns the number of characters printed
(following Unix System V), whereas the BSD’s sprintf()
returns a pointer to the start of the character buffer. The BSD
functions ecvt() , fcvt() and gcvt() are not included in
ANSI C, as their functionality is provided by sprintf()

string.h On BSD systems, string manipulation functions are found in
strings.h whereas ANSI C places them in string.h .
The ARM C Compiler also recognises strings.h , for
PCC-compatibility. The BSD functions index() and
rindex() are replaced by the ANSI functions strchr() and
strrchr() respectively. Functions that refer to string lengths
(and other sizes) now use ANSI type size_t , which in this
implementation is unsigned int.

stdlib.h malloc() has type void * , rather than the char * of the
BSD malloc() .

float.h A new header added by ANSI, giving details of floating-point
precision etc.

limits.h A new header added by ANSI, to give maximum and minimum
limit values for integer data types.

locale.h A new header added by ANSI, to provide local
environment-specific features.

C Compiler

2-50 Reference Manual
ARM DUI 0020D

2.13 Machine-Specific Features

2.13.1 Pragma directives

Pragmas are recognised by the compiler in two forms:

#pragma -LetterOptional digit
#pragma [no]feature-name

A short-form pragma given without a digit resets that pragma to its default state; otherwise to the
state specified.

For example:

#pragma -s1
#pragma nocheck_stack

#pragma -p2
#pragma profile_statements

The list of recognised pragmas is shown in ➲Pragmas on page 2-51. The default setting is
marked with *.

2.13.2 Specifying pragmas from the command line

Any pragma can be specified from the compiler’s command line using:

-zp LetterDigit

Certain pragmas give more local control over what can be controlled per compilation unit, from
the command line. For example:

Pragma name Command line form

nowarn_implicit_fn_decls -Wf

nowarn_deprecated -Wd

profile -p

profile_statements -px

2.13.3 Pragmas controlling the preprocessor

continue_after_hash_error Implements a #warning "..." preprocessor directive.

include_only_once Asserts that the containing #include file is included
only once, and that if its name recurs in a subsequent
#include directive, the directive is ignored.

force_top_level Asserts that the containing #include file should only
be included at the top level of a file. A syntax error
results if the file is included within the body of a function.

C Compiler

2-51Reference Manual
ARM DUI 0020D

The values marked with a * are the default values.

2.13.4 Pragmas controlling printf/scanf argument checking

Pragmas check_printf_formats and check_scanf_formats control whether the actual
arguments to printf and scanf , respectively, are type-checked against the format
designators in a literal format string. Calls using non-literal format strings cannot be checked. By
default, all calls involving literal format strings are checked.

Thumb: The options marked with a ✝ are not available in Thumb.

Pragma Name Short Form ‘no’ Form

warn_implicit_fn_decls a1 * a0

check_memory_accesses ✝ c1 c0 *

warn_deprecated d1 * d0

continue_after_hash_error e1 e0 *

FP register variable ✝ f1-f4 f0 *

include_only_once i1 i0 *

optimise_crossjump j1 * j0

optimise_multiple_loads m1 * m0

profile ✝ p1 p0 *

profile_statements ✝ p2 p0 *

integer register variable r1-r7 r0 *

check_stack s0 * s1

force_top_level t1 t0 *

check_printf_formats v1 v0 *

check_scanf_formats v2 v0 *

side_effects y0 * y1

optimise_cse z1 * z0

 Table 2-8: Pragmas

C Compiler

2-52 Reference Manual
ARM DUI 0020D

2.13.5 Pragmas controlling optimisation

Pragmas optimise_crossjump , optimise_multiple_loads and optimise_cse give
fine control over where these optimisations are applied. For example, it is sometimes
advantageous to disable cross-jumping (the ‘common tail’ optimisation) in the critical loop of an
interpreter; and it may be helpful in a timing loop to disable common subexpression elimination
and the optimisation of multiple load instructions to load multiples. Note that correct use of the
volatile qualifier should remove most of the more obvious needs for this degree of control
(and volatile is also available in the ARM C compiler’s -pcc mode unless -strict is
specified).

By default, functions are assumed to be impure, so function invocations are not candidates for
common subexpression elimination. Pragma noside_effects asserts that the following
function declarations (until the next #pragma side_effects) describe pure functions,
invocations of which can be CSEs. See also ➲__pure on page 2-54.

2.13.6 Pragmas controlling code generation

Stack-limit checking

If the compiler is configured to compile code for the explicit stack limit variant of the ARM
Procedure Call Standard (documented in ➲Chapter 19, ARM Procedure Call Standard),
#pragma nocheck_stack disables the generation of code at function entry which checks for
stack limit violation. There is little advantage to turning off this check: it typically costs only two
instructions and two machine cycles per function call. The one circumstance where
nocheck_stack must be used is in writing a signal handler for the SIGSTAK event. When this
occurs, stack overflow has already been detected, so checking for it again in the handler would
result in a fatal circular recursion.

Memory access checking

The pragma check_memory_accesses instructs the compiler to precede each access to
memory by a call to the appropriate one of:

__rt_rd?chk (?=1,2,4 for byte, short, long reads, respectively)
__rt_wr?chk (?=1,2,4 for byte, short, long writes, respectively)

It is up to your library implementation to check that the address given is reasonable.

C Compiler

2-53Reference Manual
ARM DUI 0020D

Global (program-wide) register variables

The pragmas f0-f4 and r0-r7 have no long form counterparts. Each introduces or terminates a
list of extern , file-scope variable declarations. Each such declaration declares a name for the
same register variable. For example:

#pragma r1/* 1st global register */
extern int *sp;
#pragma r2/* 2nd global register */
extern int *fp, *ap;/* synonyms */
#pragma r0/* end of global declaration */
#pragma f1
extern double pi;/* 1st global FP register */
#pragma f0

Any type that can be allocated to a register (see ➲Registers on page 2-28), can be allocated to
a global register. Similarly, any floating point type can be allocated to a floating-point register
variable.

Global register r1 is the same as register v1 in the ARM Procedure Call Standard (APCS);
similarly r2 equates to v2, and so on. Depending on the APCS variant, between 5 and 7 integer
registers (v1-v7, machine registers R4-R10) and 4 floating point registers (F4-F7) are available
as register variables. In practice it is probably unwise to use more than 3 global integer register
variables and 2 global floating-point register variables.

Provided the same declarations are made in each separate compilation unit, a global register
variable may exist program-wide.

Otherwise, because a global register variable maps to a callee-saved register, its value is saved
and restored across a call to a function in a compilation unit which does not use it as a global
register variable, such as a library function.

A corollary of the safety of direct calls out of a global-register-using compilation unit, is that calls
back into it are dangerous. In particular, a global-register-using function called from a
compilation unit which uses that register as a compiler-allocated register, will probably read the
wrong values from its supposed global register variables.

Currently, there is no link-time check that direct calls are sensible. And even if there were,
indirect calls via function arguments pose a hazard which is harder to detect. This facility must
be used with care. Preferably, the declaration of the global register variable should be made in
each compilation unit of the program. See also ➲__global_reg(n) on page 2-55.

C Compiler

2-54 Reference Manual
ARM DUI 0020D

2.13.7 Special function declaration keywords

Several special function declaration options tell the compiler to give a function special treatment.

Note: None of these are portable to other C compilers.

__inline

This allows C functions to be inlined. The semantics of __inline are exactly the same as the
C++ inline keyword:

__inline int f(int x) {return x*5+1:}

int f(int x, int y) {return f(x), f(y);}

Currently armcc always inlines functions when __inline is used. Code density and
performance could be adversely affected if large functions are inlined.

__irq

This allows a C function to be used as an interrupt routine. All registers (excluding floating-point
registers) are preserved (not just those normally preserved under the APCS). Also the function
is exited by setting the pc to lr-4 and the psr to its original value.

__pure

By default, functions are assumed to be impure (ie. they have side effects), so function
invocations are not candidates for common subexpression elimination. __pure has the same
effect as pragma noside_effects , and asserts that the function declared is a pure function,
invocations of which can be CSEs.

__swi and __swi_indirect

A SWI taking up to four arguments (in registers 0 to argcount-1) and returning up to four results
(in registers 0 to resultcount-1) can be described by a C function declaration, which causes uses
of the function to be compiled inline as a SWI.

For a SWI returning 0 results use:

void __swi(swi_number) swi_name (int arg1, ..., int argn);

for example

void __swi(42) terminate_process(int arg1, ..., int argn);

For a SWI returning 1 result, use:

int __swi(s wi_number) swi_name (int arg1, ..., int argn);

For a SWI returning more than 1 result

struct { int res1, ... resn }
 __value_in_regs
 __swi(swi_number) swi_name (int arg1, ... int argn);

Note: __value_in_regs is needed to specify that a (short) structure value is returned in registers,
rather than by the usual indirection mechanism specified in the ARM Procedure Call Standard.

C Compiler

2-55Reference Manual
ARM DUI 0020D

If there is an indirect SWI (taking the number of a SWI to call as an argument in r12), calls
through this SWI can similarly be described by a C function declaration such as:

int __swi_indirect(swi_indirect_number)

swi_name (int real_swi_number , int arg1, ... argn);

For example,

int __swi_indirect(0) ioctl(int swino, int fn, void *argp);

This might be called as:

ioctl(IOCTL+4, RESET, NULL);

__value_in_regs

This allows the compiler to return a structure in registers rather than returning a pointer to the
structure. For example:

typedef struct int64_structt {
 unsigned int lo;
 unsigned int hi;
} int64;

__value_in_regs extern int64 mul64(unsigned a, unsigned b);

See ➲Chapter 19, ARM Procedure Call Standard for details of the default way in which
structures are passed and returned.

2.13.8 Special variable declaration keywords

__global_reg(n)

Allocates the declared variable to a global integer register variable, in the same way as
#pragma rn . The variable must have an integral or pointer type. See also ➲Pragmas
controlling code generation on page 2-52.

__global_freg(n)

Allocates the declared variable to a global floating-point register variable, in the same way as
#pragma fn . The variable must have type float or double. See also ➲Pragmas controlling code
generation on page 2-52.

Note: The global register, whether specified by keyword or pragmas, must be specified in all
declarations of the same variable. Thus

int x;
__global_reg(1) x;

is an error.

C Compiler

2-56 Reference Manual
ARM DUI 0020D

2.14 Floating Point Support
By default, armcc and tcc generate calls to floating-point library functions. (see ➲Chapter 16,
Software Floating Point). armcc can also be switched to generate ARM floating-point
coprocessor instructions (see ➲Chapter 19, ARM Procedure Call Standard).

The ARM’s floating-point instruction set is supported either by an attached floating-point
coprocessor (hardware coprocessors 1 and 2) or by an instruction emulator entered from the
undefined instruction trap.

Normally the floating-point instruction emulator is installed by the environment in which the
program is executing. However, for a completely standalone application, the program can install
the floating-point emulator itself.

Floating-point emulator

The ARM Floating Point instruction set Emulator (FPE) is supplied with the ARM C system as a
linkable object file. Its environmental dependencies are all via a stub, supplied as an assembly
language source. This stub file, fpestub , documents how to attach an FPE to the invalid
instruction trap location (address 0x4).

It is intended that the FPE and the fpestub be linked together with whatever else is required to
make a standalone module on the target hardware. The fpestub contains two entries for:

initialisation Attaching it to the invalid instruction trap vector. This should be
called on activation of the standalone module.

finalisation Removing it from the invalid instruction trap vector. This should
be called on deactivation of the standalone module.

For testing purposes, the FPE, fpestub and a test application can be linked together to make a
single, standalone application. The application must call __fp_initialise before using any
floating point instructions, and __fp_finalise before exiting.

Note: For standalone applications, it is better to use the software floating-point library, as it is faster and
the generated ARM code only includes the fp routines that are actually used.

Thumb: The Thumb C compiler does not generate floating-point instructions as there are no
floating-point instructions available in Thumb.

C Compiler

2-57Reference Manual
ARM DUI 0020D

2.15 ARM/Thumb interworking

2.15.1 Introduction

Code compiled (or assembled) for ARM and Thumb can be freely mixed providing the code
conforms to the ARM Procedure Call Standard and Thumb Procedure Call Standard
respectively.

Compiled code automatically conforms to these standards. Assembler programmers must
ensure their code conforms to these standards.

The ARM linker automatically detects when you are mixing ARM and Thumb code and
generates small code segments called veneers, These veneers perform an ARM-Thumb state
change on function entry and exit when an ARM function is called from Thumb state and
vice-versa.

2.15.2 Compiling code for interworking

When interworking ARM and Thumb code, code may be compiled specially for interworking
using the -apcs 3/interwork option on both the ARM and Thumb compilers. Alternatively it
may be compiled as normal.

In both cases, interworking between ARM and Thumb will work. However, the following
trade-offs must be made when deciding whether to compile code specially for interworking or
not.

Code not compiled for interworking:

• does not support ARM/Thumb interercalling via function pointers (ie. only direct calls
between ARM and Thumb are supported)

• uses larger veneers than code compiled for interworking (the veneers are 20 bytes per
ARM/Thumb caller/called routine pair)

Code compiled for interworking:

• generates slightly larger code for Thumb (typically 1% larger) and marginally larger
code for ARM
This will have a correspondingly small effect on performance.

• cannot be used on non-Thumb ARMs

• allows intercalling using function pointers

• uses smaller veneers (8 or 12 bytes per called routine)

The trade-off depends on the number of intercalls made. If only a few direct intercalls are made,
it is best not to compile the code for interworking.

As the number of intercalls increases the larger size of the ARM/Thumb veneers will start to
dominate so it is better to compile the code for interworking.

C Compiler

2-58 Reference Manual
ARM DUI 0020D

2.15.3 Mixing interworking/non-interworking code

It is also possible to mix code compiled for interworking with code not compiled for interworking.
You may wish to do this if sections of your code perform a large amount of ARM/Thumb
interworking whereas other sections are compiled solely in ARM or Thumb.

When mixing interworking and non-interworking code, the type of called routine determines
which style of interworking veneer should be used. Therefore you can compile any module
containing an ARM/Thumb called routine with interworking and all other modules without
interworking.

To help determine which routines are intercalled, the linker generates a warning when it detects
a direct ARM/Thumb intercall where the called routine is not compiled for interworking.

The following warnings may be generated:

Interworking call from ARM to Thumb code symbol symbol in object (area)
Interworking call from Thumb to ARM code symbol symbol in object (area)

These indicate that an ARM to Thumb or Thumb to ARM intercall respectively has been detected
from the object module object to the routine symbol . The module containing symbol may then
be compiled with interworking.

2.15.4 Interworking code using function pointers

To interwork code which uses function pointers both caller and called routine must be compiled
with interworking for the code to work at all. No warning can be issued if an attempt is made to
interwork function pointer calls which have been compiled without interworking, however the call
will fail at run time.

2.15.5 Using two copies of the same function

Occasionally you may wish to include two functions of the same name, one compiled in ARM the
other compiled in Thumb. Normally the linker will give an error if there is a duplicate definition of
a symbol, however the linker will allow duplicate definition provided each definition is of a different
type (ie. one definition defines a Thumb routine, the other defines and ARM routine).

You may wish to do this, for example, if you have a speed critical routine in a system with both
16-bit and 32-bit memory where the overhead of the interworking veneer would degrade the
performance or where the ARM or Thumb version of the routine may not be loaded due to the
use of an overlay scheme.

The linker will generate the following warning when two versions of the same routine are
included:

Both ARM & Thumb versions of symbol present in image

This is a warning intended to advise you in case you were accidentally including two copies of
the same routine. If this is what you intended the warning may be ignored.

Note: When both versions of a routine are present in an image and a call is made via a function pointer,
it is not possible to determine which version of the routine will be called.

C Compiler

2-59Reference Manual
ARM DUI 0020D

2.15.6 The C library

Two variants of the ARM C libraries are provided, one set which has been compiled for
interworking (armlib_i.32l and armlib_i.32b) and one which has not been compiled for
interworking (armlib.32l and armlib.32b).

Two variants of the Thumb C library are also provided, (armlib_i.16l and armlib_i.16b)
for interworking and (armlib.16l and armlib.16b) for non-interworking.

The non-interworking variants of the ARM C libraries (armlib.32l and armlib.32b) must be
used when creating code to run on a non-Thumb ARM.

The linker has an option to allow forcible inclusion of specific modules from a library. You may
wish to do this if you need to select the ARM or Thumb version of a standard C library routine
explicitly. You may also use this to forcibly include both ARM and Thumb versions of a routine.

To forcibly include a library module put the name(s) of the library module(s) in round brackets
after the library name. Note that there should be no space between the library name and the
opening bracket. Multiple modules names must be separated by a comma. There must be no
spaces in the list of module names.

Examples

Forcibly use the ARM version of strlen and take all other routines from the Thumb library.

armlink -o myprog myprog.o armlib.32l(strlen.o) armlib.16l

Forcibly include both ARM and Thumb versions of all str... functions and take all other
routines from the Thumb library.

armlink -o myprog myprog.o armlib.16l(str*) armlib.32l(str*) armlib.16l

Note: Depending on the command shell you are using you may need to quote the character (,) and *
to enter them on the command line.

2.15.7 Example

Compile the following code segments:

armcc -c -li -apcs 3/noswst sum32.c
armcc -c -li -apcs 3/noswst init32.c
tcc -c -li sum16.c
tcc -c -li init16.c
tcc -c -li main.c

Link it:

tcc -o -li test sum16.o sum32.o init16.o init32.o main.o

The linker will produce the following warnings:

ARM Linker: (Warning) Both ARM & Thumb versions of checksum present in
image.

C Compiler

2-60 Reference Manual
ARM DUI 0020D

ARM Linker: (Warning) Interworking call from Thumb to ARM code symbol
init32 in main.o(C$$code).

When you run it using armsd, you should get the following output:

Init16 called
Calculating checksum of 0x20000 bytes of 16 bit memory
Checksum = eaea
Init32 called
Calculating checksum of 0x8000 bytes of 32 bit memory
Checksum = cbcbcbcb

sum16.c
#include <stdio.h>
unsigned int checksum(unsigned short *memory_base, int n)
{

unsigned int sum;

printf("Calculating checksum of 0x%x bytes of 16 bit
memory\n", n);
sum = 0;
n /= sizeof(unsigned short);
while (--n >= 0) sum ^= *memory_base++;
return sum;

}

sum32.c
#include <stdio.h>
unsigned int checksum(unsigned int *memory_base, int n)
{

unsigned int sum;

printf("Calculating checksum of 0x%x bytes of 32 bit
memory\n", n);
sum = 0;
n /= sizeof(unsigned int);
while (--n >= 0) sum ^= *memory_base++;
return sum;

}

init16.c
#include <stdio.h>
/* Dummy memory map for example - 64K 16 bit memory */
static unsigned short memory[0x10000];
extern unsigned int checksum(unsigned short *, int n);
void init16(void)
{

C Compiler

2-61Reference Manual
ARM DUI 0020D

printf("Init16 called\n");

/* Initialise 1st memory word to bit pattern */
memory[0] = 0xEAEA;

/* Checksum should be 0xEAEA */
printf("Checksum = %x\n", checksum(memory, sizeof(memory)));

/* ... rest of initialisation */
}

init32.c
#include <stdio.h>
/* Dummy memory map for example - 8K 32 bit memory */
static unsigned int memory[0x2000];
extern unsigned int checksum(unsigned int *, int n);
void init32(void)
{

printf("Init32 called\n");

/* Initialise 1st memory word to bit pattern */
memory[0] = 0xCBCBCBCB;

/* Checksum should be 0xCBCBCBCB */
printf("Checksum = %x\n", checksum(memory, sizeof(memory)));

/* ... rest of initialisation */
}

main.c
extern void init16(void);
extern void init32(void);
int main(void)
{

init16();
init32();

}

C Compiler

2-62 Reference Manual
ARM DUI 0020D

3-1Reference Manual
ARM DUI 0020D

Assembler

This chapter describes the ARM Assembler.

3.1 Overview 3-2

3.2 Command Line Options 3-2

3.3 Assembly Language Overview 3-6

3.4 Directives 3-11

3.5 Symbolic Capabilities 3-18

3.6 Expressions and Operators 3-21

3.7 Conditional Assembly—[, | and] 3-24

3.8 Repetitive Assembly—WHILE and WEND 3-24

3.9 Macros 3-25

3

Assembler

3-2 Reference Manual
ARM DUI 0020D

3.1 Overview
The ARM Assembler (armasm) compiles ARM Assembly Language into ARM Object Format
object code. This code can then be linked with object code produced by the ARM Assembler or
the ARM C Compiler, and with object libraries created by the ARM Librarian.

The Thumb Assembler (tasm) compiles both ARM and Thumb Assembly Language into ARM
Object Format object code.

For more information about ARM Assembly Language see ➲Chapter 4, ARM Instruction Set.

For more information about Thumb Assembly Language see ➲Chapter 5, Thumb Instruction Set.

For more information about linking, see ➲Chapter 6, Linker.

armasm is a two-pass assembler, processing its source files twice to reduce the amount of
internal state that it needs to keep. This affects the user in a few ways which are discussed below.

3.2 Command Line Options
The command to invoke armasm or tasm takes either of the forms:

toolname { options } sourcefile objectfile
toolname { options } -o objectfile sourcefile

where toolname is either armasm or tasm .

The options are listed below. Upper-case is used to show the allowable abbreviations.

-list listingfile Several options work with -list :

-NOTerse Turns the terse flag off (the default is on).
When the terse flag is on, lines skipped due to
conditional assembly do not appear in the
listing. With the terse flag off, these lines
appear in the listing.

-WIdth n Sets listing page width (the default is 79).

-Length n Sets listing page length (the default is 66).
Setting the length to zero produces an
unpaged listing.

-Xref Lists cross-referencing information on
symbols; where they were defined and where
they were used, both inside and outside
macros. Default is off.

-Depend dependfile Saves source file dependency lists, which are suitable for use
with make utilities.

Assembler

3-3Reference Manual
ARM DUI 0020D

-I dir {,dir } Adds directories to the source file search path so that
arguments to GET/INCLUDE directives do not need to be fully
qualified. The search rule used is similar to the ANSI C search
rule—the current place being the directory where the current file
was found.

-PreDefine directive Pre-executes a SETx directive. This implicitly executes a
corresponding GBLx directive. The full SETx argument must be
quoted as it contains spaces, for example

-PD "Version SETA 44" .

-NOCache Turns off source caching, (the default is on). Source caching is
performed when reading source files on the first pass, so that
they can be read from memory during the second pass.

-MaxCache n Sets the maximum source cache size. The default is 8MB.

-NOEsc Ignore C-style special characters (’\n’, ’\t’ etc).

-noregs Tells the assembler not to predefine the implicit register names
(R0-R15, F0-F7, a1-a4, v1-v6, sl, fp, ip, sp, lr, pc)

-NOWarn Turns off warning messages.

-g Outputs ASD debugging tables, suitable for use with armsd.

-Errors errorfile Output error messages to errorfile .

-LIttleend Assemble code suitable for a little-endian ARM, (by setting the
built-in variable {ENDIAN} to “little”).

-BIgend Assemble code suitable for a big-endian ARM, (by setting the
built-in variable {ENDIAN} to “big”).

-CPU ARMcore Set target ARM core to ARMcore. Currently this can take the
values ARM6, ARM7, ARM7M, ARM7TM, ARM8. Some
processor-specific instructions will produce warnings if
assembled for the wrong ARM core.

-ARCH architecture Set the target architecture. Legitimate values are 3, 3M, 4, 4T.
Some processor-specific instructions will produce either errors
or warnings if assembled for the wrong target architecture.

-unsafe Change any errors produced due to selected architecture and
cpu into warnings.

-CheckReglist Check LDM and STM register lists to ensure that all registers
are provided in increasing register number order. If this is not
the case a warning is given. This can be used to help detect
misuse of symbolic register names.

-VIA file file is opened and more armasm command line arguments
are read in from it. This is intended mainly for hostings such as

Assembler

3-4 Reference Manual
ARM DUI 0020D

the PC where command line length is severely limited.

-Help Displays a summary of the command-line options.

-Apcs option {/ qualifier }{/ qualifier ...}
Specifies whether the ARM Procedure Call Standard is in use,
and also specifies some attributes of CODE AREAs. See the
following subsection for more information on APCS options.

APCS options

There are two APCS options:

• NONE

• 3

Qualifiers should only be used with 3.

Predeclared register names

By default the following register names are predeclared:

• R0-15

• r0-15

• sp and SP

• lr and LR

• pc and PC

If the APCS is in use the following register names are also pre-declared:

• a1-a4

• v1-v6

• sl

• fp, ip, and sp

The qualifiers are as follows:

/REENTrant Sets the reentrant attribute for any code AREAs, and predeclares sb
(static base) in place of v6.

Thumb: -16 Tells the assembler to interpret instructions as Thumb instructions.
This is equivalent to placing a CODE16 directive at the head of the
source file.

-32 Tells the assembler to interpret instructions as ARM instructions.

Assembler

3-5Reference Manual
ARM DUI 0020D

/32bit Is the default setting and informs the Linker that the code being
generated is written for 32-bit ARMs. The armasm built-in variable
{CONFIG} is also set to 32.

/26bit Tells the Linker that the code is intended for 26-bit ARMs. The
armasm built-in variable {CONFIG} is also set to 26. Note that these
options do not of themselves generate particular ARM-specific code,
but allow the Linker to warn of any mismatch between files being
linked, and also allow programs to use the standard built-in variable
{CONFIG} to determine what code to produce.

/SWSTackcheck Marks CODE AREAs as using sl for the stack limit register, following
the APCS (the default setting).

/NOSWstackcheck Marks CODE AREAs as not using software stack-limit checking, and
predeclares an additional v-register: v6 if reentrant, v7 if not.

Assembler

3-6 Reference Manual
ARM DUI 0020D

3.3 Assembly Language Overview
Assembly Language is the language which the assembler parses and compiles to produce object
code in ARM Object Format. This can be ARM assembly language, Thumb assembly language,
or a mixture of both.

This section deals with features that are common to both ARM and Thumb assembly language.
For language-specific information, see ➲Chapter 4, ARM Instruction Set and ➲Chapter 5,
Thumb Instruction Set.

3.3.1 Case rules

Instruction mnemonics and register names may be written in upper or lower case (but not mixed).
Directives must be written in upper case.

3.3.2 Input lines

The general form of assembler input lines is:

{ label } { instruction } {; comment}

A space or tab should separate the label, where one is used, and the instruction. If no label is
used the line must begin with a space or tab. Any combination of these three items will produce
a valid line; empty lines are also accepted by the assembler and can be used to improve the
clarity of source code.

Line length

Assembler source lines are allowed to be up to 255 characters long. To make source files easier
to read, a long line of source can be split onto several lines by placing a backslash character, ‘\’,
at the end of a line. The backslash must not be followed by any other characters (including
spaces or tabs).

The backslash + end of line sequence is treated by armasm as white space.

Note: The backslash + end of line sequence should not be used within quoted strings.

3.3.3 AREAs

AREAs are the independent, named, indivisible chunks of code and data manipulated by the
Linker. The Linker places each AREA in a program image according to the AREA placement
rules (ie. not necessarily adjacent to the AREAs with which it was assembled or compiled).

Conventionally, an assembly, or the output of a compilation, consists of two AREAs, one for the
code (usually marked read-only), and one for the data which may be written to. A reentrant object
will generally have a third AREA marked BASED sb (see below), which will contain relocatable
address constants. This allows the code area to be read-only, position-independent and
reentrant, making it easily ROM-able.

Assembler

3-7Reference Manual
ARM DUI 0020D

In ARM assembly language, each AREA begins with an AREA directive. If the directive is
missing the assembler will generate an AREA with an unlikely name (|$$$$$$$|) and produce a
diagnostic message to this effect. This will limit the number of spurious errors caused by the
missing directive, but will not lead to a successful assembly.

AREA syntax

The syntax of the AREA directive is:

AREA name{, attr }{, attr }...

You may choose any name for your AREAs, but certain choices are conventional. For example,
|C$$code| is used for code AREAs produced by the C compiler, or for code AREAs otherwise
associated with the C library.

AREA attributes are as follows:

ABS Absolute: rooted at a fixed address.

REL Relocatable: may be relocated by the Linker (the default).

PIC Position Independent Code: will execute where loaded without
modification.

CODE Contains machine instructions.

DATA Contains data, not instructions.

READONLY This area will not be written to.

COMDEF Common area definition.

COMMON Common area.

NOINIT Data AREA initialised to zero: contains only space reservation
directives, with no initialised values.

REENTRANT The code AREA is reentrant.

HALFWORD The code AREA containsARM halfword instructions.

INTERWORK The code AREA is suitable for ARM/Thumb interworking.

BASED Rn Static base data AREA containing tables of address constants
locating static data items. Rn is a register, conventionally R9.
Any label defined within this AREA becomes a register-relative
expression which can be used with LDR and STR instructions.
For full details see chapter ➲Chapter 19, ARM Procedure Call
Standard.

ALIGN=expression The ALIGN sub-directive forces the start of the area to be
aligned on a power-of-two byte-address boundary. By default
AREAs are aligned on a 4-byte word boundary, but the
expression can have any value between 2 and 12 inclusive.

Assembler

3-8 Reference Manual
ARM DUI 0020D

3.3.4 ORG and ABS

The ORG (origin) directive is used to set the base address and the ABS (absolute) attribute of
the containing AREA, or of the following AREA if there is no containing AREA:

ORGbase-address

In some circumstances this will create objects which cannot be linked. In general it only makes
sense to use ORG in programs consisting of one AREA, which need to map fixed hardware
addresses such as trap vector locations. Otherwise ORG should be avoided.

3.3.5 Symbols

Numbers, logical values, string values and addresses may be represented by symbols. Symbols
representing numbers or addresses, logical values and strings are declared using the GBL and
LCL directives, and values are assigned immediately by SETA, SETL and SETS directives
respectively (see section ➲3.5.2 Local and global variables—GBL, LCL and SET on page 3-18).
Addresses are assigned by the Assembler as assembly proceeds, some remaining in symbolic,
relocatable form until link time.

• Symbols must start with a letter in either upper or lower case; the assembler is
case-sensitive and treats the two forms as distinct. Numeric characters and the
underscore character may be part of the symbol name. All characters are significant.

• Symbols should not use the same name as instruction mnemonics or directives. While
the assembler can distinguish between the uses of the term through their relative
positions in the input line, a programmer may not always be able to do so.

• Symbol length is limited by the 255 character line length limit.

If there is a need to use a wider range of characters in symbols—for instance when working with
other compilers—use enclosing bars to delimit the symbol name; for example, |C$$code|. The
bars are not part of the symbol.

3.3.6 Labels

Labels are a special form of symbol, distinguished by their position at the start of lines.
The address represented by a label is not explicitly stated but is calculated during assembly.

Assembler

3-9Reference Manual
ARM DUI 0020D

3.3.7 Local labels

The local label, a subclass of label, begins with a number in the range 0-99. Local labels work
in conjunction with the ROUT directive and are most useful for solving the problem of
macro-generated labels. Unlike global labels, a local label may be defined many times; the
assembler uses the definition closest to the point of reference.

Beginning a local area label

To begin a local label area, use:

{ label } ROUT

The label area will start with the next line of source, and will end with the next ROUT directive
or the end of the program.

Defining local labels

Local labels are defined as:

number { routinename }

routinename need not be used. If omitted, it is assumed to match the label of the last ROUT
directive. It is an error to give a routine name when no label has been attached to the preceding
ROUT directive.

Making a reference to a local label

A reference to a local label has the following syntax:

%{x}{ y} n{ routinename }

% Introduces the reference and may be used anywhere where an
ordinary label reference is valid.

x Tells the assembler where to search for the label; use B for backward
or F for forward. If no direction is specified the assembler looks both
forward and backward. However searches will never go outside the
local label area (that is, beyond the nearest ROUT directives).

y Provides the following options: A to look at all macro levels, T to look
only at this macro level, or, if y is absent, to look at all macro from
the current level to the top level.

n Is the number of the local label.

routinename Is optional, but if present will be checked against the enclosing
ROUT’s label.

Assembler

3-10 Reference Manual
ARM DUI 0020D

3.3.8 Comments

The first semicolon on a line marks the beginning of a comment, except where the semicolon
appears inside a string constant. A comment alone is a valid line. All comments are ignored by
the assembler.

3.3.9 Constants

Numbers Numeric constants are accepted in three forms: decimal (for example 123),
hexadecimal (eg. &7B), and n_xxx , where n is a base between 2 and 9 and
xxx is a number in that base.

Strings Strings consist of opening and closing double quotes, enclosing characters
and spaces. If double quotes or dollar signs are used within a string as literal
text characters, they should be represented by a pair of the appropriate
character; for example $$ for $. The standard C escape sequences can be
used within string constants.

Boolean The Boolean constants ‘true’ and ‘false’ should be written as {TRUE} and
{FALSE} .

Characters Character constants consist of opening and closing single quotes, enclosing
either a single character of an “escaped” character, using the standard C
escape characters.

3.3.10 The END directive

Every assembly language source must end with:

END

on a line by itself.

Assembler

3-11Reference Manual
ARM DUI 0020D

3.4 Directives

3.4.1 Storage reservation and initialisation–DCB, DCW and DCD

DCB defines one or more bytes: can be replaced by =

DCW defines one or more half-words (16-bit numbers)

DCD defines one or more words: can be replaced by &

% reserves a zeroed area of store

The syntax of the first three directives is:

{ label } directive expression-list

DCD can take program-relative and external expressions as well as numeric ones. In the case
of DCB, the expression-list can include string expressions, the characters of which are
loaded into consecutive bytes in store. Unlike C-strings, armasm strings do not contain an
implicit trailing NUL, so a C-string has to be fabricated thus:

C_string DCB "C_string",0

The syntax of % is:

{ label } % numeric-expression

This directive will initialise to zero the number of bytes specified by the numeric expression .

Note that an external expression consists of an external symbol followed optionally by a
constant expression. The external symbol must come first.

3.4.2 Floating point store initialisation–DCFS and DCFD

DCFS defines single precision floating point values

DCFD defines double precision floating point values

The syntax of these directives is:

{ label } directive fp-constant {, fp-constant }

Single precision numbers occupy one word, and double precision numbers occupy two; both
should be word aligned. An fp-constant takes one of the following forms:

{-} integer E{-} integer eg. 1E3, -4E-9
{-}{ integer }. integer {E{-} integer }eg. 1.0, -.1, 3.1E6

E may also be written in lower case.

Assembler

3-12 Reference Manual
ARM DUI 0020D

3.4.3 Describing the layout of store–^ and #

^ sets the origin of a storage map

reserves space within a storage map

The syntax of these directives is:

 ^ expression {, base-register }
{ label } # expression

The ^ directive sets the origin of a storage map at the address specified by expression . A
storage map location counter, @, is also set to the same address. The expression must be
fully evaluable in the first pass of the assembly, but may be program-relative. If no ^ directive is
used, the @ counter is set to zero. @ can be reset any number of times using ^ to allow many
storage maps to be established.

Space within a storage map is described by the # directive. Every time # is used its label (if any)
is given the value of the storage location counter @, and @ is then incremented by the number
of bytes reserved.

In a ^ directive with a base-register , the register becomes implicit in all symbols defined by
directives which follow, until cancelled by a subsequent ^ directive. These register-relative
symbols can later be quoted in load and store instructions. For example:

 ^ 0,r9
 # 4
Lab # 4
 LDR r0,Lab

is equivalent to:

 LDR r0,[r9,#4]

3.4.4 Organisational directives—END, ORG, LTORG and KEEP

END

The assembler stops processing a source file when it reaches the END directive. If assembly of
the file was invoked by a GET directive, the assembler returns and continues after the GET
directive (see section ➲3.4.6 Links to other source files–GET/INCLUDE on page 3-13). If END is
reached in the top-level source file during the first pass without any errors, the second pass will
begin. Failing to end a file with END is an error.

ORGnumeric-expression

A program’s origin is determined by the ORG directive, which sets the initial value of the program
location counter. Only one ORG is allowed in an assembly and no ARM instructions or store
initialisation directives may precede it. If there is no ORG, the program is relocatable and the
program counter is initialised to 0.

Assembler

3-13Reference Manual
ARM DUI 0020D

LTORG

LTORG directs that the current literal pool be assembled immediately following it. A default
LTORG is executed at every END directive which is not part of a nested assembly, but large
programs may need several literal pools, each closer to where their literals are used to avoid
violating LDR’s 4KB offset limit.

KEEP {symbol}

The assembler does not by default describe local (non-exported), symbols in its output object
file (see ➲3.4.5 Links to other object files–IMPORT and EXPORT). However, they can be
retained in the object file’s symbol table by using the KEEP directive. If the directive is used
alone all symbols are kept; if only a specific symbol needs to be kept it can be specified by name.

3.4.5 Links to other object files–IMPORT and EXPORT

IMPORT symbol {[FPREGARGS]}{,WEAK}

IMPORT provides the assembler with a name (symbol) which is not defined in this assembly,
but will be resolved at link time to a symbol defined in another, separate object file. The symbol
is treated as a program address; if the WEAK attribute is given the Linker will not fault an
unresolved reference to this symbol, but will zero the location referring to it. If [FPREGARGS] is
present, the symbol defines a function which expects floating point arguments passed to it in
floating point registers.

EXPORTsymbol {[FPREGARGS,DATA,LEAF]}

EXPORT declares a symbol for use at link time by other, separate object files. FPREGARGS
signifies that the symbol defines a function which expects floating point arguments to be passed
to it in floating point registers. DATA denotes that the symbol defines a code-segment datum
rather than a function or a procedure entry point, and LEAF that it is a leaf function which calls
no other functions.

3.4.6 Links to other source files–GET/INCLUDE

GET filename

GET includes a file within the file being assembled. This file may in turn use GET directives to
include further files. Once assembly of the included file is complete, assembly continues in the
including file at the line following the GET directive.

INCLUDE filename

INCLUDE is a synonym for GET.

Assembler

3-14 Reference Manual
ARM DUI 0020D

3.4.7 Diagnostic generation–ASSERT and !

ASSERT logical-expression

ASSERT supports diagnostic generation. If the logical-expression returns {FALSE}, a
diagnostic is generated during the second pass of the assembly. ASSERT can be used both
inside and outside macros.

! arithmetic-expression, string-expression

! is related to ASSERT but is inspected on both passes of the assembly, providing a more flexible
means for creating custom error messages. The arithmetic expression is evaluated; if it equals
zero, no action is taken during pass one, but the string is printed as a warning during pass two.
If the expression does not equal zero, the string is printed as a diagnostic and the assembly halts
after pass one.

Assembler

3-15Reference Manual
ARM DUI 0020D

3.4.8 Dynamic listing options—OPT

The OPT directive is used to set listing options from within the source code, providing that listing
is turned on. The default setting is to produce a normal listing including the declaration of
variables, macro expansions, call-conditioned directives and MEND directives, but without
producing a pass one listing. These settings can be altered by adding the appropriate values
from the list below, and using them with the OPT directive as follows:

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw: issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on the listing of SET, GBL and LCL directives.

32 Turns off the listing of SET, GBL and LCL directives.

64 Turns on the listing of macro expansions.

128 Turns off the listing of macro expansions.

256 Turns on the listing of macro calls.

512 Turns off the listing of macro calls.

1024 Turns on the pass one listing.

2048 Turns off the pass one listing.

4096 Turns on the listing of conditional directives.

8192 Turns off the listing of conditional directives.

16384 Turns on the listing of MEND directives.

32768 Turns off the listing of MEND directives.

Assembler

3-16 Reference Manual
ARM DUI 0020D

3.4.9 Titles—TTL and SUBT

Titles can be specified within the code using the TTL (title) and SUBT (subtitle) directives. Each
is used on all pages until a new title or subtitle is called. If more than one appears on a page, only
the latest will be used: the directives alone create blank lines at the top of the page. The syntax is:

TTL title
SUBT subtitle

3.4.10 Miscellaneous directives—ALIGN, NOFP, RLIST and ENTRY

ALIGN { power-of-two {, offset-expression }}

After store-loading directives have been used, the program counter (PC) will not necessarily point
to a word boundary. If an instruction mnemonic is then encountered, the assembler will insert up
to three bytes of zeros to achieve alignment. However, an intervening label may not then address
the following instruction. If this label is required, ALIGN should be used. On its own, ALIGN sets
the instruction location to the next word boundary; the optional power-of-two parameter can
be used to align with a coarser byte boundary, and the offset-expression parameter to
define a byte offset from that boundary.

NOFP

In some circumstances there will be no support in either target hardware or software for floating
point instructions. In these cases the NOFP directive can be used to ensure that no floating point
instructions or directives are allowed in the code.

RLIST

The syntax of this directive is:

label RLIST list-of-registers

The RLIST (register list) directive can be used to give a name to a set of registers to be
transferred by LDM or STM.

If the -CheckReglist command-line option is selected then the registers in a register list must
be supplied in increasing register order. Any failure to do this will result in a warning being
produced. This can be used to help check that symbolic register names have not been misused.

list-of-registers is a comma-separated list of register names and/or ranges enclosed in
{}. For example:

Context RLIST {r0-r6,r8,r10-r12,r15}

ENTRY

The ENTRY directive declares its offset in its containing AREA to be the unique entry point to any
program containing this AREA.

Assembler

3-17Reference Manual
ARM DUI 0020D

3.4.11 Thumb specific directives—CODE 16, CODE32 and DATA

Thumb: CODE16 Tells the assembler that subsequent instructions are to be interpreted as
16-bit (Thumb) instructions.

CODE32 Tells the assembler that subsequent instructions are to be interpreted as
32-bit (ARM) instructions.

DATA Tells the assembler that the label to which it is attached is a ‘data-in-code’
label (ie. it defines an area of data within a code segment). This directive
must be specified if you are defining data in a code area.

Assembler

3-18 Reference Manual
ARM DUI 0020D

3.5 Symbolic Capabilities

3.5.1 Setting constants

The EQU and * directives are used to give a symbolic name to a fixed or program-relative value.
The syntax is:

label EQU expression
label * expression

The RN directive defines register names. Registers can only be referred to by name. The names
R0-R15, r0-r15, PC, pc, LR and lr, are predefined.

The FN directive defines the names of floating point registers. The names F0-F7 and f0-f7 are
predefined. The syntax is:

label RN numeric-expression
label FN numeric-expression

The CP directive gives a name to a coprocessor number, which must be within the range 0 to 15.
The names p0-p15 are predefined.

The CN directive names a coprocessor register number; c0-c15 are predefined. The syntax is:

label CP numeric-expression
label CN numeric-expression

3.5.2 Local and global variables—GBL, LCL and SET

While most symbols have fixed values determined during assembly, variables have values which
may change as assembly proceeds. The assembler supports both global and local variables. The
scope of global variables extends across the entire source file while that of local variables is
restricted to a particular instantiation of a macro (see section ➲3.9 Macros on page 3-25).
Variables must be declared before use with one of these directives.

GBLA declares a global arithmetic variable

Values of arithmetic variables are 32-bit unsigned integers.

GBLL declares a global logical variable

GBLS declares a global string variable

LCLA declares and initialises a local arithmetic variable (initial state zero)

LCLL declares and initialises a local logical variable (initial state false)

LCLS declares and initialises a local string variable (initial state null string)

The syntax of these directives is:

directive variable -name

Assembler

3-19Reference Manual
ARM DUI 0020D

The value of a variable can be altered using the relevant one of the following three directives:

SETA sets the value of an arithmetic variable

SETL sets the value of a logical variable

SETS sets the value of a string variable

The syntax of these directives is:

variable-name directive expression

where expression evaluates to the value being assigned to the variable named.

3.5.3 Variable substitution—$

Once a variable has been declared its name cannot be used for any other purpose, and any
attempt to do so will result in an error. However, if the $ character is prefixed to the name, the
variable’s value will be substituted before the assembler checks the line’s syntax. Logical and
arithmetic variables are replaced by the result of performing a :STR: operation on them (see
➲3.6.1 Unary operators on page 3-21), string variables by their value.

3.5.4 Built-in variables

There are seven built-in variables. They are:

{PC} or . Current value of the program location counter.

{VAR} or @ Current value of the storage area location counter.

{TRUE} Logical constant true.

{FALSE} Logical constant false.

{OPT} Value of the currently set listing option. The OPT directive can be
used to save the current listing option, force a change in it or restore
its original value.

{CONFIG} Has the value 32 if the assembler is in 32-bit program counter mode,
and the value 26 if it is in 26-bit mode.

{ENDIAN} Has the value “big” if the assembler is in big-endian mode, and the
value “little” if it is in little-endian mode.

{CODESIZE} Has the value 16 if compiling Thumb code. Otherwise it has the
value 32

{CPU} Has the value “generic ARM” if no CPU has been specified, or the
name of the selected cpu if one has.

Assembler

3-20 Reference Manual
ARM DUI 0020D

{ARCHITECTURE} Has the value of the selected ARM architecture: one of 3, 3M, 4, 4T

{PCSTOREOFFSET} Is the offset between the address of an STR PC,[...] or STM Rb,{...
PC} instruction and the value of PC stored out. This varies depending
on the CPU and architecture specified.

Assembler

3-21Reference Manual
ARM DUI 0020D

3.6 Expressions and Operators
Expressions are combinations of simple values, unary and binary operators, and brackets.
There is a strict order of precedence in their evaluation: expressions in brackets are evaluated
first, then operators are applied in precedence order. Adjacent unary operators evaluate from
right to left; binary operators of equal precedence are evaluated from left to right. The assembler
includes an extensive set of operators for use in expressions, many of which resemble their
counterparts in high-level languages.

3.6.1 Unary operators

Unary operators have the highest precedence (bind most tightly) and so are evaluated first. A
unary operator precedes its operand, and adjacent operators are evaluated from right to left.

Opera-
tor

Usage Explanation

? ?A Number of bytes generated by line defining label A.

BASE :BASE:A If A is a PC-relative or register-relative expression, BASE
returns the number of its register component and INDEX the
offset from that base register.

INDEX :INDEX:A BASE and INDEX are most likely to be of use within macros.

LEN :LEN:A Length of string A.

CHR :CHR:A ASCII string of A.

STR :STR:A Hexadecimal string of A.
STR returns an eight-digit hexadecimal string corresponding
to a numeric expression, or the string T or F if used on a
logical expression.

+ +A Unary plus.

– –A Unary negate.
+ and – can act on numeric, program-relative and string
expressions.

NOT :NOT:A Bitwise complement of A.

LNOT :LNOT:A Logical complement of A.

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}.

 Table 3-1: Operator Precedence

Assembler

3-22 Reference Manual
ARM DUI 0020D

3.6.2 Binary operators

Binary operators are written between the pair of sub-expressions on which they operate.
Operators of equal precedence are evaluated in left to right order. The binary operators are
presented below in groups of equal precedence, in decreasing precedence order.

Multiplicative operators

These are the binary operators which bind most tightly and have the highest precedence:

* A*B multiply

/ A/B divide

MOD A:MOD:B A modulo B

These operators act only on numeric expressions.

String manipulation operators

LEFT A:LEFT:B the left-most B characters of A

RIGHT A:RIGHT:B the right-most B characters of A

CC A:CC:B B concatenated on to the end of A

In the two slicing operators LEFT and RIGHT, A must be a string and B must be a numeric
expression.

Shift operators

ROL A:ROL:B rotate A left B bits

ROR A:ROR:B rotate A right B bits

SHL A:SHL:B shift A left B bits

SHR A:SHR:B shift A right B bits

The shift operators act on numeric expressions, shifting or rotating the first operand by the
amount specified by the second. Note that SHR is a logical shift and does not propagate the sign
bit.

Addition and logical operators

AND A:AND:B bitwise AND of A and B

OR A:OR:B bitwise OR of A and B

EOR A:EOR:B bitwise Exclusive OR of A and B

+ A+B add A to B

– A–B subtract B from A

The bitwise operators act on numeric expressions. The operation is performed independently on
each bit of the operands to produce the result.

Assembler

3-23Reference Manual
ARM DUI 0020D

Relational operators

= A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= A/=B A not equal to B

<> A<>B A not equal to B

The relational operators act upon two operands of the same type to produce a logical value.
Allowable types of operand are numeric, program-relative, register-relative, and strings. Strings
are sorted using ASCII ordering. String A will be less than string B if it is either a leading
substring of string B, or if the left-most character of A in which the two strings differ is less than
the corresponding character in string B. Note that arithmetic values are unsigned, so the value
of 0>–1 is {FALSE}.

Boolean operators

These are the weakest binding operators with the lowest precedence.

LAND A:LAND:B logical AND of A and B

LOR A:LOR:B logical OR of A and B

LEOR A:LEOR:B ogical Exclusive OR of A and B

The Boolean operators perform the standard logical operations on their operands, which should
evaluate to {TRUE} or {FALSE}.

Assembler

3-24 Reference Manual
ARM DUI 0020D

3.7 Conditional Assembly—[, | and]
Sections of a source file may be assembled conditionally, only if certain conditions are true. The
[and] (if and endif) directives are used to mark their start and finish; | provides an else construct.
The syntax is:

[logical-expression
... code ...
|
... code ...
]

Note that [, | and] may not be the first character of a line. If the logical-expression is true, the
section will be assembled; if it is false, the second piece of code, the beginning of which is marked
by | and the end of which is marked by], will be assembled instead. Lines of code skipped during
conditional assembly will not be listed unless the assembler is switched from its default TERSE
mode by the -NOTERSE command-line switch.

The directives IF, ELSE and ENDIF may be used instead of [, | and] respectively.

3.8 Repetitive Assembly—WHILE and WEND
The conditional looping statement, useful for generating repetitive tables, is provided in the
assembler by the WHILE...WEND directives. This produces an assembly-time loop, not a
run-time loop. Because the test for the WHILE condition is made at the top of the loop, it is
possible that no code will be generated during assembly; lines are listed as for conditional
assembly. The syntax is:

WHILE logical-expression
... code ...
WEND

Assembler

3-25Reference Manual
ARM DUI 0020D

3.9 Macros
Macros are useful when a group of instructions and/or directives is frequently needed. armasm
will replace the macro name with its definition. Macros may contain calls to other macros, nested
up to 255 levels.

3.9.1 Defining a macro

Two directives are used to define a macro. The syntax is:

 MACRO
{$ label } macroname {$ parameter1 }{,$ parameter2 }{,$ parameter3 }..
 ... code ...
 MEND

The directive MACRO must be followed by a macro prototype statement on the next line. This
tells the assembler the name of the macro and its parameters. A label is optional, but useful if
the macro defines internal labels. Any number of parameters can be used; each must begin with
‘$’ to distinguish them from ordinary program symbols.

Within the macro body, $label , $parameter , etc., can be used in the same way as any other
variables (see ➲3.5.2 Local and global variables—GBL, LCL and SET on page 3-18, and
➲3.5.3 Variable substitution—$ on page 3-19). They will be given new values each time the
macro is called.

Note that the $label parameter is simply treated as another parameter to the macro. The
macro itself describes which labels are defined where. The label does not represent the first
instruction in the macro expansion. For instance, in a macro that uses several internal labels (eg.
for loops), it is useful to define each internal label as the base $label with a different suffix.

Sometimes a macro parameter or label needs to be appended by a value. The appended value
should be separated by a dot, which the assembler will ignore once it has used it to recognise
the end of the parameter and label. For example:

$label .1
$label . loop
$label .$ count

The end of the macro definition is signified by the MEND directive. There must be no un-closed
WHILE/WEND loops or conditional assembly when the MEND directive is reached. Macro
expansion terminates at MEND. However it can also be terminated with the MEXIT directive,
which can be used in conjunction with WHILE/WEND or conditional assembly.

Assembler

3-26 Reference Manual
ARM DUI 0020D

3.9.2 Setting default parameter values

Default values can be set for parameters by following them with an equals sign and the default
value. If the default has a leading or trailing space, the whole value should appear in quotes, as
shown below:

...{$parameter="default value"}

3.9.3 Macro invocation

A macro defined with a pattern such as:

$lab xxxx $arg1,$arg2=5,$arg3

can be invoked as:

Label xxxx val1,val2,val3

An omitted actual argument is given a null (empty string) value. To force use of the default value,
use ‘|’ as the actual argument.

4-1Reference Manual
ARM DUI 0020D

ARM Instruction Set

This chapter describes the ARM instruction set.

4.1 The ARM Instruction Set—Overview 4-2

4.2 Branch Instructions—B and BL 4-7

4.3 Data Processing Instructions 4-8

4.4 PSR Transfer—MSR and MRS 4-11

4.5 Unsigned Word/Byte Data Transfer—LDR and STR 4-12

4.6 Halfword and Signed Data Transfer: LDRH, STRH, LDRSB, LDRSH 4-13

4.7 Block Data Transfer—LDM and STM 4-14

4.8 Multiply Instructions—MUL, MLA 4-16

4.9 Long Multiply Instructions—MULL, MLAL 4-17

4.10 Single Data Swap—SWP 4-17

4.11 ARM to Thumb State Exchange—BX 4-18

4.12 Software Interrupt/Supervisor Call—SWI 4-19

4.13 Pseudo-Instructions—ADR and NOP 4-20

4.14 Generic Coprocessor Instructions 4-21

4.15 Floating Point Instructions 4-23

4

ARM Instruction Set

4-2 Reference Manual
ARM DUI 0020D

4.1 The ARM Instruction Set—Overview
The ARM instruction set may be subject to processor-specific restrictions and changes.
Particular combinations of instructions must be avoided where noted, as unpredictable results
may otherwise occur. Refer to the appropriate ARM processor data sheet for a precise definition
of the instruction set, and also refer to companion application notes for information on relevant
restrictions and changes. The most significant variations are those between ARM processors
with 26- and 32-bit program counters.

4.1.1 Instruction summary

Mnemonic Instruction Action See Section:

ADC Add with carry Rd := Rn + Op2 + Carry 4.3

ADD Add Rd := Rn + Op2 4.3

AND AND Rd := Rn AND Op2 4.3

B Branch R15 := address 4.2

BIC Bit Clear Rd := Rn AND NOT Op2 4.3

BL Branch with Link R14 := R15, R15 := address 4.2

BX Branch and Exchange R15 := Rn,
T bit := Rn[0]

4.11

CDP Coprocessor Data Processing (Coprocessor-specific) 4.14

CMN Compare Negative CPSR flags := Rn + Op2 4.3

CMP Compare CPSR flags := Rn - Op2 4.3

EOR Exclusive OR Rd := (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

4.3

LDC Load coprocessor from memory Coprocessor load 4.14

LDM Load multiple registers Stack manipulation (Pop) and block
copy

4.7

LDR Load register from memory Rd := (address) 4.5

MCR Move CPU register to
coprocessor register

cRn := rRn {<op>cRm} 4.14

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn 4.8

 Table 4-1: The ARM instruction set

ARM Instruction Set

4-3Reference Manual
ARM DUI 0020D

MOV Move register or constant Rd : = Op2 4.3

MRC Move from coprocessor
register to CPU register

Rn := cRn {<op>cRm} 4.14

MRS Move PSR status/flags to
register

Rn := PSR 4.4

MSR Move register to PSR
status/flags

PSR := Rm 4.4

MUL Multiply Rd := Rm * Rs 4.8

MVN Move negative register Rd := 0xFFFFFFFF EOR Op2 4.3

ORR OR Rd := Rn OR Op2 4.3

RSB Reverse Subtract Rd := Op2 - Rn 4.3

RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry 4.3

SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry 4.3

SMLAL Signed multiply accumulate long RdHi:=signed(Rm*Rs)+RdHi+
CarryFrom((Rm*Rs)[31:0]+RdLo))

4.8

SMULL Signed multiply long RdHi:= signed(Rm*Rs)[63:32]
RdLo:= signed(Rm*Rs)[31:0]

4.8

STC Store coprocessor register to memory address := CRn 4.14

STM Store Multiple Stack manipulation (Push) and
block copy

4.7

STR Store register to memory <address> := Rd 4.5

SUB Subtract Rd := Rn - Op2 4.3

SWI Software Interrupt OS call 4.12

SWP Swap register with memory Rd := [Rn], [Rn] := Rm 4.10

TEQ Test bitwise equality CPSR flags := Rn EOR Op2 4.3

TST Test bits CPSR flags := Rn AND Op2 4.3

Mnemonic Instruction Action See Section:

 Table 4-1: The ARM instruction set (Continued)

ARM Instruction Set

4-4 Reference Manual
ARM DUI 0020D

UMLAL Unsigned multiply accumulate long RdLo:=(Rm*Rs)+RdLo
RdHi:=(Rm*Rs)+RdHi+
CarryFrom((Rm*Rs)[31:0]+RdLo))

4.8

UMULL Unsigned multiply long RdHi:= (Rm*Rs)[63:32]
RdLo:= (Rm*Rs)[31:0]

4.8

Mnemonic Instruction Action See Section:

 Table 4-1: The ARM instruction set (Continued)

ARM Instruction Set

4-5Reference Manual
ARM DUI 0020D

4.1.2 Conditional execution and the ‘S’ bit

All ARM instructions are conditional and are only executed if their condition field matches the N,
Z, C and V condition flags of the program status register (PSR). The default condition field
setting is “execute always”; other conditions are specified by appending a two-character
condition mnemonic to the instruction mnemonic. These available mnemonics are shown in
➲Table 4-2: Conditions. A conditionally executed sequence of instructions will usually be
shorter and sometimes even faster than a branched-around sequence, because it will not cause
breaks in the CPU pipeline.

HS (Higher or Same) and LO (LOwer than) are synonyms for CS and CC respectively.

Condition flags are set by executed ALU instructions and multiplies that have the ‘S’ bit set, and
by executed comparison instructions. The S bit is set by appending ‘S’ to the instruction
mnemonic.

Mnemonic Condition CPU condition flags

EQ EQual Z set

NE Not Equal Z clear

CS Carry Set/unsigned Higher or Same C set

CC Carry Clear/unsigned LOwer than C clear

MI Negative (MInus) N set

PL Positive (PLus) N clear

VS oVerflow Set V set

VC oVerflow Clear V clear

HI HIgher unsigned C set and Z clear

LS Lower or Same unsigned C clear or Z set

GE Greater than or Equal to (N and V) set or (Nand V) clear

LT Less Than (N set and V clear) or (N clear and V set)

GT Greater Than ((N and V) set or clear) and Z clear

LE Less Than or equal to (N set and V clear) or (N clear and V set) or Z set

 Table 4-2: Conditions

ARM Instruction Set

4-6 Reference Manual
ARM DUI 0020D

4.1.3 Register names and ‘.’

Fifteen registers (R0 to R14), the program counter (PC), and the processor status register (PSR)
are all directly accessible to the programmer. Register R15 contains the PC, and in 26-bit
address ARMs it also contains the PSR. In 32-bit address ARMs, the PSR is separate, and is
manipulated by separate instructions.

R14 is used as the subroutine link register, saving a copy of R15 when a Branch with Link
instruction is executed (see ➲4.2 Branch Instructions—B and BL on page 4-7). R13 is
conventionally used as a stack pointer.

The non-user processor modes each have their own R13 and R14, and in 32-bit ARMs, PSR
registers. FIQ mode additionally has its own R8-R12. When a mode change occurs because of
interrupts, SWIs or traps, R14 of the new mode is set to a copy of R15, and in 32-bit ARMs the
PSR of the new mode is copied from the PSR of the old mode. For further details of banked
registers and mode changes, consult the appropriate ARM data sheet for the target processor.

Within an assembly language source, the current value of the program counter (PC) can be
referred to as ‘.’. Usually, ‘.’ is 8 bytes ahead of the instruction using it because of pipelining.

For example:

LDR R0,[.-8+ offset]

loads a word at offset bytes from the current instruction. Please refer to the appropriate ARM data
sheet for precise details.

ARM Instruction Set

4-7Reference Manual
ARM DUI 0020D

4.2 Branch Instructions—B and BL
There are two branch instructions:

B Branch

BL Branch with Link

The syntax of these instructions is:

B{L}{ condition } expression

where the expression evaluates to the branch destination address. If the address is within
±32MB of the current program counter , it can be expressed directly as an offset.

On 32-bit address ARMs, branches of more than 32MB have to be effected by loading the
destination address directly into the PC, or by adding a long offset to the PC using a value
loaded into a register. Branch with Link saves the PC into R14 of the current bank.

4.2.1 Returning from a branch instruction

To return, use:

MOV PC, R14

or if the link register has been saved on a stack, use

LDMFD SP!, {...,PC}

Note: These instructions will not restore the original PSR.

The assembler automatically compensates for the effects of pipelining and prefetching when
calculating offsets.

ARM Instruction Set

4-8 Reference Manual
ARM DUI 0020D

4.3 Data Processing Instructions

4.3.1 MOV and MVN

MOV (Move) places an unchanged operand in the destination register

MVN (Move Negated) places the bitwise inverse of the operand in the destination
register

The syntax of these instructions is:

opcode { condition }{S} destination , operand2

destination must be a register

operand2 may be any of:

• An 8-bit immediate constant, rotated right by a constant 0, 2,
4...30 bits:

#constant-expression {, constant-rotation }

• A register shifted left, shifted logically right, shifted arithmetically
right, or rotated right by a constant 0...31 bits:

register {, shift # constant-expression }

where shift is one of:

LSL shift left
LSR logical shift right
ASR arithmetic shift right
ROR rotate right

• A register, shifted as above by the amount given in another
register:

register {, shift register }

• A register rotated 1 bit right through the carry flag, (a 1 bit rotate
right of a 33-bit value, after which the most significant bit of the
register is the old value of the carry flag). The assembler syntax
in this case is:

register , RRX

For simple constants (for example #&FC000003) the assembler will
generate the appropriate rotation for you.

ARM Instruction Set

4-9Reference Manual
ARM DUI 0020D

4.3.2 Data processing instructions–arithmetic and logical

There are ten arithmetic and logical instructions:

ADC Add with Carry: adds operand1 , operand2 , and the carry flag. Multi-word
additions are made simple by this instruction.

ADD Add: adds operand1 to operand2 .

AND Bitwise AND: performs a bitwise AND between operand1 and operand2 .

BIC Bit Clear: stores in the destination register the result of clearing from a copy
of operand1 any bit which is set in operand2 .

EOR Bitwise Exclusive OR: performs a bitwise Exclusive OR between operand1
and operand2 .

ORR Bitwise OR: performs a bitwise OR between operand1 and operand2 .

RSB Reverse Subtract: subtracts operand1 from operand2 .

RSC Reverse Subtract with Carry: subtracts (operand1 plus not carry) from
operand2 .

SBC Subtract with Carry: subtracts (operand2 plus not carry) from operand1 .

SUB Subtract: subtracts operand2 from operand1 .

The syntax of this group of instructions is:

opcode { condition }{S} destination , operand1 , operand2

The destination and operand1 must both be registers, and operand2 should be as
described for the MOV and MVN instructions (see ➲4.3.1 MOV and MVN on page 4-8).

With ADD and ADC, a carry is generated by 32-bit overflows; for subtractions it is generated if,
and only if, underflow did not occur.

With ADD, ADC, SUB, SBC, RSB and RSC the V flag is set if signed overflow occurred. For
example, when the carry into bit 31 was not equal to the carry out of that bit.

ARM Instruction Set

4-10 Reference Manual
ARM DUI 0020D

4.3.3 Data processing instructions–comparison operations

There are four comparison operations:

CMN Compare Negated: adds the two operands, setting the condition flags
according to the result.

CMP Compare: subtracts operand2 from operand1 , setting all four condition flags
according to the result.

TEQ Test Equivalence: performs a bitwise Exclusive OR between the two operands,
setting the Z flag if the result is zero.

TST Test under Mask: performs a bitwise AND between the two operands, setting
the Z flag if the result is zero.

The syntax of these instructions is:

opcode { condition }{P} operand1 , operand2

The N and C flags may also be affected if a shift or rotation was involved in the construction of
operand2.

Each of these instructions preserves its operands and produces no result other than updated
PSR flags. operand1 must be a register, and operand2 must be as described for MOV and MVN
(see ➲4.3.1 MOV and MVN on page 4-8).

If P is not specified, the PSR condition flags are set to the ALU condition flags after the operation
(as described above), and the instructions behave as conventional status-setting comparisons.

With 26-bit ARMs, use of P allows direct manipulation of the PSR, as described below. Do not
use P with 32-bit ARMs: instead use MSR and MRS (see ➲4.4 PSR Transfer—MSR and MRS).

26-bit modes

In 26-bit user mode, { opcode }P moves the result of the operation to the PSR, and sets the N,
Z, C and V flags from the top four bits of the result.

In other 26-bit modes it sets the N, Z, C, V, I and F flags from the top six bits, and the mode bits
from the bottom two bits of the result. A typical use of { opcode }P would be to change modes.

ARM Instruction Set

4-11Reference Manual
ARM DUI 0020D

4.4 PSR Transfer—MSR and MRS
MSR Move register to PSR: loads the processor status register.

MRS Move PSR to register: stores PSR in a register.

The syntax of these instructions is:

MSR{condition } psrl , operand2
MRS{condition } destination , psrs

These instructions are available on 32-bit ARMs only. R15 cannot be used as the destination
register. Please refer to your ARM data sheet for precise details.

psrl can be:

• PSR{_ fields }

PS is one of CPSR or SPSR

fields consists of one or more of the letters c x s f :

f indicates flags field (bits 31:24)

s indicates status field (bits 23:16)

x indicates extension field (bits 15:8)

c indicates control field (bits 7:0)

Note that the field specifiers _ctl, _flg, and _all have been superseded by this new format.

psrs can be one of:

• SPSR

• CPSR

operand2 is as described in ➲4.3 Data Processing Instructions on page 4-8.

User mode

In user mode the instructions behave as follows:

MSR CPSR_fc, op2 ; CPSR{N,Z,C,V} <- op2
MSR CPSR_f, op2 ; CPSR{N,Z,C,V} <- op2
MSR CPSR_c, op2 ; No effect
MRS Rd, CPSR ; Rd <- CPSR{N,Z,C,V,I,F,M[4:0]}
MSR SPSR, op2 ; Not valid in user mode
MRS Rd, SPSR ; Not valid in user mode

ARM Instruction Set

4-12 Reference Manual
ARM DUI 0020D

Privileged mode

In privileged modes the instructions behave as follows:

MSR CPSR_fc, op2 ; CPSR{N,Z,C,V,I,F,M[4:0]} <- op2
MSR CPSR_f, op2 ; CPSR{N,Z,C,V} <- op2
MSR CPSR_c, op2 ; CPSR{I,F,M[4.0]} <- op2
MRS Rd, CPSR ; Rd <- CPSR{N,Z,C,V,I,F,M[4:0]}
MSR SPSR_fc, Rm ; SPSR_mode{N,Z,C,V,I,F,M[4:0]} <- op2
MSR SPSR_f, Rm ; SPSR_mode{N,Z,C,V} <- op2
MSR SPSR_c, Rm ; SPSR_mode{I,F,M[4.0]} <- op2
MRS Rd, SPSR ; Rd <- SPSR_mode{N,Z,C,V,I,F,M[4:0]}

4.5 Unsigned Word/Byte Data Transfer—LDR and STR
LDR Load register from memory location.

STR Store register to memory location.

These instructions come in two forms:

pre-indexed The syntax of pre-indexed instructions is:

opcode { condition }{B} register ,[base {, index }]{!}

post-indexed The syntax of post-indexed instructions is:

opcode { condition }{B}{T} register ,[base]{, index }

where:

B specifies a byte instead of a word transfer (8 bits instead of 32)

T is only allowed with a post-indexed load, and forces the transfer to take place
as if in a non-privileged mode (from supervisor mode, for example)

register is the destination of the load or source of the store

base must be a register

index specifies an offset from the base (see below)

For pre-indexed addressing, index is added to base to yield the load or store address. With
post-indexed addressing, base gives the address for the load or store, and base+index is the
value written back to base . In the pre-indexe case, ! enables writeback of base+index to base .

Index

index may be one of the following:

#{–} 12-bit-constant-expression
{–} register {, shift # 5-bit-constant-expression }

shift is explained in ➲4.3 Data Processing Instructions on page 4-8. In this second form the
value of index is the value in register shifted as specified.

ARM Instruction Set

4-13Reference Manual
ARM DUI 0020D

LDR can also used to generate literal constants when an immediate value cannot be moved into
a register because it is out of range of the MOV and MVN instructions. The syntax is:

LDR register ,= expression

If expression is a numeric constant, a MOV or MVN will be used rather than an LDR if the
constant can be constructed by either of these instructions. Otherwise, the assembler will
generate a program-relative LDR, and if the desired literal does not already exist within the
addressable range of this LDR, it will place the literal in the next literal pool, (see also LTORG in
➲3.4.4 Organisational directives—END, ORG, LTORG and KEEP on page 3-12).

Additionally, LDR or STR can be used to transfer data to or from an address specified by a label
(optionally with an offset) as follows:

opcode { cond }{B} register , label-expression

When used in this form, label-expression must either be addressable PC-relative from this
instruction, or must be a register-relative label created using the ‘^’ directive with a register
operand, (see ➲3.4.3 Describing the layout of store–^ and # on page 3-12).

4.6 Halfword and Signed Data Transfer: LDRH, STRH, LDRSB, LDRSH
These instructions are available only on ARM processors which support version 4 (or later) of
the ARM architecture, eg. ARM7TDMI. (The architecture version can be selected using the
assembler options –arch and/or –cpu .

LDRH Load unsigned halfword from memory location.

STRH Store halfword to memory location.

LDRSB Load signed byte from memory location.

LDRSH Load signed halfword from memory location.

These instructions come in two forms:

pre-indexed The syntax of pre-indexed instructions is:

opcode { condition } type register ,[base {, index }]{!}

post-indexed The syntax of post-indexed instructions is:

opcode { condition } type register ,[base]{, index }

where:

type is either H, SB, SH (with SB and SH only allowed for LDR), and specifies the
width of the transfer (8 versus 16 bits) and whether sign extension takes place
on the loaded word

register is the destination of the load or source of the store

base must be a register

index specifies an offset from the base (see below)

ARM Instruction Set

4-14 Reference Manual
ARM DUI 0020D

For pre-indexed addressing, index is added to base to yield the load or store address. With
post-indexed addressing, base gives the address for the load or store, and base+index is the
value written back to base . In the pre-indexe case, ! enables writeback of base+index to base .

Index

index may be one of the following:

#{–} 8-bit-constant-expression
{–} register

The form index can take is more restrictive than on the unsigned LDR and STR instructions. As
a constant it must be 8-bit, and as a register it cannot have a shift applied.

Additionally these instructions can be used to transfer data to or from an address specified by a
label (optionally with an offset), in the same manner as the unsigned LDR and STR instructions.
See ➲4.5 Unsigned Word/Byte Data Transfer—LDR and STR on page 4-12 for details.

The form LDRH register ,= expression (for example) is not supported.

4.7 Block Data Transfer—LDM and STM
LDM Load multiple registers

STM Store multiple registers

The syntax of these instructions is:

opcode { condition } type base {!}, register-list {^}

The opcode is combined with one of eight instruction types with the mnemonics DB, DA, IB , IA ,
FD, ED, FA, and EA (note that the meaning of FD, ED, FA and EA varies according to whether a
load or store is performed):

STMDB Decrement base Before the store

STMDA Decrement base After the store

STMIB Increment base Before the store

STMIA Increment base After the store

LDMDB Decrement base Before the load

LDMDA Decrement base After the load

LDMIB Increment base Before the load

LDMIA Increment base After the load

STMFD Push registers to a Full stack, Descending (STMDB)

STMED Push registers to an Empty stack, Descending (STMDA)

STMFA Push registers to a Full stack, Ascending (STMIB)

ARM Instruction Set

4-15Reference Manual
ARM DUI 0020D

STMEA Push registers to an Empty stack, Ascending (STMIA)

LDMFD Pop registers from a Full stack, Descending (LDMIA)

LDMED Pop registers from an Empty stack, Descending (LDMIB)

LDMFA Pop registers from a Full stack, Ascending (LDMDA)

LDMEA Pop registers from an Empty stack, Ascending (LDMDB)

base Contains the starting address for the transfer and can be any
register except R15. If present ! requests writeback of the updated
base address to base after the instruction is executed.

register-list Is a comma-separated list of registers and/or register ranges
enclosed in {}. A register range is two register names joined by a
hyphen, and represents the registers named and all those between
them. The directive RLIST (see ➲3.4.10 Miscellaneous directives—
ALIGN, NOFP, RLIST and ENTRY on page 3-16) can also be used
to create a list of registers.

^ In user mode, this sets the S bit to load the PSR along with the PC.
In privileged modes, it forces transfer of the user mode registers.

A full stack is one in which the stack pointer points to the last data item written to it. An empty
stack is one where the stack pointer points to the first free slot in it. A descending stack grows
from high memory addresses to low, and an ascending stack vice-versa.

ARM Instruction Set

4-16 Reference Manual
ARM DUI 0020D

4.8 Multiply Instructions—MUL, MLA
MUL 32-bit result multiply (32 × 32 ➝ 32)

MLA 32-bit result multiply and accumulate (32 × 32 + 32 ➝ 32)

The syntax of these instructions is:

MUL{condition }{S} destination,operand1,operand2
MLA{condition }{S} destination,operand1,operand2,operand3

The destination and all operands must be registers. MUL multiplies operand1 by operand2 , and
places the result in destination . MLA multiplies operand1 by operand2 , adds operand3 to
the product and places the result in destination . Both instructions work with signed and
unsigned integers. For details of how to make multiply instructions execute quickly, see the
Programming Techniques manual.

In all cases the result is truncated to 32 bits.

Certain combinations of operands should be avoided and are warned against by the assembler.
The destination register should not be the same as operand1 as this will give a meaningless
result. R15 should not be used as the destination register, nor as an operand. See the appropriate
ARM datasheet for further details.

ARM Instruction Set

4-17Reference Manual
ARM DUI 0020D

4.9 Long Multiply Instructions—MULL, MLAL
MUL 32-bit result multiply (32 × 32 ➝ 32)

MLA 32-bit result multiply and accumulate (32 × 32 + 32 ➝ 32)

These instructions are available only on ARM processors which support version 3M (or later) of
the ARM architecture: eg. ARM7DM, ARM7TDMI. (The architecture version can be selected
using the assembler options –arch and/or –cpu .

The syntax of these instructions is:

UMULL{condition }{S} destLo,destHi,operand1,operand2
UMLAL{condition }{S} destLo,destHi,operand1,operand2
SMULL{condition }{S} destLo,destHi,operand1,operand2
SMLAL{condition }{S} destLo,destHi,operand1,operand2

The UMUL and UMLA instructions perform an unsigned multiply, whereas the SMUL and SMLA
instructions treat both operands as two’s complement signed numbers, and give a two’s
complement signed 64-bit result.

The destination and all operands must be registers. MULL multiplies operand1 by operand2 ,
and places the full 64-bit result in the pair of registers destLo and destHi . MLAL multiplies
operand1 by operand2 , and adds the 64-bit result to the 64-bit value in destLo and DestHi .

Certain combinations of operands should be avoided and are warned against by the assembler.
The registers destHi , destLo , and operand1 must all be different. R15 should not be used
as a destination register, nor as an operand. See the appropriate ARM datasheet for further
details.

4.10 Single Data Swap—SWP
SWP Single data swap

SWP swaps a byte or word quantity between a register and memory, locking the memory bus in
the process to preserve atomic operation (where supported by external hardware). The syntax
is:

SWP{condition }{B} destination , source ,[base]

Destination , source and base must all be registers. B sets the width of the transfer to byte
rather than word. The memory address is that in base ; its contents are read, the source
register is written to it, and the old memory contents are then stored in destination . The
same register can serve as source and destination . R15 may not be used as the swap
address, the source or the destination .

ARM Instruction Set

4-18 Reference Manual
ARM DUI 0020D

4.11 ARM to Thumb State Exchange—BX

Thumb: Entry into Thumb state is performed by the BX instruction. This has the syntax:

BX { condition } destination

where destination is a register holding a halfword-aligned branch destination address in
bits 1 to 31. Bit 0 of destination determines the processor state:

Bit 0 = 0 Remain in ARM state
Bit 0 = 1 Enter Thumb state

ARM Instruction Set

4-19Reference Manual
ARM DUI 0020D

4.12 Software Interrupt/Supervisor Call—SWI
SWI software interrupt

This instruction is used by programs to communicate with the host operating system. The syntax
is:

SWI constant-expression

The expression value is truncated to 24 bits (between &0 and &FFFFFF); it is ignored by the
processor but is interpreted by operating system software.

ARM Instruction Set

4-20 Reference Manual
ARM DUI 0020D

4.13 Pseudo-Instructions—ADR and NOP
The Assembler supports several pseudo-instructions which are translated into the appropriate
combination of ARM instructions at assembly time.

4.13.1 ADR

ADR assemble address to register

Because the ARM has no “load effective address” instruction, the assembler provides ADR, which
will always assemble to produce ADD or SUB instructions to generate the address. The syntax is:

ADR{condition }{L} register , expression

The expression can be register-relative, program-relative or numeric. ADR must assemble to
one instruction, whereas ADRL allows a wider range of effective addresses to be assembled in
two instructions.

4.13.2 NOP

NOP no operation

This generates the preferred no-operation code for a given ARM processor, which is
MOV R0,R0.

NOP is really a directive and so cannot be used conditionally; not executing a no-operation is the
same as executing it, so conditional execution would be pointless.

ARM Instruction Set

4-21Reference Manual
ARM DUI 0020D

4.14 Generic Coprocessor Instructions
These are the generic coprocessor instructions implemented by all ARM processors with a
coprocessor interface. Up to 16 coprocessors can be supported; all coprocessors have a
number (CP#) in the range 0 to 15, and this must be specified in the instructions. Coprocessors
1 and 2 are conventionally floating point units. Coprocessor 14 is used as a debug channel on
some processors, and coprocessor 15 is used for cache, write-buffer and memory management
control in several ARM processors.

Coprocessors may have up to 16 directly addressable registers, C0-C15.

4.14.1 Coprocessor data transfers–LDC and STC

LDC load data to coprocessor register from memory

STC store data from coprocessor register to memory

These instructions transfer data between a coprocessor and memory. The syntax is:

op{ condition }{L} CP#, Cd,[Rn {, #offset }]{!}
 [Rn],# offset

program-or-register-relative-expression

The memory address can be expressed in one of three ways, as shown above. In the first, pre-
indexed form, an ARM register, Rn, holds the base address to which an offset can be added if
necessary. Writeback of the effective address to Rn can be enabled using !. The offset must be
divisible by 4, and within the range -1020 to 1020 bytes. With the second, post-indexed form,
write-back of Rn+offset to Rn after the transfer, is automatic. Alternatively, a program-or-
register-relative-expression can be used, in which case the assembler will generate
a PC- or register-relative, pre-indexed address; if it is out of range an error will result.

L appended to the instruction specifies a long transfer; otherwise a short transfer takes place.
The meaning of this is coprocessor-specific.

4.14.2 Coprocessor data operations–CDP

CDP coprocessor internal data processing operation

This instruction is used for internal coprocessor operations. The syntax is:

CDP{condition } CP#,CPOp,CRd,CRn,CRm {, CPOp2}

CPOp represents the coprocessor operation to be performed (four bits). Details of such
operations are coprocessor-specific and can be found in the appropriate data sheet. The
operation is performed on CRn and CRm and the result written to CRd. The second, optional,
CPOp2 field allows further variations on the operation (three bits).

ARM Instruction Set

4-22 Reference Manual
ARM DUI 0020D

4.14.3 Coprocessor register transfers–MCR and MRC

MCR move data to coprocessor from ARM register

MRC move data to ARM register from coprocessor

The syntax of these two instructions is:

op{ condition } CP#,CPOp,Rd,Cn,Cm {, CPOp2}

CPOp is a 3-bit constant which specifies which variant of the instruction to perform. The selected
operation is performed using the coprocessor registers Cn and Cm, and the result transferred to
the ARM register Rd. If R15 is specified as the destination, only bits 28-31 of the result are
transferred and are used to set the N, Z, C and V flags in the PSR without affecting the program
counter. CPOp2, where present, is a 3-bit constant which sets the ARM condition flags,
supporting the further coprocessor-specific sub-operations.

MRC is often used to read a coprocessor’s status register(s), while MCR is used to write its control
register(s). MRC, with R15 as the destination, supports execution of ARM code conditional on the
result of an earlier coprocessor operation (floating point compare, for example).

ARM Instruction Set

4-23Reference Manual
ARM DUI 0020D

4.15 Floating Point Instructions
The ARM assembler supports a comprehensive floating point instruction set. Whether
implemented by hardware coprocessor or software emulation, floating point operations are
performed to the IEEE 754 standard. There are eight floating point registers, numbered F0 to
F7. Floating point operations, like integer operations, are performed between registers.

Precision must be specified for many floating point operations where shown as prec below. The
options are S (Single), D (Double), E (Extended) and P (Packed BCD). The format in which
extended precision numbers are stored varies between FP implementations, and cannot be
relied upon. The rounding mode, shown below as round , defaults to ‘round to nearest’, but can
optionally be set in the appropriate instructions to: P (round to +infinity), M (round to –infinity) or
Z (round to zero).

In all the following instruction patterns, Rx represents an ARM register, and Fx a floating point
register.

4.15.1 Floating point data transfer–LDF and STF

LDF load data to floating point register

STF store data from floating point register

The syntax of these instructions is:

op{ condition } prec Fd ,[Rn,# offset]{!}
[Rn]{,# offset }
program-or-register-relative-expression

The memory address can be expressed in one of three ways, as shown above. In the first, pre-
indexed form, an ARM register Rn holds the base address, to which an offset can be added if
necessary. Writeback of the effective address to Rn can be enabled using !. The offset must be
divisible by 4, and within the range -1020 to 1020 bytes. With the second, post-indexed form,
writeback of Rn+offset to Rn after the transfer, is automatic. Alternatively, a program- or
register-relative expression can be used, in which case the assembler will generate a PC- or
register-relative, pre-indexed address; if it is out of range an error will result.

4.15.2 Floating point register transfer–FIX and FLT

FLT integer to floating point Fn:=Rd

The syntax of this instruction is:

FLT{ condition } prec { round } Fn, Rd
Fn,#built-in-fp-constant

where Rd is an ARM register and built-in-fp-constant is one of 0, 1, 2, 3, 4, 5, 10 or 0.5.

FIX floating point to integer Rd:=Fn

The syntax of this instruction is:

FIX{ condition }{ round } Rd, Fn

ARM Instruction Set

4-24 Reference Manual
ARM DUI 0020D

4.15.3 Floating point register transfer–status and control

The following instructions transfer values between the FP coprocessor’s status and control
registers, and an ARM general purpose register.

WFS write floating point status FPSR:=Rd

RFS read floating point status Rd: =FPSR

WFC write floating point control FPC:=Rd (privileged modes only)

RFC read floating point control Rd: =FPC (privileged modes only)

The syntax of the above four instructions is:

opcode { condition } Rd

4.15.4 Floating point multiple data transfer–LFM and SFM

(Note that these instructions are not supported by some older versions of the Floating Point
Emulator.)

LFM load floating multiple

SFM store floating multiple

These instructions are used for block data transfers between the floating point registers and
memory. Values are transferred in an internal 96-bit format, with no loss of precision and with no
possibility of an IEEE exception occurring, (unlike STFE which may fault on loading a trapping
NaN). There are two forms, depending on whether the instruction is being used for stacking
operations or not. The first, non-stacking, form is:

op{ condition } Fd, count ,[Rn]
 [Rn,# offset]{!}
 [Rn],# offset

The first register to transfer is Fd, and the number of registers to transfer is count . Up to four
registers can be transferred, always in ascending order. The count wraps round at F7, so if F6 is
specified with four registers to transfer, F6, F7, F0 and F1 will be transferred in that order. With
pre-indexed addressing the destination/source register can be specified with or without an
offset expressed in bytes; writeback of the effective address to Rn can be specified with !. With
post-indexed addressing (the third form above) writeback is automatically enabled. Note that R15
cannot be used with writeback, and that offset must be divisible by 4 and in the range -1020 to
1020, as for other coprocessor loads and stores.

The second form adds a two-letter stacking mnemonic (below ss) to the instruction and optional
condition codes. The mnemonic FD denotes a full, descending stack (pre-decrement push, post-
increment pop), while EA denotes an empty, ascending stack (post-increment push, pre-
decrement pop). The syntax is as follows:

op{ condition } ss Fd , count ,[Rn]{!}

ARM Instruction Set

4-25Reference Manual
ARM DUI 0020D

FD and EA define pre- and post-indexing, and the up/down bit by reference to the form of stack
required. Unlike the integer block-data transfer operations, only FD and EA stacks are
supported. ! , if present, enables writeback of the updated base address to Rn; R15 cannot be
the base register if writeback is enabled.

The possible combinations of mnemonics are listed below:

LFMFD load floating multiple from a full stack, descending (post-increment load)

LFMEA load floating multiple from an empty stack, ascending (pre-decrement load)

SFMFD store floating multiple to a full stack, descending (pre-decrement store)

SFMEA store floating multiple to an empty stack, ascending (post-increment store)

4.15.5 Floating point comparisons–CMF and CNF

CMF compare floating compare Fn with Fm
CMFE

CNF compare negated floating compare Fn with –Fm
CNFE

The syntax of these instructions is:

opcode { condition } Fn, Fm

CMF and CNF raise no exceptions and should be used to test for equality (Z clear/set) and
unorderedness (V set/clear). To comply with IEEE 754, all other tests should use CMFE or CNFE,
which may raise an exception if either of the operands is not a number.

ARM Instruction Set

4-26 Reference Manual
ARM DUI 0020D

4.15.6 Floating point binary operations

ADF add Fd:=Fn+Fm

MUF multiply Fd:=Fn*Fm

SUF subtract Fd:=Fn–Fm

RSF reverse subtract Fd:=Fm–Fn

DVF divide Fd:=Fn/Fm

RDF reverse divide Fd:=Fm/Fn

POW power Fd:=Fn to the power of Fm

RPW reverse power Fd:=Fm to the power of Fn

RMF remainder Fd:=remainder of Fn/Fm

FML fast multiply Fd:=Fn*Fm

FDV fast divide Fd:=Fn/Fm

FRD fast reverse divide Fd:=Fm/Fn

POL polar angle Fd:=polar angle of Fn,Fm
(=ATN(Fm/Fn) whenever the
quotient exists

The syntax of these instructions is:

binop { condition } prec { round } Fd,Fn,Fm

Fm can be either a floating point register, or one of the floating point constants #0, #1, #2, #3, #4,
#5, #10 or #0.5. Fast operations produce results accurate to only single precision.

ARM Instruction Set

4-27Reference Manual
ARM DUI 0020D

4.15.7 Floating point unary operations

MVF move Fd:=Fm

MNF move negated Fd:=–Fm

ABS absolute value Fd:=ABS(Fm)

RND round to integral value Fd:=integer value of Fm
(using current rounding mode)

URD unnormalised round: Fd:= integer value of Fm,
possibly in abnormal form

NRM normalise Fd:= normalised form of Fm

SQT square root Fd:=square root of Fm

LOG logarithm to base 10 Fd:=log Fm

LGN logarithm to base e Fd:=ln Fm

EXP exponent Fd:=eFm

SIN sine Fd:=sine of Fm

COS cosine Fd:=cosine of Fm

TAN tangent Fd:=tangent of Fm

ASN arc sine Fd:=arc sine of Fm

ACS arc cosine Fd:=arc cosine of Fm

ATN arc tangent Fd:=arc tangent of Fm

The syntax of these instructions is:

unop { condition } prec { round } Fd,Fm

Fm can be either a floating point register or one of the floating point constants #0, #1, #2, #3, #4,
#5, #10 or #0.5.

4.15.8 Floating point library

New applications which do not require compatibility with this instruction set should use the
software floating point library instead. See ➲Chapter 16, Software Floating Point for more
details.

ARM Instruction Set

4-28 Reference Manual
ARM DUI 0020D

5-1Reference Manual
ARM DUI 0020D

Thumb Instruction Set

This chapter describes the Thumb instruction set.

5.1 Thumb Instruction Set—Overview 5-2

5.2 Branch Instructions—B and BL 5-5

5.3 Data-processing Instructions 5-7

5.4 Single Data Transfer Instructions—LDR and STR 5-11

5.5 Block Data Transfer Instructions—LDMIA and STMIA 5-14

5.6 Stack Operations—PUSH and POP 5-15

5.7 Thumb to ARM State Exchange—BX 5-16

5.8 Software Interrupt 5-16

5.9 Pseudo Instructions — MOV and NOP 5-17

5

Thumb Instruction Set

5-2 Reference Manual
ARM DUI 0020D

5.1 Thumb Instruction Set—Overview
The Thumb instruction set is only available on variants of the ARM processor such as the
ARM7TDM and ARM7TDMI. Please refer to the appropriate ARM data sheet for a full description
of the Thumb programmer’s model. This chapter provides the assembly language programmer
with a reference guide to syntax and usage.

Thumb is a subset of the ARM instruction set: most ARM instructions are available to the Thumb
programmer, though there are restrictions on the registers, operands and condition code bits that
can be used.

➲Table 5-1: Thumb instruction set summary on page 5-3 lists the available instructions.

5.1.1 General restrictions

In the Thumb instruction set:

• Conditional execution may only be used on the branch (B) instruction.

• Only registers 0-7 (the Lo registers) may be accessed as general registers. Specific
instructions may implicitly use registers 8-15 (the Hi registers): for example, the PUSH
instruction implicitly accesses register 13—the stack pointer.

• There are no generic co-processor or floating point instructions: floating point
operations are performed by a dedicated library which is provided as part of the C library
in the Thumb tools release.

• Only two operands may be used on data processing instructions (except for ADD and
SUB which can take three).

• The range of immediate fields is restricted: for example, the unconditional Branch
instruction (B) has an 11-bit field.

• The only block data transfer instructions available are LDMIA and STMIA with
write-back.

5.1.2 Option bits

Many of the option bits are not available in Thumb state. For example:

• There is no S bit in the Thumb data processing instructions, since most implicitly set the
CPSR condition codes (for example, all the low-register operations).

• There is no writeback bit in the single data transfer instruction.

Thumb Instruction Set

5-3Reference Manual
ARM DUI 0020D

Mnemonic Instruction Lo register
operand

Hi register
operand

Condition
codes set

See Section:

ADC Add with Carry ✔ ✔ 5.3.1

ADD Add ✔ ✔ ✔➀ 5.3.2-5.3.3,
5.3.5-5.3.6, 5.6.2

AND AND ✔ ✔ 5.3.1

ASR Arithmetic Shift Right ✔ ✔ 5.3.1, 5.3.4

B Unconditional branch ✔ 5.2.2

Bxx Conditional branch ✔ 5.2.1

BIC Bit Clear ✔ ✔ 5.3.1

BL Branch and Link 5.2.3

BX Branch and Exchange ✔ ✔ 5.7

CMN Compare Negative ✔ ✔ 5.3.1

CMP Compare ✔ ✔ ✔ 5.3.1, 5.3.3, 5.3.5

EOR EOR ✔ ✔ 5.3.1

LDMIA Load multiple ✔ 5.5

LDR Load word ✔ 5.4.1-5.4.4,

LDRB Load byte ✔ 5.4.1-5.4.2

LDRH Load halfword ✔ 5.4.1-5.4.2

LSL Logical Shift Left ✔ ✔ 5.3.1, 5.3.4

LDSB Load sign-extended
byte

✔ 5.4.1

LDSH Load sign-extended
halfword

✔ 5.4.1

LSR Logical Shift Right ✔ ✔ 5.3.1, 5.3.4

MOV Move register ✔ ✔ ✔➁ 5.3.3, 5.3.5

 Table 5-1: Thumb instruction set summary

Thumb Instruction Set

5-4 Reference Manual
ARM DUI 0020D

➀ The hi-register variant of ADD described in 5.3.5 and the ADD SP instruction described
in 5.6.2 do not set the condition codes.

➁ The hi-register variant of MOV described in 5.3.5 does not set the condition codes.

MUL Multiply ✔ ✔ 5.3.1

MVN Move Negative register ✔ ✔ 5.3.1

NEG Negate ✔ ✔ 5.3.1

ORR OR ✔ ✔ 5.3.1

POP Pop registers ✔ 5.6.1

PUSH Push registers ✔ 5.6.1

ROR Rotate Right ✔ ✔ 5.3.1

SBC Subtract with Carry ✔ ✔ 5.3.1

STMIA Store Multiple ✔ 5.5

STR Store word ✔ 5.4.1-5.4.3

STRB Store byte ✔ 5.4.1-5.4.2

STRH Store halfword ✔ 5.4.1-5.4.2

SWI Software Interrupt 5.8

SUB Subtract ✔ ✔ 5.3.2-5.3.3, 5.6.2

TST Test bits ✔ ✔ 5.3.1

Mnemonic Instruction Lo register
operand

Hi register
operand

Condition
codes set

See Section:

 Table 5-1: Thumb instruction set summary (Continued)

Thumb Instruction Set

5-5Reference Manual
ARM DUI 0020D

5.2 Branch Instructions—B and BL
This section describes instructions for the following:

• Conditional branching

• Unconditional branching

5.2.1 Group 1: conditional branch

The operations in this group conditionally transfer execution control to the specified address.
The syntax is:

Bcond destination

where:

cond is a condition code—see ➲Table 5-2: Conditional Branch codes on
page 5-6.

destination is a program label within the range -512 to +508 of the current
program counter.

The assembler also allows the following, which branches if the specified condition is not true:

BNcond destination

The conditions are shown in ➲Table 5-2: Conditional Branch codes on page 5-6.

5.2.2 Group 2: unconditional branch

This operation unconditionally transfers execution control to the specified address.

The syntax is:

B destination

where destination is a program label within the range -2048 to +2044 of the current program
counter.

5.2.3 Group 3: Branch with Link

This operation writes the return address into the link register and then unconditionally transfers
execution control to the specified address. The syntax is:

BL destination

where destination may be:

• a program label

• an external label +/- an immediate offset

HS (Higher or Same) and LO (Lower than) are synonyms for CS and CC respectively.

Thumb Instruction Set

5-6 Reference Manual
ARM DUI 0020D

5.2.4 Effect on Condition Codes

The branch operations do not affect the condition codes.

B:
branch

BN:
branch if not if the condition codes are as follows:

EQ NE Z set

NE EQ Z clear

CS CC C set

CC CS C clear

MI PL N set

PL MI N clear

VS VC V set

VC VS V clear

HI LS C set and Z clear

LS HI C clear or Z set

GE LT N set and V set, or N clear and V clear

LT GE N set and V clear, or N clear and V set

GT LE Z clear, and either N set and V set or N clear and V clear

LE GT Z set, or N set and V clear, or N clear and V set

 Table 5-2: Conditional Branch codes

Thumb Instruction Set

5-7Reference Manual
ARM DUI 0020D

5.3 Data-processing Instructions
This section describes the following:

• two-operand address format

• three-operand address format

• immediate operations

• immediate shifts

• hi-register operations

• effective address calculation

• condition codes

5.3.1 Group 1: two-operand format

This group of instructions has the syntax:

opcode dest/source1, source2

where dest/source1 and source2 are all registers in the range 0 to 7.

If dest and source1 are the same register and the operation is not two-operand-only
(ie. is not CMP, CMN, NEG or MVN), the assembler also allows:

opcode dest, source1, source2

opcode may be one of:

AND source1 & source2 -> dest
EOR source1 ^ source2 -> dest
LSL source1 << source2 -> dest
LSR source1 >> source2 -> dest
ASR source1 >> source2 -> dest (arithmetic or sign preserving)

ADC source1 + source2 + C -> dest
SBC source1 - source2 - !C -> dest
ROR source1 ROR source2 -> dest (rotate right)

TST set condition codes only on source1 & source2
NEG -source2 -> dest
CMP set condition codes only on source1 - source2
CMN set condition codes only on source1 + source2
ORR source1 | source2 -> dest
MUL source1 * source2 -> dest
BIC source1 & ~ source2 -> dest
MVN ~source2 -> dest

Thumb Instruction Set

5-8 Reference Manual
ARM DUI 0020D

5.3.2 Group 2: three-operand format

This group has the syntax:

opcode dest, source1, source2

where:

dest and source1 are registers in the range 0 to 7

source2 is either a register in the range 0 to 7 or an immediate 3-bit constant
in the range 0 to 7

The assembler also allows the following form if dest and source1 are the same register:

opcode dest/source1, source2

where opcode may be one of:

ADD source1 + source2 -> dest
SUB source1 - source2 -> dest

5.3.3 Group 3: immediate operations

This group has the syntax:

opcode dest/source, #N

where:

dest/source is a register in the range 0 to 7

N is an 8-bit constant in the range 0 to 255

opcode may be one of:

MOV #N -> dest
CMP set condition codes only on source - # N
ADD source + # N -> dest
SUB source - # N -> dest

Thumb Instruction Set

5-9Reference Manual
ARM DUI 0020D

5.3.4 Group 4: immediate shifts

This group has the syntax:

opcode dest, source, #N

where:

dest is a register in the range 0 to 7

source is a register in the range 0 to 7

N is a 5-bit constant in the range 0 to 31

The assembler also allows the following form if dest and source are the same register.

opcode dest/source, #N

opcode may be one of:

LSL source << N -> dest
LSR source >> N -> dest
ASR source >> N -> dest (arithmetic or sign preserving)

5.3.5 Group 5: hi register operations

This group has the syntax:

opcode dest/source1, source2

where dest and source1 are registers in the range 0 to 15. At least one of dest or source1
must be in the range 8 to 15, otherwise the instruction’s behaviour is undefined.

The assembler also allows the following format for the ADD instruction, if dest and source1
are the same register:

opcode dest, source1, source2

opcode may be one of:

ADD source1 + source2 -> dest
CMP set condition codes only on source1 - source2
MOV source2 -> dest

Thumb Instruction Set

5-10 Reference Manual
ARM DUI 0020D

5.3.6 Group 6: effective address calculation

This group has the syntax:

ADD dest, source, #N

where:

dest is a register in the range 0 to 7

source is either register 13 or 15. If source is R15, the assembler also allows the
format:

ADR dest, program-label

N is a word-aligned constant in the range 0 to 1024 (bits 1:0 of N must be 0)

5.3.7 Effect on condition codes

The Thumb data-processing instructions affect the condition codes in the following ways:

• All operations in Groups 1 to 4 and the CMP instruction in Group 5 affect the Z and N
flags on the result of the operation.

• ADC sets the C flag if the result overflows, otherwise the C flag is cleared.

• SBC clears the C flag if the result overflows, otherwise the C flag is set.

• ADC and SBC set the V flag if a signed overflow occurs (ie. bit 31 does not contain the
correct sign of the result), otherwise it is cleared.

• The shift operations (LSL, LSR, ASR, ROR) set the C flag to the last bit shifted out.
The setting of the V flag is not defined after a shift operation.

• NEG sets the flags as though a SUBdest , #0, source2 operation were performed.

• Bitwise operations (AND, EOR, ORR, BIC , MOV, MVN and TST) do not affect the C or V
flags.

Thumb Instruction Set

5-11Reference Manual
ARM DUI 0020D

5.4 Single Data Transfer Instructions—LDR and STR
This section describes the following:

• single data transfer with base + register offset addressing

• single data transfer with base + immediate offset addressing

• single data transfer with stack pointer + immediate offset addressing

• single data transfer with program counter + immediate offset addressing

5.4.1 Group 1: load/store with register offset

This group has the following syntax:

opcode source/dest , [base , offset]

source/dest , base and offset are all registers in the range 0 to 7.

opcode may be one of :

LDR load a 32-bit value from base + offset
STR store a 32-bit value at base + offset
LDRH load a 0-extended 16-bit value from base + offset
LDRSH load a sign-extended 16-bit value from base + offset
STRH store a 16-bit value at base + offset
LDRB load a 0-extended 8-bit value from base + offset
LDRSB load a sign-extended 16-bit value from base + offset
STRB store an 8-bit value at base + offset

Note: LDSH and LDSB may be used as alternative opcodes for LDRSH and LDRSB.

Thumb Instruction Set

5-12 Reference Manual
ARM DUI 0020D

5.4.2 Group 2: load/store with immediate offset

This group has the syntax:

opcode source/dest , [base, #N]

where:

source/dest is a register in the range 0 to 7

base is a register in the range 0 to 7.

N is a 5-bit constant—the range of this constant depends on the size of
the object being transferred. See ➲Table 5-3: Offset ranges for base
+ immediate addressing, below.

The assembler also accepts the following form if N is zero:

opcode source/dest , [base]

opcode may be one of:

LDR load a 32-bit value from base + N
STR store a 32-bit value at base + N
LDRH load a 16-bit value from base + N
STRH store a 16-bit value at base + N
LDRB load an 8-bit value from base + N
STRB store an 8-bit value at base + N

5.4.3 Group 3: SP-relative load/store

This group has the syntax:

opcode source/dest , [SP, # N]

where:

source is a register in the range 0 to 7

dest is a register in the range 0 to 7

N is a word-aligned 8-bit constant in the range 0 to 1024 (bits 1:0 of N must be 0)

Data type Offset range Alignment

Byte 0 to 31 Any

Halfword 0 to 62 Must be multiple of 2

Word 0 to 124 Must be a multiple of 4

 Table 5-3: Offset ranges for base + immediate addressing

Thumb Instruction Set

5-13Reference Manual
ARM DUI 0020D

The assembler also accepts the following form if N is zero:

opcode source/dest , [SP]

opcode may be one of:

LDR load a 32-bit value from SP + N
STR store a 32-bit value at SP + N

5.4.4 Group 4: PC-relative load

This group has the syntax:

LDR source , [PC, # N]

LDR source , [PC]

where:

source is a register in the range 0 to 7.

N is an 8-bit constant in the range 0 to 1024 with an alignment of 4 (ie. it must
be a multiple of 4).

The assembler also accepts the following forms:

LDR source, label

LDR source, =<expr>

where:

label is a program label defined within the addressable range of this instruction
(ie. within the range +4 to +1024, allowing for the PC being offset from the
current instruction by 4.

expr may be either:

• an expression evaluating to a numeric constant

• an external symbol, optionally + or - a numeric constant

The value of expr is placed in the next literal pool. If the same numeric
constant is referenced more than once in a given literal pool, only one copy
of the constant is placed in the literal pool. If an external symbol is used,
a relocation directive will be placed in the object file to relocate the value in
the literal pool by the value of the external symbol when the object file is
linked.

5.4.5 Effect on condition codes

The single data transfer operations do not affect the condition codes.

Thumb Instruction Set

5-14 Reference Manual
ARM DUI 0020D

5.5 Block Data Transfer Instructions—LDMIA and STMIA
The block data transfer instructions have the format:

opcode base ! , { register-list }

where:

base is a register in the range 0 to 7. Note that write-back is enforced.

register-list is a comma-separated list of registers and/or register ranges.
A register range is two register names joined by a hyphen.
All registers must be in the range 0 to 7.

opcode may be one of:

LDMIA load the block of registers specified in register-list
STMIA store the block of register specified in register-list

Transfer starts at the address specified by base , beginning with the lowest-numbered register in
register-list .

The base register is updated to point to the memory location immediately following the address
to which the last memory word was transferred.

If the base register is also specified in the register-list of an LDMIA instruction, the final
value of base is the value loaded from memory, and not the updated pointer.

If the base register is also specified in the register-list of an STMIA instruction, the value
stored depends on whether base is the lowest-numbered register in register-list . If so, the
unmodified value is stored, otherwise the updated value is stored (ie. the value of base when the
instruction completed).

5.5.1 Effect on condition codes

The block data transfer operations do not affect the condition codes.

Thumb Instruction Set

5-15Reference Manual
ARM DUI 0020D

5.6 Stack Operations—PUSH and POP
This section describes

• Pushing and popping registers

• Stack pointer adjustment operation

5.6.1 Group 1: PUSH/POP instructions

This group has the syntax:

opcode { register-list }

where register-list is a comma-separated list of registers or register ranges. A register
range is two register names joined by a hyphen. All registers must be in the range 0 to 7 plus
R14 for PUSH or R15 for POP.

opcode may be one of:

PUSH Push a block of registers, optionally including the link register, from the implicit
program stack.

POP Pop a block of registers, optionally including the program counter, from the
implicit program stack.

The implicit program stack is a full descending stack using R13 as the stack pointer.

5.6.2 Group 2: stack pointer adjust

This group has the syntax:

opcode R13, # N

where:

N is an immediate constant in the range -508 to +508.

The assembler also allows the form:

opcode R13, R13, # N

opcode may be one of :

ADD R13 + N -> R13

SUB R13 - N -> R13

5.6.3 Effect on condition codes

The stack operations do not affect the condition codes.

Thumb Instruction Set

5-16 Reference Manual
ARM DUI 0020D

5.7 Thumb to ARM State Exchange—BX
Switches from Thumb to ARM state are performed using the BX instruction. This has the syntax:

BX dest

where dest is a register in the range 0 to 15.

This instruction transfers control to the address contained in bits 1 to 31 of dest , in the processor
state determined by bit 0:

Bit 0 = 0 enters ARM state
Bit 0 = 1 remains in Thumb state

Thumb code symbols automatically have bit 0 set when they are declared. The BX instruction
uses this fact to allow transparent state changes. The caller does not need to know what state
the callee executes in, as this information is contained in the destination label. Provided the link
register is correctly set up and the called routine returns with a BX LR instruction, the called
routine will return to the correct execution state on completion.

5.7.1 Effect on condition codes

The BX instruction does not affect the condition codes.

5.8 Software Interrupt
This operation performs a software interrupt. The return address is written into the link register.
The processor is then switched to ARM state and control is transferred to location 8 (the SWI
vector) in supervisor (SVC) mode.

The syntax is:

SWI SWI-No

where SWI-No is a software interrupt number in the range 0 to 255.

5.8.1 Effect on condition codes

The SWI instruction does not affect the condition codes.

Thumb Instruction Set

5-17Reference Manual
ARM DUI 0020D

5.9 Pseudo Instructions — MOV and NOP
The Assembler supports several pseudo instructions which are translated into the appropriate
combination of Thumb instructions at assembly time.

5.9.1 ADR

ADR reg, label

places address of label in reg .

label must be defined locally, it cannot be imported.

The range of ADR is limited: +4 to +1024 from the current instruction. label must be aligned.

5.9.2 MOV

MOV Rd, Rs

If Rd and Rs are both low registers, a MOV instruction is synthesized using an ADD immediate
instruction with a zero immediate value. This MOV Rd, Rs generates the opcode for
ADD Rd, Rs, #0

This has the side effect of altering the condition codes.

5.9.3 NOP

NOP

The Thumb NOP pseudo instruction generates a MOV R8,R8 instruction. (The ARM NOP
generates a MOV R0, R0 instruction. Hence the condition codes are unaltered by ARM or
Thumb NOPs.

Thumb Instruction Set

5-18 Reference Manual
ARM DUI 0020D

6-1Reference Manual
ARM DUI 0020D

Linker

This chapter introduces the ARM linker.

6.1 Introduction 6-2

6.2 Using the Linker 6-3

6.3 Library Module Inclusion 6-10

6.4 Area Placement and Sorting Rules 6-11

6.5 Linker Pre-Defined Symbols 6-12

6.6 The Handling of Relocation Directives 6-13

6.7 ARM Object Format 6-15

6.8 Plain Binary Format 6-16

6.9 ARM Image Format 6-16

6.10 Extended Intellec Hex Format (IHF) 6-18

6.11 ARM Shared Library Format 6-18

6.12 Overlays 6-28

6.13 The Overlay Manager 6-32

6.14 Scatter Loading 6-41

6

Linker

6-2 Reference Manual
ARM DUI 0020D

6.1 Introduction
The purpose of the ARM Linker is to combine the contents of one or more object files (the output
of a compiler or assembler) with selected parts of one or more object libraries, to produce an
executable program.

The ARM linker, armlink, accepts as input:

• one or more separately compiled or assembled object files written in ARM Object
Format (see ➲6.7 ARM Object Format on page 6-15)

• optionally, one or more object libraries in ARM Object Library Format (see ➲6.7 ARM
Object Format on page 6-15)

The ARM linker performs the following functions:

• resolves symbolic references between object files

• extracts from object libraries the object modules needed to satisfy otherwise unsatisfied
symbolic references

• sorts object fragments (AOF areas) according to their attributes and names, and
consolidates similarly attributed and named fragments into contiguous chunks. (See
➲6.4 Area Placement and Sorting Rules on page 6-11 for details)

• relocates (possibly partially) relocatable values

• generates an output image, possibly comprising several files (or a partially linked object
file instead)

The ARM linker can produce output in any of the following formats:

• ARM Object Format (see ➲6.7 ARM Object Format on page 6-15 for a synopsis, and
➲Chapter 10, ARM Object Format Decoder for full details);

• Plain binary format, relocated to a fixed address (see ➲6.8 Plain Binary Format on page
6-16 for details)

• ARM Image Format (see ➲6.9 ARM Image Format on page 6-16 for a synopsis)

• VLSI-extended Intellec Hex Format, suitable for driving the Compass integrated circuit
design tools (see ➲6.10 Extended Intellec Hex Format (IHF) on page 6-18 for details)

• ARM Shared Library Format: a read-only position-independent re-entrant shareable
code segment (or shared library), written as a plain binary file, together with a stub
containing read-write data, entry veneers, etc., written in ARM Object Format. (See
➲6.11 ARM Shared Library Format on page 6-18 for details)

• ARM Overlay Format: a root segment written in ARM Image Format, together with a
collection of overlay segments, each written as a plain binary file. (See ➲6.12 Overlays
on page 6-28 for details). A system of overlays may be static (each segment bound to
a fixed address at link time), or dynamic (each segment may be relocated loading)

• Scatter-loading format: this enables a user to partition a program image into regions
which can be positioned independently in memory. The linker generates the symbols
necessary to allow the regions to be loaded into memory at addresses different to their
execution addresses. (See ➲6.14 Scatter Loading on page 6-41)

Linker

6-3Reference Manual
ARM DUI 0020D

6.2 Using the Linker
The format of the link command is:

armlink options input-file-list

If present, input–file–list is a list of one or more object files and libraries; this is described
in ➲6.2.5 Input file list on page 6-9. Input files, libraries and linker options may also be given in
a file used as an argument to a -VIA option (see ➲6.2.1 General options for details of the -VIA
option). This is especially convenient when the input file list is long.

If an option keyword takes an argument, a space must separate the argument from the keyword.

Option keywords are case insensitive. In the remainder of this section the abbreviations
recognised by armlink are shown capitalised.

6.2.1 General options

–Help

Print a screen of help text summarising the linker’s options and exit with a good return code.

–Output name

Name the linker’s final output; often, this is the name of the image file.

–NoDebug

Turn off the inclusion of debug tables in the output file. armlink includes debug tables in the
output file by default.

If objects are compiled without debugging enabled, the linker will still include low-level
symbolic debugging data unless the –NoDebug option is specified.

–Info <topic>

Print the information about a number of specified topics during the link process. <topics>
is a comma separated list of keywords.

A keyword may be one of the following:

Totals Report the total code and data sizes in the image. The totals are broken down
into separate totals for object files and library files.

Sizes Give a more detailed breakdown of the code and data sizes on an object by
object basis.

Interwork List all calls for which the ARM/Thumb interworking veneer was necessary.

Unused List all unused AREAs when used in conjuntion with the –Remove option.

–LIST file

Re-direct the standard output stream to file. This is especially useful in conjunction with
-MAP, –Xref and –Symbols .

Linker

6-4 Reference Manual
ARM DUI 0020D

–ERRORSfile

Re-direct the standard error stream to file (diagnostics will be filed there). This is especially
useful under DOS, as stderr cannot be redirected using normal command-line redirection.

–VIA file

Read a further list of input file names and linker options from file. There may be no more than
64 words on each line of a VIA file, and an option may not be split across more than one line.
Conventionally, each file name and option is given on a separate line. There may be multiple
-VIA options, and –VIA options may be nested.

–Verbose

Print messages indicating progress of the link operation. Giving the option twice makes it
even more verbose (this may be abbreviated to –VV).

–MAP

Create a map of the base and size of each area in the output image. This option is most
useful in conjunction with the –SHL and –OVerlay options. The map output is produced on
the standard output stream (from where it can be re-directed to a file using the host’s stream
re-direction facilities or the –LIST option).

-Xref

List references between input areas (most useful with the -OVerlay option). The
cross-reference list is produced on the standard output stream (from where it can be
re-directed to a file using the host’s stream re-direction facilities or the -LIST option).

-Symbols file

List each symbol used in the link step (including linker-generated symbols) and its value, to
file. A file name of – (minus) names the standard output stream.

6.2.2 Output format options

The following options each select a different output format (and, hence, are mutually exclusive):

-AIF

Generate an output image in executable ARM Image Format (the default if no output format
option is given). The default load address for an AIF image is 0x8000 (32KB). Any other
address (greater than 0x80) can be specified by using the -Base option (see ➲6.2.4 Special
options on page 6-7). AIF is described in section ➲6.9 ARM Image Format on page 6-16.

-AIF -Relocatable

Generate a relocatable AIF image which when entered self-relocates to its load address.

Linker

6-5Reference Manual
ARM DUI 0020D

-AIF -Relocatable -Workspace n

Generate a relocatable AIF image which when entered copies itself to within n bytes of the
top of memory and self-relocates to that address. For a description of -Workspace see
➲6.2.4 Special options on page 6-7).

Some fields of the AIF header and the self-relocation code generated by the linker can be
customised by giving your versions in areas called AIF_HDR and AIF_RELOC,
respectively, in the first object file in the input list. AIF_HDR must be exactly 128 bytes long
(for further details see ➲6.9 ARM Image Format on page 6-16).

-AOF

Generate partially linked output, in ARM Object Format (AOF), suitable for inclusion in a
subsequent link step. AOF is described in ➲6.7 ARM Object Format on page 6-15, and in
➲Chapter 10, ARM Object Format Decoder.

-BIN

Generate a plain binary image. The default load address for a binary image is 0. Any other
address can be specified using the -Base option (see ➲6.2.4 Special options on page 6-7).
Plain binary images are described in ➲6.8 Plain Binary Format on page 6-16.

-BIN -AIF

Generate a plain binary image preceded by an AIF header which describes it. This format
is intended for use by simple program loaders and is the format of choice for them.

Such an image cannot be executed by loading it at its load address and entering it at its first
word: the AIF header must first be discarded and the image must be entered at its entry
point. As with a plain AIF image, the base address, which defaults to 0, can be set using
the -Base option (see ➲6.2.4 Special options on page 6-7). Note that with -BIN -AIF, the
base address is the address of the binary image, not the address of the AIF header (which
is discarded). A separate base address can be given for the image’s data segment using
the -DATA option (see ➲6.2.4 Special options on page 6-7); otherwise, by default, data are
linked immediately following code. This option directly supports images with code in ROM
and data in RAM.

-IHF

Generate a plain binary image encoded in extended Intellec Hex Format. The output is
ASCII-coded.

-SHL file

Generate a position-independent re-entrant read-only shareable library, suitable for
placement in ROM, together with a non-re-entrant stub in ARM Object Format (in the file
named by the -Output keyword) which can be used in a subsequent client link step. A
description of what is to be exported from the library is given in the file, which also contains
the name of the file to hold the sharable library image. See ➲6.11.6 Describing a shared
library to the linker on page 6-26 for further details.

Linker

6-6 Reference Manual
ARM DUI 0020D

-SHL file -REENTrant

As for -SHL , except that a re-entrant stub is generated rather than a non-re-entrant stub. A
re-entrant stub is required if some other shared library is to refer to this one (by including the
code of the re-entrant stub in it). Dually, a re-entrant stub demands a reentrant client.
Usually, a client application is not reentrant (multi-threadable) so the default non-reentrant
stub is more often useful.

-SPLIT

This option tells the linker to output the read-only and read-write image sections to separate
output files. It may be used only in conjunction with -BIN and -IHF image types, and is
meaningful only if separate read-only and read-write base addresses have been specified
(see ➲6.2.4 Special options on page 6-7). The separate output files are named as in ➲Table
6-1: Linker output filenames on page 6-6.

-OVerlay file

Generate a statically overlaid image, as described in file . The output is a root AIF image
together with a collection of plain binary overlay segments. Although the static overlay
scheme is independent of the target system, parts of the overlay manager are not, and must
be re-implemented for each target environment. See ➲6.12 Overlays on page 6-28 for
details.

-OVerlay file -Relocatable

Generate a dynamically relocatable overlaid image, as described in file . The output is a
relocatable AIF root image together with a collection of relocatable plain binary overlay
segments. Although the dynamic overlay scheme is independent of the target system, parts
of the overlay manager are not, and must be re-implemented for each target environment.
See ➲6.12 Overlays on page 6-28 for details.

Output file names

Linker command-line options read-only read-write

-o file -SPLIT -RO robase -RW rwbase file.ro file.rw

-o file -SPLIT -B robase -DATA rwbase file file.dat

 Table 6-1: Linker output filenames

Linker

6-7Reference Manual
ARM DUI 0020D

6.2.3 Scatter loading command-line options

The linker generates a scatter loaded image when the option -SCATTER file is present on
the linker command line. Several options are ignored when -SCATTER is present. These options
are:

-RO-base and -Base

-RW-base and -DATA

-SPLIT

-SCATTER and -OVERLAY are mutually exclusive. If a scatter loaded application requires
overlays, the scatter load description file should be used to specify the overlays.

When -BIN is present on the command line, the output file specification will be treated as a
directory name. Each load region will be placed in a separate file in that subdirectory. The file
name will be the load region name. Hence load region names must not contain characters
unacceptable to the file system.

Specifying -AIF or -AIF -BIN will generate an extended AIF file. This enables a scatter loaded
application to be packed into one file that is acceptable to the debugger. A modified form of AIF
header is used. When the -SCATTER option is used, -AIF is equivalent to -AIF -BIN . A linker
warning is generated if -AIF is supplied without -BIN .

These options will produce a directory named xxxx containing binary files:

-SCATTER file -BIN -o xxxx

These options will produce a single file named yyyy containing an AIF header and the load
regions:

-SCATTER file -AIF -BIN -o yyyy

6.2.4 Special options

The options -Base , -Entry , –DATA and -Workspace are each followed by a numerical
argument. You can use a 0x or & prefix to indicate a hexadecimal value, and the suffixes K and
M to indicate multiplication by 1024 and 1024 x 1024, respectively.

The default base address for an AIF image is &8000 (=32K, =0x20K). The default base address
for a binary image (-BIN, -BIN -AIF, and -IHF) is 0.

-RO-base base-address
-Base base-address

Set the base address for the output to base-address. This is the address at which an image
may be loaded and executed without further relocation. If there are separate read-only and
read-write sections this is the base of the read-only section.

Linker

6-8 Reference Manual
ARM DUI 0020D

–RW–base data-base-address
-DATA data-base-address

Sets the base for the data (read-write) segment of the output to data-base-address rather
than to base-address + code-size. Currently, this option is only meaningful if the output type
is -BIN -AIF , -BIN -SPLIT or -IHF -SPLIT .

-Entry entry-address
-Entry offset +object (area)

The objects included in an image must have a unique designated entry point. Usually, this is
given by one of the input areas having been assembled from a source containing an ENTRY
directive. Otherwise, the entry point must be given on the linker’s command line. The entry
point is the target of the entry branch from the image’s AIF header. The entry point may be
given as an absolute address or as an offset within an area within a particular object. For
example:

-Entry 8+startup(C$$code)

Note: There must be no spaces within the argument to -Entry and that letter case is ignored
when matching both object and area names. This latter form is often more convenient and
is mandatory when specifying an entry point for unused area elimination (see ➲-Remove on
page 6-9).

-Case

Make the matching of symbol names case insensitive.

-MATCH flags

Set the last-gasp symbol matching options and the pc-relative implies code relocation
default. Each option is controlled by a single bit in flags, as follows:

0x01: match an undefined symbol of the form _sym to a symbol definition of the form sym

0x02: match an undefined symbol of the form sym to a symbol definition of the form _sym

0x04: match an undefined symbol of the form Module_Symbol to a definition of the form
Module.Symbol

0x08: match an undefined symbol of the form symbol__type to a definition of the form
symbol

0x10: treat all pc-relative relocation directives as relocating instructions.

These options are usually set by configuring the armlink image when it is installed. The
default value is 0x10 (treat pc-relative relocations as relocating code but do no default
symbol matching). Take care not to override options accidentally when using –MATCH from
the command line.

Linker

6-9Reference Manual
ARM DUI 0020D

-FIRST object(area)
-LAST object(area)

Place the area named area from the object named object first or last, in the output.These
options are useful for forcing an area mapping low addresses to be placed first (typically the
reset and interrupt vector addresses), or an area containing a checksum to be placed last.

-Remove

Remove unused areas from the output. An area is used if:

• it is the area containing the entry point

• it is referred to from a used area.
-DUPOK

Allow duplicate symbols (a warning is displayed). An area can be included more than once
if this option is used. The 2nd, 3rd, 4th etc. copies of the area will not be included in the
image providing unused area elimination is not disabled (see above).

-Unresolved symbol

Match each reference to an undefined symbol to the global definition of symbol . Note that
symbol must be both defined and global, otherwise it too will appear in the list of undefined
symbols, and the link step will fail. This option is particularly useful during top-down
development, when it may be possible to test a partially implemented system from which
the lower levels of code are missing, by connecting each reference to a missing function to
a dummy function which does nothing. This option does not display warnings.

-U symbol

As for -Unresolved , but this option displays warnings.

-NOZEROpad

When generating a plain binary image, the linker expands zero-initialised areas with zero
bytes in the image by default. This is so that the area will be zero-initialised when the image
is loaded directly into memory. At runtime, the -NOZEROpad option sets memory between
Image$$Z1$$Base and Image$$Z1$$Limit to zero. The ARM C Library does this.

6.2.5 Input file list

On the command line, the input file list is one or more file names separated by spaces, together
with the files listed in arguments to -VIA options; see ➲6.2.1 General options on page 6-3.
The input list is strictly ordered as given. For example:

file1 file2 –VIA vf1 file3 –VIA vf2 file4

yields the input file list:

file1 file2 vf1/1 vf1/2 ... file3 vf2/1 vf2/2 ... file4

where vf1/1 , vf1/2 , ... are the first, second, ... files listed in -VIA file vf1 , etc.

Each of the files in the input list must be in ARM Object Format (compiled or assembled files) or
ARM Object Library Format (libraries).

Linker

6-10 Reference Manual
ARM DUI 0020D

6.3 Library Module Inclusion
An object file may contain references to external objects (functions and variables), which the
linker will attempt to resolve by matching them to definitions found in other object files and
libraries.

Usually, at least one library file is specified in the input list. A library is just a collection of AOF
files stored in an ARM Object Library Format file. The important differences between object files
and libraries are:

• each object file in the input list appears in the output unconditionally, whether or not
anything refers to it (although unused areas will be eliminated from outputs of type AIF)

• a module from a library is included in the output if, and only if, some object file or some
already-included library module makes a non-weak reference to it

The linker processes its input list as follows:

• First, the object files are linked together, ignoring the libraries. Usually there will be a
resultant set of references to as yet undefined symbols. Some of these may be weak:
references which are allowed to remain unsatisfied, and which do not cause a library
member to be loaded.

Then, in the order that they appear in the input file list, the libraries are processed as follows:

• the library is searched for members containing symbol definitions which match currently
unsatisfied, non-weak references

• each such member is loaded, satisfying some unsatisfied references (including possibly
weak ones), and maybe, creating new unsatisfied references (again, maybe including
weak ones)

• the search is repeated until no further members are loaded

Each library is processed in turn, so a reference from a member of a later library to a member of
an earlier library cannot be satisfied. As a result, circular dependencies between libraries are
forbidden.

It is an error if any non-weak reference remains unsatisfied at the end of a linking operation, other
than one which generates partially-linked, relocatable AOF.

To forcibly include a library module put the name(s) of the library module(s) in round brackets
after the library name. Note that there should be no space between the library name and the
opening bracket. Multiple module names must be separated by a comma. There must be no
space in the list of module names.

Linker

6-11Reference Manual
ARM DUI 0020D

6.4 Area Placement and Sorting Rules
Each object module in the input list, and each subsequently included library module contains at
least one area. AOF areas are the fragments of code and data manipulated by the linker. In all
output types except AOF, except where overridden by a -FIRST or -LAST option, the linker
sorts the set of areas first by attribute, then by area name.

The read-only parts of the image are then collected into one contiguous region which can be
protected at run time on systems that have memory management hardware. Page alignment
between the read-only and read-write portions of the image can be forced using the area
alignment attribute of AOF areas, set using the ALIGN=n attribute of the ARM assembler AREA
directive.

Portions of the image associated with a particular language run-time system are collected
together into a minimum number of contiguous regions, (this applies particularly to code regions
which may have associated exception handling mechanisms). More precisely, the linker orders
areas by attribute as follows:

read-only code
read-only based data
read-only data
read-write code
based data
other initialised data
zero-initialised (uninitialised) data
debugging tables

In some image types (AIF, for example), zero-initialised data is created at image initialisation
time and does not appear in the image itself.

Debugging tables are included only if the linker’s -Debug option is used. A debugger is
expected to retrieve the debugging tables before the image is entered. The image is free to
overwrite its debugging tables once it has started executing.

Areas unordered by attribute are ordered by AREA name. The comparison of names is
lexicographical and case sensitive, using the ASCII collation sequence for characters.
Identically attributed and named areas are ordered according to their relative positions in the
input list.

The -FIRST and -LAST options can be used to force particular areas to be placed first or last,
regardless of their attributes, names or positions in the input list.

As a consequence of these rules, the positioning of identically attributed and named areas
included from libraries is not predictable. However, if library L1 precedes library L2 in the input
list, then all areas included from L1 will precede each area included from L2. If more precise
positioning is required, you can extract modules manually, and include them in the input list.

Once areas have been ordered and the base address has been fixed, the linker may insert
padding to force each area to start at an address which is a multiple of 2(area alignment) (but most
commonly, area alignment is 2, requiring only word alignment).

Linker

6-12 Reference Manual
ARM DUI 0020D

6.5 Linker Pre-Defined Symbols
There are several symbols which the Linker defines independently of any of its input files.
The most important of these start with the string Image$$. These symbols, along with all other
external names containing $$, are reserved by ARM. See ➲6.14.8 Initialisation on page 6-46 for
details of the symbols generated when using the –SCATTER option.

Image-related symbols

Image$$RO$$Base Address of the start of the read-only area (usually contains code)

Image$$RO$$Limit Address of the byte beyond the end of the read-only area

Image$$RW$$Base Address of the start of the read/write area (usually contains data)

Image$$RW$$Limit Address of the byte beyond the end of the read/write area

Image$$ZI$$Base Address of the start of the 0-initialised area (zeroed at image
load or start-up time)

Image$$ZI$$Limit Address of the byte beyond the end of the zero-initialised area

Object/area-related symbols

areaname$$Base The address of the start of the consolidated area called
areaname

areaname$$Limit The address of the byte beyond the end of the consolidated area
called areaname

Image$$RO$$Limit need not be the same as Image$$RW$$Base, although it often will be in
simple cases of -AIF and -BIN output formats. Image$$RW$$Base is generally different from
Image$$RO$$Limit if:

• the -DATA option is used to set the image’s data base (Image$$RW$$Base);

• either of the -SHL or -OVerlay options is used to create a shared library or overlaid
image, respectively

It is poor programming practise to rely on Image$$RO$$Limit being the same as
Image$$RW$$Base.

Note: The read/write (data) area may contain code, as programs sometimes modify themselves (or
better, generate code and execute it). Similarly, the read-only (code) area may contain read-only
data, (for example string literals, floating-point constants, ANSI C const data).

These symbols can be imported and used as relocatable addresses by assembly language
programs, or referred to as extern addresses from C (using the -fC compiler option which
allows dollars in identifiers). Image region bases and limits are often of use to programming
language run-time systems.

Other image formats (for example shared library format) have linker-defined symbolic values
associated with them. These are documented in the relevant sections in this chapter.

Linker

6-13Reference Manual
ARM DUI 0020D

6.6 The Handling of Relocation Directives
The linker implements the relocation directives defined by ARM Object Format. In this section
you will read about their function.

6.6.1 The subject field

A relocation directive describes the relocation of a single subject field, the value of which may
be:

• a byte

• a halfword (2 bytes)

• a word (4 bytes)

• a value derived from a suitable sequence of instructions

The relocation of a word value cannot overflow. In the other cases, overflow is detected and
faulted by the linker. The relocation of sequences of instructions is discussed later in this section.

6.6.2 The relocation value

A relocation directive either refers to the value of a symbol, or to the base address of an AOF
area in the same object file as the AOF area containing the directive. This value is called the
relocation value, and the subject field is modified by it, as described in the following subsections.

6.6.3 PC-relative relocation

A PC-relative relocation directive requests the following modification of the subject field:

subject-field = subject-field + relocation-value
- base-of-area-containing (subject-field)

A special case of PC-relative relocation occurs when the relocation value is specified to be the
base of the area containing the subject field. In this case, the relocation value is not added and:

subject-field = subject-field - base-of-area-containing
(subject-field)

which caters for a PC-relative branch to a fixed location, for example.

6.6.4 Forcing use of an inter-link-unit entry point

A second special case of PC-relative relocation (specified by REL_B being set in the rel_flags
field—see ➲6.7 ARM Object Format on page 6-15 for details) applies when the relocation value
is the value of a code symbol. It requests that the inter-link-unit value of the symbol be used,
rather than the intra-link-unit value. Unless the symbol is marked with the SYM_LEAFAT
attribute (by a compiler or via the assembler’s EXPORT directive), the inter-link-unit value will be
4 bytes beyond the intra-link-unit value.

This directive allows the tail-call optimisation to be performed on reentrant code. For more
information about tail call continuation, please see ➲19.5 Function Entry on page 19-16.

Linker

6-14 Reference Manual
ARM DUI 0020D

6.6.5 Additive relocation

A plain additive relocation directive requests that the subject field be modified as follows:

subject-field = subject-field + relocation-value

6.6.6 Based area relocation

A based area relocation directive relocates a subject field by the offset of the relocation value
within the consolidated area containing it:

subject-field = subject-field + relocation-value
 - base-of-area-group-containing (relocation-value)

For example, when compiling reentrant code, the C compiler places address constants in an
adcon area called sb$$adcons based on register sb, and generates code to load them using
sb-relative LDRs. At link time, separate adcon areas are merged, so sb no longer points where
presumed at compile time (except for the first area in the consolidated group). The offset field of
each LDR (other than those in the first area) must be modified by the offset of the base of the
appropriate adcon area in the consolidated group:

LDR-offset = LDR-offset + base-of-my-sb$$adcons-area
- sb$$adcons$$Base

6.6.7 The relocation of instruction sequences

The linker recognises the following instruction sequences as defining a relocatable value:

• a B or BL

• an LDR or STR

• 1 to 3 ADD or SUB instructions, having a common destination register and a common
intermediate source register, and optionally followed by an LDR or STR with that register
as base

For example, the following is a relocatable instruction sequence:

ADD Rb, rx, #V1
ADD Rb, Rb, #V2
LDR ry, [Rb, #V3]

with value V = V1+V2+V3 .

The length of sequence recognised may be further restricted to 1, 2 or 3 instructions only by the
relocation directive itself. For more information, see ➲6.6 The Handling of Relocation Directives
on page 6-13.

Thumb: If bit 0 of the relocation offset is set, the linker relocates a Thumb instruction sequence.
The only Thumb instruction sequence that can be relocated is the BL instruction

Linker

6-15Reference Manual
ARM DUI 0020D

After relocation, the new value of V is split between the instructions as follows:

• If the original offset in the LDR or STR can be preserved, it will be preserved. This is
possible if the difference between the new value and the original LDR offset can be
encoded in the available number of ADD/SUB instructions. This preservation allows a
sequence of ADDs and SUBs to compute a common base address for several following
LDRs or STRs.

The remainder of the new value is split between the ADDs or SUBs as follows:

• If the new value is negative, it is negated, ADDs are changed to SUBs (or vice versa)
and LDR/STR up is changed to LDR/STR down (or vice versa).

• Each ADD or SUB instruction, in turn, removes the most significant part of the (now
positive) new value, which can be represented by an 8-bit constant, shifted left by an
even number of bit positions which can be represented by an ARM data-processing
instruction’s immediate value.

If there is no following LDR or STR, and the value remaining is non-zero, the relocation has
overflowed.

If there is a following LDR or STR, any value remaining is assigned to it as an immediate offset.
If this value is greater than 4095, then the relocation has overflowed.

In the relocation of a B or BL instruction, word offsets are converted to and from byte offsets. A B
or BL is always relocated by itself, never in conjunction with any other instruction.

6.7 ARM Object Format
An object file written in ARM Object Format (AOF) consists of any number of named, attributed
areas. Attributes include: read-only, reentrant, code, data, position independent etc.—for details
see ➲21.2.11 Attributes + alignment on page 21-16). Typically, a compiled AOF file contains a
read-only code area, and a read-write data area (a zero-initialised data area is also common,
and re-entrant code uses a separate based area for address constants).

Associated with each area is a (possibly empty) list of relocation directives which describe
locations that the linker will have to update when:

• a non-zero base address is assigned to the area

• a symbolic reference is resolved.

Each relocation directive may be given relative to the (not yet assigned) base address of an area
in the same AOF file, or relative to a symbol in the symbol table. Each symbol may:

• have a definition within its containing object file which is local to the object file

• have a definition within the object file which is visible globally (to all object files in the
link step)

• be a reference to a symbol defined in some other object file.

Linker

6-16 Reference Manual
ARM DUI 0020D

When AOF is used as an output format, the linker does the following with its input object files:

• merges similarly named and attributed areas

• performs PC-relative relocations between merged areas

• re-writes symbol-relative relocation directives between merged areas, as area-based
relocation directives belonging to the merged area

• minimises the symbol table

Unresolved references remain unresolved, and the output AOF file may be used as the input to
a further link step.

6.8 Plain Binary Format
An image in plain binary format is a sequence of bytes to be loaded into memory at a known
address. How this address is communicated to the loader, and where to enter the loaded image,
are not the business of the linker.

In order to produce a plain binary output, there must be:

• no unresolved symbolic references between the input objects, (each reference must
resolve directly or via an input library)

• an absolute base address (given by the -Base option to armlink)

• complete performance of all relocation directives

Input areas having the read-only attribute are placed at the low-address end of the image;
initialised writeable areas follow; zero initialised areas are consolidated at the end of the file
where a block of zeroes of the appropriate size is written.

Note:if the binary file is part of a scatter loaded application, the zero initialised areas are not
present. The initialisation information generated by the linker enables the application initialisation
to generate the zero initialised areas at run time.

6.9 ARM Image Format
At its simplest, a file in ARM Image Format (AIF) is a plain binary image preceded by a small (128
byte) header which describes what follows. At its most sophisticated, AIF can be considered to
be a collection of envelopes which enwrap a plain binary image, as follows:

• The outer wrapper allows the inner layers to be compressed using any compression
algorithm to which you have access which supports efficient decompression at image
load time, either by the loader or by the loaded image itself. In particular, AIF defines a
simple structure for images which decompress themselves, consisting of: AIF header;
compressed contents; decompression tables; decompression code.

• The next layer of wrapping deals with relocating the image to its load address. Three
options are supported: link-time relocation; load-time relocation to whatever address the
image has been loaded at; load time relocation to a fixed offset from the top of memory.
In particular, an AIF image is capable of self-relocation or self-location (to the high
address end of memory), followed by self-relocation.

Linker

6-17Reference Manual
ARM DUI 0020D

• Once an AIF image has been decompressed and relocated, it can create its own
zero-initialised area.

• Finally, the enwrapped image is entered at the (unique) entry point found by the linker
in the set of input object modules.

AIF flavours

Three flavours of AIF are supported:

Executable AIF can be loaded at its load address and entered at the same point (at
the first word of the AIF header). It prepares itself for execution by
relocating itself, zeroing its own zero-initialised data, etc. An
executable AIF image is loaded at its load address (which may be
arbitrary if the image is relocatable), and entered at the same
address. Eventually, control passes to a branch to the image’s entry
point.

Non-executable AIF must be processed by an image loader, which loads the image at its
load address and prepares it for execution as detailed in the AIF
header. The header is then discarded.

Extended AIF is not directly executable. It contains a scatter loaded image. It has
an AIF header which points to a chain of load regions within the file.
The image loader should place these regions at the correct place in
memory.

AIF output

In order to produce an AIF output there must be:

• no unresolved symbolic references between the input objects, (each reference must
resolve directly or via an input library);

• exactly one input object containing a program entry point (or no input area containing
an entry point, and the entry point given using an -Entry option);

• either an absolute load address or the relocatable option given to the linker, (the
self-location option is system-dependent).

AIF header

The AIF header is specified fully in ➲21.1.2 The Layout of AIF on page 21-4.

The contents of some fields of the AIF header (such as the program exit instruction) can be
customised by providing a template for the header in an area with the name AIF_HDR and a
length of 128 bytes, in the first object module in the list of object modules given to armlink.

Similarly, the self-move and self-relocation code appended by the linker to a relocatable AIF
image can customised by providing an area with the name AIF_RELOC, also in the first object
module in the input list.

Linker

6-18 Reference Manual
ARM DUI 0020D

6.10 Extended Intellec Hex Format (IHF)
This format is for small (< 64KB) images, such as those destined for ROM. IHF is essentially a
plain binary format, encoded as 32-bit hex values and checksummed. All the restrictions of plain
binary format apply to the generation of IHF.

6.11 ARM Shared Library Format
ARM Shared Library format directly supports:

• shared code in ROM

• single-address-space, loadable, shared libraries.

Output in ARM Shared Library Format generates 2 files

• a read-only, position-independent, reentrant shared library, written as a plain binary file

• a stub file containing read-write data, entry vectors, etc., written in ARM Object Format,
with which clients of the shared library will subsequently be linked

Optionally, a shared library can contain a read-only copy of its initialised static data which can be
copied at run time to a zero-initialised place holder in the stub. Such data must be free of
relocation directives.

The outputs are created from:

• a set of input object files, between/from which there must be no unresolved symbolic
references

• a description of the shared library which includes the list of symbols to be exported from
the library to its clients and a description of the data areas to be initialised at run time by
copying from the shared library image

Code to be placed in a shared library must be compiled with the reentrant option, or if assembled,
must conform to the shared library addressing architecture described in ➲6.11.2 The shared
library addressing architecture on page 6-20.

6.11.1 Stub properties

The linker can generate a non-reentrant stub for use by non-reentrant client applications, or a
reentrant stub which can be linked into another shared library or reentrant application.

The details of how a stub is initialised at load time or run time (so that a call to a stub entry point
becomes a call to the corresponding library function) are system-specific. The linker provides a
general mechanism for attaching code and data to both the library and the stub to support this.

Linker

6-19Reference Manual
ARM DUI 0020D

In particular:

• The linker appends a table of offsets of library entry points (the Exported Function
Table or EFT) to the library, followed by a parameter block specified in the shared
library description input to the linker.

• The linker writes the same parameter block to the stub, and initialises the stub entry
vector so that the first call through any element of it is to the dynamic linking code. The
dynamic linking code can patch the stub entry vector given only a pointer to its shared
library’s EFT. After dynamic linking, execution resumes by calling through the stub
vector entry which initially invoked the dynamic linking code. The dynamic linking code
will not be called again (for this shared library).

• If the library contains a read-only copy of its initialised static data, the linker writes the
length and relocatable address of the place holder immediately before the stub
parameter block, and writes the length and offset of the initialising data immediately
before the library parameter block. For uniformity of dynamic linking, the length and
address or offset can be zero, denoting that neither initialising data nor a stub place
holder are present in this shared library (though they may be present in other shared
libraries handled by the same dynamic linker).

Provided the stub entry vector is writeable, the only system-specific part of the matching of the
stub to (a compatible version of) its library is the location of the library itself. In general, this is
expected to be a system service, though it would be equally possible to search a table at a fixed
address, or simply to search the whole of ROM for a named library (the linker provides support
for prepending a name, the offset of the EFT, and anything else that can be assembled to a
shared library).

Alternatively, in support of more protected systems, the patching code can simply be a call to a
system service which locates the matching library and patches the entry vector.

The patching of shared library entry vectors by the loader at load time is not directly supported.
However, it would be a relatively simple extension to AIF to support this. In general, it is
considered more efficient to patch on demand in systems with multiple shared libraries.

The user-specified parameter block mechanism allows fine control over, and diagnosis of the
compatibility of a stub with a version of its shared library. This supports a variety of approaches
to foreverness, without mandating foreverness where it would be inappropriate. This issue is
discussed in ➲6.11.5 Versions, compatibility and foreverness on page 6-24.

Linker

6-20 Reference Manual
ARM DUI 0020D

6.11.2 The shared library addressing architecture

The central issue for shared objects is that of addressing their clients’ static data.

On ARM processors, it is very difficult, and/or inefficient, to avoid the use of address constants
when addressing static data, particularly the static data of separately compiled or assembled
objects; (an address constant is a pointer which has its value bound at link time—in effect, it is
an execution-time constant).

Typically, in non-reentrant code, these address constants are embedded in each separately
compiled or assembled code segment, and are, in turn, addressed relative to the program
counter. In this organisation, all threadings of the code address the same, link-time bound static
data.

In a reentrant object, these address constants (or adcons) are collected into a separate area (in
AOF terminology called a based area) which is addressed via the sb register. When reentrant
objects are linked together, the linker merges these adcon areas into a single, contiguous adcon
vector, and relocates the references into the adcon vector appropriately (usually by adjusting the
offset of an LDR …,[sb, offset] instruction). The output of this process is termed a link unit.

In this organisation, it is possible for different threadings of the code to address different static
data, and for the binding of the code to its data to be delayed until execution time, (an excellent
idea if the code has to be committed to ROM, even if re-entrancy is not required).

When control passes into a new link unit, a new value of sb has to be established; when control
returns, the old value must be restored. A call between two separately linked program fragments
is called an inter link unit call, or inter-LU call. The inter-LU calls are precisely the calls between
a shared library’s stub and the library’s matching entry points.

Because an LDR instruction has a limited (4KB) offset, the linker packs adcons into the
low-address part of the based-sb area. Currently there can be no more than 1K adcons in a client
application (but this number seems adequate to support quite large programs using several
Megabytes of shareable code).

The linker places the data for the inter-LU entry veneers immediately after the adcon vector (still
in the based-sb area). If the stub is reentrant (to support linking into other shared libraries), then
the inter-LU entry data consists of:

• the data part of the inter-LU veneer for each direct inter-LU call (which is addressed
sb-relative from the separate inter-LU code part);

• the entry veneer for each address-taken library function (ie. for each function that could
be invoked via a function pointer).

If the stub is not reentrant, then the inter-LU entry data is an array of function variable veneers,
one for each directly exported or address-taken function in the library.

A reentrant function called via a function pointer or from a non-reentrant caller, must have its sb
value loaded pc-relative, as there is no sb value relative to which to load it. This forces the entry
veneer to be part of the client’s private data (or there could be no re-entrancy).

Linker

6-21Reference Manual
ARM DUI 0020D

6.11.3 Including data areas in a shared library

Usually, a shared library only includes areas which have both the CODE and READONLY
attributes.

When you ask for a read-only copy of a data area to be included in a shared library, the linker
checks it is a simple, initialised data area. The following cannot be included in a shared library:

• zero-initialised data (these always remain in the stub);

• COMMON data;

• stub data from the stubs of other shared libraries with which this library is being linked;

• inter-link-unit entry data and address constants.

When an area is found to be suitable for inclusion in a shared library, the following is done:

A clone of the area is created with the name SHL$$data and the attribute READONLY. It
inherits its initialising data from the original area but it inherits no symbol definitions.

The original area is renamed $$0 and given the attribute 0INIT. It inherits all of the symbols
defined in the original area.

Area renaming is essential to ensure that multiple input areas will be sorted identically by the
linker in both the stub and the shareable library, and that both the placeholder and its initialising
data will be sorted into contiguous chunks. This guarantee of identical ordering—together with
the absence of relocation directives—allows the placeholder to be initialised by directly copying
its initialising image from the sharable library.

Names containing $$ are reserved to the implementors of the ARM software development tools,
so these linker-invented area names cannot clash with any area name you choose yourself.

6.11.4 Entry veneers

The inter-LU code for a direct, reentrant inter-LU call is:

FunctionName
 ADD ip, sb, #V1; calculate offset of veneer data from sb
 ADD ip, ip, #V2
 LDMIA ip, {ip, pc}; load new-sb and pc values

This allows up to 32K entry veneers to be addressed, (V1 and V2 are jointly relocated by the
linker and support a word offset in the range 0-65K). The corresponding inter-LU data is:

 DCD new-sb; sb value for called link unit
 DCD entry-point ; address of the library entry point

Both these values are created when the stub is patched, as introduced above and described in
detail on the following pages.

Linker

6-22 Reference Manual
ARM DUI 0020D

The inter-LU code for an indirect or non-reentrant inter-LU call is:

FunctionName
 ADD ip, pc, #0 ; ip = pc+8
 LDMIA ip, {ip, pc} ; load new-sb and pc values
 DCD new-sb ; sb value for called link unit
 DCD entry-point ; address of the library entry

; point

Again, the data values are created when the stub is patched.

Entry veneer initial values

The linker initialises the data part of each entry veneer as follows:

• new-sb: the index of the entry point in the array of entry points (note that the entries may
not be of uniform length in the reentrant case);

• entry-point: the address of a 4-word code block, placed at the end of the inter-LU data
by the linker.

Overall, an adcon/inter-LU-data area for a link unit has the layout:

Base ; sb points here
adcons ; up to 1K adcons...
inter-LU data ; inter-LU fn-call veneer data

End
 STMFD sp!, {r0-r6,r14}; save work registers and lr
 LDR r0, End-4 ; load address of End
 B |__rt_dynlink| ; do the dynamic linking...
 DCD Params - Base ; offset to sb-value
Params

parameter block ; user-specified parameters

Note the assumption that a stack has been created before any attempt is made to access the
shared library. Note also that the word preceding End is initialised to the address of End.

Entry veneer patching

A simple version of the dynamic linking code, __rt_dynlink , referred to above, can be
implemented as described in this section.

On entry to __rt_dynlink , a copy of the pointer is saved to the code/parameter block at the
end of the inter-LU data area, and a bound is calculated on the stub size (the entries are in index
order).

|__rt_dynlink|
 MOV r6, r0
 LDR r5, [r6, #-8] ; max-entry-index
 ADD r5, r5, #1 ; # max entries in stub
 MOV r4, ip ; resume index

Linker

6-23Reference Manual
ARM DUI 0020D

Then it is necessary to locate the matching library, which the following fragment does in a simple
system-specific fashion. Note that in a library which contains no read-only static data image,
r0+16 identifies the user parameter block (at the end of the inter-LU data area); if the library
contains an initialising image for its static data then r0+24 identifies the user parameter block.

Here, the library location function is shown as a SWI which takes as its argument in r0 a pointer
to the user parameter block and returns the address of the matching External Function Table in
r0:

 ADD r0, r6, #24 ; stub parameter block address
 SWI Get_EFT_Address ; are you there?
 BVS Botched ; system-dependent

R0 now points to the EFT, which begins with the number of entries in it. A simple sanity check
is that if there are fewer entries in the library than in the stub, it has probably been patched
incorrectly.

 LDR ip, [r0] ; #entries in lib
 CMPS ip, r5 ; >= #max entries in stub?
 BLT Botched ; no, botched it...

If the shared library contains data to be copied into the stub then check the length to copy:

 LDR ip, [r6, #16] ; stub data length
 BIC ip, ip, #3 ; word aligned, I insist...
 ADD r3, r6, #4
 LDR r3, [r3, r5, LSL #2]; library data length
 CMPS r3, ip
 BNE Botched ; library and stub lengths differ

Checking the stub data length and library data length match is a naive, but low-cost, way to
check the library and the stub are compatible. Now copy the static data from the library to the
stub:

 LDR r3, [r6, #20] ; stub data destination
 SUB r2, r0, ip ; library data precedes the EFT
01 SUBS ip, ip, #4 ; word by word copy loop
 LDRGE r1, [r2], #4
 STRGE r1, [r3], #4
 BGE %B01

Then initialise the entry vectors. First, the sb value is computed for the callee:

 LDR ip, [r6, #12] ; length of inter-LU data area
 ADD r3, r6, #24 ; end of data area...
 SUB r3, r3, ip ; start of data area = sb value

If there is no static data in the library, #24 above becomes #16.

Then the following loop works backwards through the EFT indices, and backwards through the
inter-LU data area, picking out the indices of the EFT entries which need to be patched with an
sb , entry-point pair. Register Ip still holds the index of the entry that caused arrival at this
point, which is the index of the entry to be retried after patching the stub. The corresponding retry

Linker

6-24 Reference Manual
ARM DUI 0020D

address is remembered in r14, which was saved by the code fragment at the end of the inter-LU
data area before it branched to __rt_dynlink . A small complication is that the step back
through a non-reentrant stub may be either 8 bytes or 16 bytes. However, there can be no
confusion between an index (a small integer) and an ADD instruction, which has some top bits
set.

 LDR r2, [r6, #-8]! ; index of stub entry
00 SUB ip, r5, #1 ; index of the lib entry
 CMPS ip, r2 ; is this lib entry in the stub?
 SUBGT r5, r5, #1 ; no, skip it
 BGT %B00
 CMPS r2, r4 ; found the retry index?
 MOVEQ lr, r6 ; yes: remember retry address
 LDR ip, [r0, r5, lsl #2] ; entry point offset
 ADD ip, ip, r0 ; entry point address
 STMIA r6, {r3, ip} ; save {sb, pc}
 LDR r2, [r6, #-8]! ; load index and decrement r6...
 TST r2, #&ff000000 ; ... or if loaded an instr?
 LDRNE r2, [r6, #-8]! ; ...load index and decrement r6
 SUBS r5, r5, #1 ; #EFT entries left...
 BGT %B00

Finally, when the vector has been patched, the failed call can be retried:

 MOV ip, lr ; retry address
 LDMFD sp!, {r0-r6, lr} ; restore saved regs
 LDMIA ip, {ip, pc} ; and retry the call

6.11.5 Versions, compatibility and foreverness

The mechanisms described so far are very general and, of themselves, give no guarantee that a
stub and a library will be compatible, unless the stub and the library were the complementary
components produced by a single link operation.

Often, in systems using shared libraries, stubs are bound into applications which must continue
to run when a new release of the library is installed. This requirement is especially compelling
when applications are constructed by third party vendors or end users.

The general requirements for compatibility are as follows:

• a library must be at least as new as the calling stub;

• libraries can only be extended, and then only by disjoint extension (adding new entries
to a library, or by giving to existing entries new interpretations to previously unused
parameter value combinations).

In general, the compatibility of a stub and a library can be reduced to the compatibility of their
respective versions. The ARM shared library mechanism does not mandate how versions are
described, but provides an open-ended parameter block mechanism which can be used to
encode version information to suit the intended usage.

Linker

6-25Reference Manual
ARM DUI 0020D

Because the addresses of library entry points are not bound into a stub until run-time, the only
foreverness guarantees that a library must give are:

• its entry points are in the same order in its EFT (this is a property of the shared library
description given to the linker, not of the library’s implementation);

• the behaviour of each exported function must be maintained compatibly between
releases (beware that it is genuinely difficult to prevent users relying on unintended
behaviour—the curse of bug compatibility).

Because a stub contains the indices of the entry points it needs, it is harmless to add new entry
points to a library: the dynamic linking code simply ignores them. Of course, they must be added
to the end of the list of exported functions if the first property, above, is to be maintained.

For libraries which export only code, and which make no use of static data, compatibility is
straightforward to manage. Use of static data is more hazardous, and the direct export of it is
positively lethal.

If a static data symbol is exported from a shared library, what is actually exported is a symbol in
the library’s stub. This symbol is bound when the stub is linked into an application and, from that
instant onwards, cannot be unbound. Thus the direct export of a data symbol fixes the offset and
length of the corresponding datum in the shared library’s data area, forever (ie. until the next
incompatible release…).

The linker does not fault the direct export of data symbols because the ARM shared library
mechanism may not be being used to build a shared library, but is instead being used to
structure applications for ROM. In this case a prohibition could be irksome. Those specifying or
building genuine shared libraries need to be aware of this issue, and should generally not make
use of directly exported data symbols.

If data must be exported directly then:

• only export data which has very stable specifications (semantics, size, alignment, etc.)

• place this data first in the library’s data area, to allow all other non-exported data to
change size and shape in future releases (subject to its total size remaining constant)

If a shared library makes any use of static data, it is prudent to include some unused space, so
that non-exported data may change size and shape (within limits) in future releases without
increasing the total size of the data area. Remember that if a forever binary guarantee is given,
the size of the data area may never be increased.

In practice, it is rare for the direct export of static data to be genuinely necessary. Often a
function can be written to take a pointer to its static data as an argument, or used to return the
address of the relevant static data (thus delaying the binding of the offset and size of the datum
until run-time, and avoiding the foreverness trap). It is only if references to a datum are frequent
and ubiquitous that direct export is unavoidable. For example, a shared library implementation
of an ANSI C library might export directly errno , stdin , stdout and stderr , (and even
errno could be replaced by (*__errno()) , with few implications).

Linker

6-26 Reference Manual
ARM DUI 0020D

6.11.6 Describing a shared library to the linker

A shared library description consists of a sequence of lines. On all lines, leading white space
(blank, tab, VT, CR) is ignored.

If the first significant character of a line is:

; the line is ignored. Lines beginning with ‘;’ can be used to embed comments in a
shared library description. A comment can also follow a \ which continues a
parameter block description.

> the line gives the name and parameter block for the library. Such lines can continue
over several contiguous physical lines by ending all but the last line with \ :

> testlib \ ; the name of the library image file
 "testlib" \ ; the text name of the library ->

\ ; parameter block
 101 \ ; the library version number
 0x80000001

The first word following the > is the name of the file to hold the shared library binary image; the
argument to the linker’s -Output option is used to name the stub. Following tokens are
parameter block entries, each of which is either a quoted string literal or a 32-bit integer. In the
parameter block, each entry begins on a 4-byte boundary.

Within a quoted string literal, the characters " and \ must be preceded by \ (the same convention
as in C). Characters of a string are packed into the parameter block in ascending address order,
followed by a terminating NUL and NUL padding to the next 4-byte boundary.

An integer is written in any way acceptable to the ANSI C function strtoul() with a base of 0,
that is, as an optional - followed by one of:

• a sequence of decimal digits, not beginning with 0

• a 0 followed by a sequence of octal digits

• 0x or 0X followed by a sequence of hexadecimal digits

Values which overflow or are otherwise invalid are not diagnosed.

A line beginning with a + describes input data areas to be included, read-only, in the shared
library and copied at run time to placeholders in the library’s clients. The general format is a list
of object (area) pairs instructing the linker to include area area from object object :

+ object (area) object (area) ...

If object is omitted any object in the input list will match. For example:

+ (C$$data)

instructs the linker to include all areas called C$$data , whatever objects they are from.

If area is omitted too, then all suitable input data areas will be included in the library. This is the
most common usage. For example:

+ ()

Linker

6-27Reference Manual
ARM DUI 0020D

Finally, a ‘+’ on its own excludes all input data areas from the shared library but instructs the
linker to write zero length and address or offset words immediately preceding the stub and
library parameter blocks, for uniformity of dynamic linking.

All remaining non-comment lines are taken to be the names of library entry points which are to
be exported, directly or via function pointers. Each such line has one of the following three forms:

entry-name Names a directly exported global symbol: a direct entry point to the
library, or the name of an exported datum (deprecated).

entry-name() Names a global code symbol which is exported indirectly via a
function pointer. Such a symbol may also be exported directly.

entry-name(object-name)

Names a non-exported function which is exported from the library by
being passed as a function argument, or by having its address taken
by a function pointer.

To clarify this, suppose the library contains:

void f1(...) {...}
void f2(...) {...}
static void f3(...) {...} /* from object module o3.o */
static void (*fp2)(...) = f2;
void (*pf3)(...) = f3;

...and that f1 is to be exported directly. Then a suitable description is:

f1
f2()
f3(o3)
pf3 /* deprecated direct export of a datum */

Note: f2 and f3 have to be listed even though they are not directly exported, so that function variable
veneers can be created for them.

f3 must be qualified by its object module name, as there could be several non-exported
functions with the same name (each in a differently named object module). Note that the module
name, not the name of the file containing the object module, is used to qualify the function name.

If f2 were to be exported directly then the following list of entry points would be appropriate:

f1
f2
f2()
f3(o3)
pf3

Unless all address-taken functions are included in the export list, the linker will complain and
refuse to make a shared library.

Linker

6-28 Reference Manual
ARM DUI 0020D

6.11.7 Linker pre-defined symbols

While a shared library is being constructed the linker defines several useful symbols:

EFT$$Offset offset of the External Function Table from the beginning of the
shared library

EFT$$Params offset of the shared library’s parameter block from its beginning

$$0$$Base the (relocatable) address of the zero-initialised place holder in
the stub

SHL$$data$$Base offset of the start of the read-only copy of the data L ‘from the
beginning of the shared library

SHL$$data$$Size size of the shared library’s data section, which is also the size of
the place holder in the stub

EFT$$Offset and EFT$$Params are exported to the stub and may be referred to in following
link steps; the others exist only while the shared library is being constructed.

6.12 Overlays
The linker supports both static and dynamic overlays by generating tables through which calls to
overlay segments are indirected. If the relevant overlay segments is not loaded, a section of code
called the overlay manager is called to load the segment. Although the linker generates
references to the overlay manager, the linker does not provide it. An object file containing the
overlay manager must be supplied in the link command. For a detailed description of the overlay
manager, see ➲6.13 The Overlay Manager on page 6-32.

6.12.1 Static overlays

In the static case, a simple 2-dimensional overlay scheme is supported. There is one root
segment, and as many memory partitions as specified by the user (for example, 1_, 2_, etc.).
Within each partition, some number of overlay segments (for example, 1_1, 1_2, …) share the
same area of memory. You specify the contents of each overlay segment and the linker
calculates the size of each partition, allowing sufficient space for the largest segment in it.
All addresses are calculated at link time so statically overlaid programs are not relocatable.
A hypothetical example of the memory map for a statically overlaid program might be:

Thumb: It is not possible to enter/exit an overlay segment in Thumb state. Hence all the external
callable interfaces in a overlay segment should be ARM state code.

2_1 2_2 2_3 high address

1_1 1_2 1_3 1_4

root segment low address

Linker

6-29Reference Manual
ARM DUI 0020D

Segments 1_1, 1_2, 1_3 and 1_4 share the same area of memory. Only one of these segments
can be loaded at any given instant; the remainder must be on backing store.

Similarly, segments 2_1, 2_2 and 2_3 share the 2_ area of memory, but this is entirely separate
from the 1_ partition.

It is a current restriction that an overlay segment name is of the form partition_segment and
contains 10 or fewer characters. Note that there is no requirement for partition and segment
to be numeric as shown in the example: any alphanumeric characters are acceptable.

6.12.2 Dynamic overlays

A dynamic or relocatable overlay scheme is obtained by specifying the -Relocatable
command-line option. In this case:

• the root segment is a (load-time) relocatable AIF image;

• each overlay segment is a plain binary image with relocation directives appended.

When using relocatable overlays, it is expected that:

• the overlay manager will allocate memory for a segment when it is first referenced;

• a segment will be unloaded, and the memory it occupies freed, by an explicit call to the
overlay manager.

Here, you give each overlay segment a simple name (no embedded underscore), and let the
linker link each as if it were in its own partition (dynamically allocated by the overlay manager).

Nevertheless, if a two-dimensional naming scheme is used, the linker will generate segment
clash tables (see below), and segments can be unloaded implicitly by the overlay manager when
a clashing segment is loaded. In effect, this supports the classification of dynamic overlay
segments into disjoint sets of not co-resident objects.

A dynamic overlay segment (including a root segment) is followed by a sequence of relocation
directives. The sequence is terminated by a word containing –1. Each directive is a 28-bit byte
offset of a word or instruction to be relocated, together with a flag nibble in the most significant
4 bits of the word. Flag nibbles have the following meanings:

0 relocate a word in the root segment by the difference between the address at
which the root was loaded and the address at which it was linked

1 relocate a word in an overlay segment by the address of the root

2 relocate a word in an overlay segment by the address of the segment

3 relocate a B or BL from an overlay segment to the root segment, by the difference
(in words) between the segment’s address and the root’s address

7 relocate a B or BL from the root segment to an overlay segment, by the difference
(in words) between the root’s address and the segment’s address, (such
relocation directives always refer to a PCIT entry in an overlay segment, which is
used to initialise a PCIT section in the root when the overlay segment is loaded;
see ➲6.13 The Overlay Manager on page 6-32 for further explanation)

Linker

6-30 Reference Manual
ARM DUI 0020D

6.12.3 Assignment of AREAs to overlay segments

The linker assigns AOF AREAs to overlay segments under user control (see below). Usually, a
compiler produces one code AREA and one data AREA for each source file (called C$$code and
C$$data when generated by the C compiler). The C compiler option -ZO allows each separate
function to be compiled into a separate code AREA, allowing finer control of the assignment of
functions to overlay segments, (but at the cost of slightly enlarged code and enlarged object
files). The user controls the overlay structure by describing the assignment of certain AREAs to
overlay segments. For each remaining AREA in the link list, the linker will act as follows:

• if all references to the AREA are from the same overlay segment, the AREA is included
in that segment, otherwise

• the AREA is included in the root segment.

This strategy can never make an overlaid program use more memory than if the linker put all
remaining AREAs in the root, but it can sometimes make it smaller.

By default, only code AREAs are included in overlay segments. Data AREAs can be forcibly
included, but it is the user’s responsibility to ensure that doing so is meaningful and safe.

On disc, an overlaid program is organised as a directory containing a root image and a collection
of overlay segments. The name of the directory is specified to the Linker as the argument to its
-Output flag.

The linker creates the following components within the application directory:

root segment root, which is an AIF image

overlay segments plain binary image fragments, for example:

1_1
1_2
...
2_1
...

Linker

6-31Reference Manual
ARM DUI 0020D

6.12.4 Describing an overlay structure to the linker

The overlay file, named as argument to the -OVerlay option, describes the required overlay
structure. It is a sequence of logical lines:

• ‘\’ immediately before the end of a physical line continues the logical line on the next
physical line;

• any text from ‘;’ to end of the logical line (inclusive) is a comment

Each logical line has the following structure:

segment - name ["(" base-address ")"]
module-name ["(" list-of-AREA-names ")"]

where

base-address is the address of the segment. The value can be expressed in
decimal or hexadecimal. For example:

12 (decimal)

0x1FF0 (hexadecimal)

&20C0 (hexadecimal)

list-of-AREA-names is a comma-separated list. If omitted, all AREAs with the CODE
attribute are included.

module-name is either the name of an object file (with all leading pathname
components removed), or the name of a library member (with
all leading pathname components removed).

In the following example, sort would match the C library module of the same name:

1_1 edit1 edit2 editdata(C$$code,C$$data) sort

Note: These rules require that modules have unique names within a link list. For example, it is not
possible to overlay a program made up from test/thing.o and thing.o (two modules called
thing). This is a restriction on overlaid programs only.

To help partition a program between overlay segments, the linker can generate a list of
inter-AREA references. This is requested by using the -Xref option. In general, if area A refers
to area B, for example because fx in area A calls fy in area B, then A and B should not share
the same area of memory. Otherwise, every time fx calls fy , or fy returns to fx , there will be
an overlay segment swap.

The -MAP option requests the linker to print the base address and size of every AREA in the
output program. Although not restricted to use with overlaid programs, -MAP is most useful with
them, as it shows how AREAs might be packed more efficiently into overlay segments.

Even though segments can be placed at specific memory locations by supplying base
addresses, clash detection relies only on the names. For example, if 1_1 is placed at 0x8000,
and 1_2 is placed at 0x10000, and 1_1 does not overlap 1_2, then the linker will still ‘believe’
they will clash, because they have the same partition name.

Linker

6-32 Reference Manual
ARM DUI 0020D

6.13 The Overlay Manager
This section describes in detail how a static overlay manager operates. The details of a dynamic
overlay manager are very similar. In both cases, details specific to the target system are omitted.

The job of the overlay manager is to load, swap, and unload overlay segments. This is done by
trapping inter-segment function calls. References to data are resolved statically by the linker
when each overlay segment is created. De-referencing a datum cannot cause an overlay
segment to be loaded.

Every inter-segment procedure call is indirected through a table in the root segment that traps
unloaded target overlay segments, (the procedure call indirection table, or PCIT). PCITs are
created by the linker. Each overlay segment contains the data required to initialise its section of
the PCIT when it is loaded. This is simply a table of Branch instructions, one for each function
exported by the overlay segment. As the linker knows the locations of each segment of the PCIT
and of each function exported by each overlay segment, it can create these Branch instructions
at link time. (In a dynamic overlay scheme, all segments, including the root, are assumed to be
linked at 0, and a type 7 relocation directive is generated to describe the relocation of each of the
initializing branch instructions).

Initially, every sub-section of the procedure-call indirection table (PCIT) in the root segment is
initialised as follows (one for each procedure exported by the corresponding overlay segment.):

STR LR,[PC, #–8]

A call to an entry in the root PCIT overwrites that entry, and every following entry, with the return
address, until control falls off the end of that section of the PCIT into code which:

• finds which entry was called

• loads the corresponding overlay segment (and executes its relocation directives, if it is
relocatable)

• overwrites the PCIT subsection with the associated branch vector (from the just-loaded
overlay segment)

• retries the call

Future calls to this section of the PCIT will encounter instructions of the form B fn , adding only a
few cycles to the procedure call overhead. This will persist until some function call, function
return, or explicit call to the overlay manager causes this PCIT segment to be overwritten.

The load-segment code not only loads an overlay, but also re-initialises the PCIT sections
corresponding to segments with which it cannot co-reside. It also installs handlers to catch
returns to segments which have been unloaded.

The linker generates references to two symbols which must be defined by the overlay manager:

Image$$Overlay_init initialises the overlay manager. This is done automatically when
executing an AIF file.

Image$$load_seg handles the loading of segments. This is called from unloaded
segments’ PCIT sections.

Linker

6-33Reference Manual
ARM DUI 0020D

6.13.1 The structure of a PCIT section

The per-PCIT-section code and data structures are shown immediately below. These are
created by the linker and used by the overlay manager. They are justified and explained in the
following subsections. The space cost of this code is (9 + #Clashes + #Entries) words per
overlay segment. Most of the work is done in the function Image$$load_seg (which is shared
between all PCIT sections), and in load_segment (which is the common tail for both
Image$$load_seg and load_seg_and_ret). For an explanation of load_seg_and_ret
see ➲6.13.4 Intercepting returns to overwritten segments on page 6-37.

 STR LR, [PC, #-8] ; guard word
EntryV STR LR, [PC, #-8] ; > one entry for each
 ... ; > procedure exported
 STR LR, [PC, #-8] ; > by this overlay segment
 BL Image$$load_seg
PCITSection
Vecsize DCD .-4-EntryV ; size of entry vector
Base DCD ... ; initialised by the linker
Limit DCD ... ; initialised by the linker
Name DCB 11 bytes ; 10-char segment name + NUL
Flags DCB 0 ; ...and a flag byte
ClashSz DCD PCITEnd-.-4 ; size of table following
Clashes DCD ... ; >table of pointers or
offsets

 ... ; >to segments which cannot
 DCD ... ; >co-reside with this one
PCITEnd

Pointers to clashing segments point to the appropriate PCITSection labels (ie. into the middle
of PCIT sections).

(If the overlays are relocatable, offsets between PCITSection labels are used rather than
addresses which would themselves require relocation.)

We now define symbolic offsets from PCITSections for the data introduced here. These are
used in the Image$$load_seg code described in the next subsection.

O_Vecsize EQU Vecsize-PCITSection
O_Base EQU Base-PCITSection
O_Limit EQU Limit-PCITSection
O_Name EQU Name-PCITSection
O_Flags EQU Flags-PCITSection
O_ClashSz EQU ClashSz-PCITSection
O_Clashes EQU Clashes-PCITSection

Linker

6-34 Reference Manual
ARM DUI 0020D

6.13.2 The Image$$load_seg code

The Image$$load_seg code contains a register save area which is shared with
load_seg_and_ret . Both of these code fragments are veneers on load_segment . Both
occur once in the overlay manager, not once per segment. Note that the register save area could
be separated from the code and addressed via an address constant, as ip is available for use
as a base register. Note also that load_segment and its veneers preserve fp , sp , and sl ,
which is vital.

 STRLR STR LR, [PC, #-8] ; a useful constant
 Rsave % 10*4 ; for R0-R9
 LRSave % 4
 PCSave % 4
Image$$load_seg
 STR R9, RSave+9*4 ; save a base register...
 ADR R9, RSave
 STMIA R9, {R0-R8} ; and some working registers
 MRS R8,CPSR
 STR R8,PSRSave
 LDR R0,[LR,#-8]
 STR R0, LRSave ; ...save it here ready for

; retry
 LDR R0, STRLR ; look for this...
 SUB R1, R8, #8 ; ...starting at penultimate

; overwrite
01 LDR R2, [R1, #-4]!
 CMP R2, R0 ; must stop on guard word...
 BNE %B01
 ADD R1, R1, #4 ; gone one too far...
 STR R1, PCSave ; where to resume
 B load_segment ; ...and off to the common tail

On entry to load_segment , R9 points to a register save for {R0-R9, LR, PC}, and R8 identifies
the segment to be loaded. FP, SP and SL are preserved at all times by the overlay segment
manager. There is only one copy of Image$$load_seg , shared between all PCIT sections. A
similar section of code, called load_seg_and_ret , is invoked on return to an unloaded
segment (see ➲6.13.4 Intercepting returns to overwritten segments on page 6-37). This code is
also a veneer on load_segment which shares RSave, LRSave and PCSave, and which
branches to load_segment with R8 and R9 set up as described above.

Note: The code for STR LR, [PC, #-8] is 0xE50FE008. This address is unlikely to be in application code
space, so overwriting indirection table entries with an application’s return addresses is safe.

Linker

6-35Reference Manual
ARM DUI 0020D

6.13.3 The load_segment code

Load_segment must:

• re-initialise the global PCIT sections for any overlay segment which ‘clashes’ with this
one, while checking the stack for return addresses that are invalidated by so doing, and
installing return handlers for them

• allocate memory for the about-to-be-loaded segment, (if the overlay scheme is
dynamic)—this is system-specific

• load the required overlay segment (system-specific)

• execute the loaded segment’s relocation directives (if any)

• copy the overlay segment’s PCIT into the global PCIT

• restore the saved register state (with pc and lr suitably modified)

On entry to load_segment , R9 points to the register save area, and R8 to the PCIT section of
the segment to load. First the code must re-initialise the PCIT section (if any) which clashes with
this one:

load_segment
 ADD R1, R8, #O_Clashes
 LDR R0, [R8, #O_ClashSz]
01 SUBS R0, R0, #4
 BLT Done_Reinit ; nothing left to do
 LDR R7, [R1], #4 ; a clashing segment...
 ADD R7, R7, R8 ; only if root is relocatable
 LDRB R2, [R7, #O_Flags]
 CMPS R2, #0 ; is it loaded?
 BEQ %B01 ; no, so look again
 MOV R0, #0
 STRB R0, [R7, #O_Flags] ; mark as unloaded
 LDR R0, [R7, #O_Vecsize]
 SUB R1, R7, #4 ; end of vector
 LDR R2, STRLR ; init value to store...
 02 STR R2, [R1, #-4]! ;>
 SUBS R0, R0, #4 ;> loop to initialise the

; PCIT segment
 BGT %B02 ;>

Next, the stack of call frames for return addresses invalidated by loading this segment is
checked, and handlers are installed for each invalidated return. This is discussed in detail in the
next subsection. Note that R8 identifies the segment being loaded, and R7 the segment being
unloaded.

BL check_for_invalidated_returns

Linker

6-36 Reference Manual
ARM DUI 0020D

Segment clashes have now been dealt with, as have the re-setting of the segment-loaded flags
and the intercepting of invalidated returns. It’s now time to load the required segment. This is
system specific, so the details are omitted (the name of the segment is at offset O_Name from
R8).

On return, calculate and store the real base and limit of the loaded segment and mark it as
loaded:

 BL _host_load_segment ; return base address in R0

 LDR r4, [r8, #PCITSect_Limit]
 LDR r1, [r8, #PCITSect_Base]
 SUB r1, r4, r1 ; length
 STR r0, [r8, #PCITSect_Base] ; real base
 ADD r0, r0, r1 ; real limit
 STR r0, [r8, #PCITSect_Limit]
 MOV r1, #1
 STRB r1, [r8, #PCITSect_Flags] ; loaded = 1

The segment’s entry vector is at the end of the segment; it must be copied to the PCIT section
identified by R8, and zeroed in case it is in use as zero-initialised data:

 LDR r1, [r8, #PCITSect_Vecsize]
 ADD r0, r0, r1 ; end of loaded segment...
 SUB r3, r8, #8 ; end of entry vector...
 MOV r4, #0 ; for data initialisation
01 LDR r2, [r0, #-4]! ;> loop to copy
 STR r4, [r0] ; (zero-init possible data

; section)
 STR r2, [r3], #-4 ;> the segment's PCIT
 SUBS r1, r1, #4 ;> section into the
 BGT %B01 ;> global PCIT...

Finally, continue execution:

 LDR R0,PSRSave
 MSR CPSR,R0
 LDMIA R9,{R0,R9,LR,PC}

Linker

6-37Reference Manual
ARM DUI 0020D

6.13.4 Intercepting returns to overwritten segments

The overlay scheme described so far is sufficient, provided no function call unloads any overlay
in the current call chain. As a specific example, consider a root segment and two procedures,
A and B in overlays 1_1 and 1_2 respectively. Note that A and B may not be co-resident. Then
any pattern of calls like:

((root calls A, A returns)* (root calls B, B returns)*)*

is unproblematic. However, A calls B is disastrous when B tries to return (as B will return to a
random address within itself rather than to A).

To fix this deficiency, it is necessary to intercept (some) function returns. Trying to intercept all
returns would be expensive; at the point of call there are no working registers available, and
there is nowhere to store a return address, (the stack cannot be used without potentially
destroying the current function call’s arguments). The following observations describe an
efficient implementation:

• a return address can only be invalidated by loading a segment which displaces a
currently loaded segment

• at the point that a segment is loaded, the stack contains a complete record of return
addresses which might be invalidated by the load

Before loading a segment, check the procedure call back-trace (including the value stored in
LRSave) for return addresses which fall in the segment about to be overwritten. Replace each
such return address by a pointer to a return handler which loads the segment before continuing
the return.

There is no simple way to avoid using a fixed pool of return handlers. You cannot use the stack
(in a language-independent manner) because its layout is only partly defined in mid function call.
You could use a variant of the language-specific stack-extension code, but it would complicate
the implementation significantly, and make some aspects of the overlay mechanism language
specific. Similarly, it would be unwise to make any assumptions about the availability or
management of heap space.

Using a fixed pool of handlers is not as bad as it first seems. A handler can only be needed if a
call overwrites the calling segment. If this is done strictly non-recursively (meaning that if any P
in segment 1 calls some Q in segment 2, then no R in segment 2 may call any S in segment 1
until Q has returned), the number of handlers required is bounded by the number of overlay
segments. If recursive calls are made between overlay segments, performance will be very poor
unless a large amount of work is done by each call. It is hard to envisage an application which
would require an unbounded depth of recursion, and would perform significant amounts of work
at each level (a recursively invokable CLI is such an example, but in this case it is hard to see
why a moderate fixed limit on the depth of recursion would be unacceptable).

Note: Only the most recent return should be allocated a return handler. For example, assume that
there is a sequence of mutually recursive calls between segments A and B, followed by a call to
C which unloads A. Only the latest return to A needs to be trapped, because as soon as A has
been re-loaded the remainder of the mutually-recursive returns can unwind without being
intercepted.

Linker

6-38 Reference Manual
ARM DUI 0020D

6.13.5 Return handler code

A return handler must store the real return address, the identity of the segment to return to (eg.
the address of its PCIT section), and it must contain a call (indirectly) to the load_segment code.
In addition, it is assumed that the handler pool is managed as a singly linked list. Then the handler
code is:

 BL load_seg_and_ret
RealLR DCD 0; space for the real return address
Segment DCD 0; -> PCIT section of segment to load
Link DCD 0; -> next in stack order

RealLR , Segment and Link are set up by check_for_invalidated_returns .

6.13.6 The load_seg_and_ret code

HStack and HFree are set up by overlay_mgr_init , and maintained by
check_for_invalidated_returns . For simplicity, they are shown here as
PC-relative-addressable variables. More properly, they are part of the data area shared with
Image$$load_seg . As already noted, this data area can be addressed via an address constant,
as ip is available as a base register.

HStack DCD0 ; top of stack of allocated handlers
HFree DCD0 ; head of free-list

load_seg_and_ret
 STR R9, RSave+9*4 ; save a base register...
 ADR R9, RSave
 STMIA R9, {R0-R8} ; … and some working registers
 MSR R8,CPSR
 STR R8,PSRSave
 LDMIA LR,{R0,R1,R2}
 STR R0, LRSave
 STR R0, PCSave
; Now unchain the handler and return it to the free pool
; (by hypothesis, HStack points to this handler...)
 STR R2, HStack ; new top of handler stack
 LDR R2, HFree
 STR R2, [R8, #8] ; Link -> old HFree
 SUB R2, R8, #4
 STR R2, HFree ; new free list
 MOV R8, R1 ; segment to load
 B load_segment

Linker

6-39Reference Manual
ARM DUI 0020D

6.13.7 The check_for_invalidated_returns code

This code loads the segment identified by R8 into the slot identified by R7 to check LRSave and
the chain of call-frames for the first invalidated return address. R7-R9, FP, SP and SL must be
preserved.

 ADR R6, LRSav ; 1st location to check
 MOV R0, FP ; temporary FP...
01 LDR R1, [R6] ; the saved return address...
 LDR R2, [R7, #O_Base]
 CMPS R1, R2 ; see if >= base...
 BLT %F02
 LDR R2, [R7, #O_Limit]
 CMPS R1, R2 ; ...and < limit
 BLT FoundClash
02 CMPS R0, #0 ; bottom of stack?
 MOVEQ PC, LR ; yes => return
 SUB R6, R0, #4
 LDR R0, [R0, #-12] ; previous FP
 B %B01

A handler is allocated for a segment containing a return address invalidated by the segment
load:

FoundClash
 LDR R0, HFree ; head of chain of free handlers
 CMPS R0, #0
 BEQ NoHandlersLeft

; Transfer the next free handler to head
; of the handler stack.

 LDR R1, [R0, #12] ; next free handler
 STR R1, HFree
 LDR R1, HStack ; the active handler stack
 STR R1, [R0, #12]
 STR R0, HStack ; now with the latest handler linked in

; Initialise the handler with a BL
; load_seg_and_ret, RealLR and Segment.

 ADR R1, load_seg_and_ret
 SUB R1, R1, R0 ; byte offset for BL in handler
 SUB R1, R1, #8 ; correct for PC off by 8
 MOV R1, R1, ASR #2 ; word offset
 BIC R1, #&FF000000
 ORR R1, #&EB000000 ; code for BL
 STR R1, [R0]
 LDR R1, [R6]
 STR R6, [R0, #4] ; RealLR
 STR R0, [R6] ; patch stack to return to handler

Linker

6-40 Reference Manual
ARM DUI 0020D

 STR R7, [R0, #8] ; segment to re-load on return
 MOVS PC, LR ; and return
NoHandlersLeft
 ... ; initial creation of handler pool omitted

; for brevity.

Linker

6-41Reference Manual
ARM DUI 0020D

6.14 Scatter Loading

6.14.1 Introduction

Scatter loading enables a user to partition a program image into regions which can be positioned
independently in memory. The linker generates the symbols necessary to allow the regions to
be loaded into memory at addresses different to their execution addresses. For example,
initialised read/write data can be loaded into ROM but it will need to be copied to RAM when the
program is executing. You can specify regions which will act as overlays.

6.14.2 Definitions

Execution regions

The memory used by a program when it is executing can be split into a set of disjoint regions
each of which is contiguous chunk of memory. These regions are called Execution Regions.

Load regions

The memory used by a program before it starts executing but after it has been loaded into
memory can also be split into a set of disjoint regions. These regions are called Load Regions.

 Figure 6-1: Simple example of scatter loading

Load regions Execution regions

DRAM

SRAM

ROM

DRAM

SRAM

ROM

FLASH

0 0000000

SRAM resident code

SRAM resident data

DRAM resident data including
information for zero initialized
data initialisation

ROM resident code and data

DRAM resident zero initialised data

DRAM resident initialised data

unused

data copied from load region to execution region

data does not need copying, as its execution address
is the same as its load address

in
cr

ea
si

ng
 a

dd
re

ss
es

execution

lo
ad

 r
eg

io
n

lo
ad

 r
eg

io
n

 region

execution
 region

FLASH

execution
 region

SRAM resident code

SRAM resident data execution
 region

ROM resident code and data

Linker

6-42 Reference Manual
ARM DUI 0020D

See ➲6.2.3 Scatter loading command-line options on page 6-7 for details of the command-line
options.

6.14.3 Scatter loading description format

The file format reflects the hierarchy of object areas, execute regions and object areas. An object
area can be in precisely one execution region. An execution region can be in precisely one load
region.

Comments are any text from a semicolon (;) to the end of the line.

Load Region Specification

The file is a list of load region specifications. These are of the form

load_region base_address [region_size_limit] {
<list of execution regions>

}

where:

load_region is the name of the load region. This is used to name the output
file generated for this load region. The maximum length of the
name is the maximum length of a filesystem directory entry or 31
characters, whichever is smaller.

base_address is a number. The number can be expressed in decimal or
hexadecimal using either the 0x or & formats. So &1234ABCD,
0x1e3 and 1 are acceptable but 1234CD is not. Base addresses
must be word-aligned.

region_size_limit is optional. If this parameter specified, an error will result if the
region exceeds this size.

6.14.4 Execution region specification

An execute region is described by a similar looking construct:

exec_name base_address [OVERLAY] {
<white space separated list Of Object Area Specifications>

}

The exec_name is a convenient label. When the OVERLAY option is specified, exec_name is
used as an overlay name. Hence it will be limited to 10 characters in length in that case.
Otherwise the length is limited to 31 characters.

The base address of the execution region must be specified.

Linker

6-43Reference Manual
ARM DUI 0020D

Object area specifications

The object area specifications are similar to the existing object area specifications used in the
existing overlay scheme. The various forms are

module_name is an object file for object library name with leading pathname
components removed. The list of object area specifications can be
separated by newlines

module_name comma-separated list of AREA names

module_name comma-separated list of AREA attribute selections

* comma-separated list of AREA attribute selections. This form allows
all AREAs in all modules not already specified with the specified
attributes to be placed in an execution region.

The AREA attribute selections are +RW, +RO and +ZI . These select areas with those attributes
in this module to be placed in this execution region:

+RO selects read only areas

+ZI selects zero-initialised data areas

+RW selects any area which not zero initialised or read only.

Just specifying a module name is equivalent to:

module_name (+RO)

Root region specification

In the overlay scheme (➲6.12 Overlays on page 6-28), the root segment is used to absorb all
the AREAs which are not put into an overlay segment in the overlay description.The root
segment also contains the entry point and initialisation code.The root segment code base is
specified by the -RO-base linker option. and the read/write base is specified by the -RW-base
option.

In the scatter loading scheme, a root load region performs a similar role. The root load region
contains two parts - the root read only execution region and the root read/write execution region.

The root load region can contain the following:

• the entry point

• the root PCIT and a table that relates overlay load addresses to PCIT section
addresses

• the information needed for regions to be copied from their load addresses to their
execution addresses

• the debug information

As in the overlay scheme, any areas unspecified in the description file will be placed in the root
load region. This includes the THUMB interworking veneers and the overlay manager
workspace space area allocated by the linker.

Linker

6-44 Reference Manual
ARM DUI 0020D

There is special form of Load Region Specification for the root load region. If one were to be strict
about this, the root data is an execution region which is contained within a load region. However
there are some characteristics of the root region which make a full specification of the root load
and execution regions unnecessarily verbose.

The root region read-only AREAs have load addresses identical to their execution addresses. No
overlays can be placed in the root region. Also any AREAs not appearing in any execution region
in the scatter load description file will be placed in the root execution region appropriate to the
AREA’s read only attribute.

The simplified form of specification for the root load and execution regions is:

ROOT base_address [region_size_limit]

This sets the base address for the root load region and, hence, the base address for the root read
only execution region. This execution region must have its load address equal to its execution
address as it contains the application entry point.

ROOT-DATA base_address

This sets the base for the root read/write execution region.

Both addresses must specified somewhere in the scatter loading description file.

When the -bin option is specified the root load region will be placed in a file called root in the
output directory.

6.14.5 Implications

It is possible to specify overlapping execution regions. Overlapping execution regions are
allowed but only if all the overlapping execution regions are specified as overlays in the scatter
load description file. Otherwise overlapping load regions are detected and flagged as errors.
There is also one restriction on overlapping overlays. The linker uses the same mechanism to
detect clashing overlay regions as it does to detect clashing overlay segments in the overlay
scheme. So the overlay region names are expected to be of the form

partition_segment

Overlaid execution regions with the same partition name are deemed to clash by the linker. If the
linker detects two overlaid execution regions which do not have the same partition name, the
error message:

Overlaid regions < region1 > and < region2 > clash unexpectedly

will be generated. <region1 > and <region2 > are replaced by the names of the clashing
execution regions.

A user can specify a size limit for a load region. If the size of a load region exceeds this value an
error will be flagged.

The user can position execution regions easily. However if the user wishes to have a set of
execution regions continuous in memory when executing, there is no mechanism in the scatter
loading description file to specify this.

Linker

6-45Reference Manual
ARM DUI 0020D

6.14.6 Example

Consider the following memory map.

Base Size Name
0x0 0x8000 ROM
0x8000 0x8000 SRAM
0x20000 0x40000 EEPROM
0x100000 0x100000 DRAM

The application consists of five object files:

init.o obj1.o obj2.o obj3.o obj4.o

obj4 requires a large zero initialised data area. This is to be placed in DRAM. The remaining
read/write data areas are to be placed in SRAM along with the code from obj3.o. obj2.o and init.o
are to be placed in the root.

ROOT 0x0 ; Specify the root region base address.

ROOT-DATA 0x8000
EEPROM 0x20000 0x40000 {

EEPROM 0x20000 {
obj1.o(+RO) ; Read Only AREAs to execute in the EEPROM.
obj4.o(+RO) ; This region has the same execution address

; as its load address.
}
SRAM 0x9000 {

obj3.o
obj1.o(+RW,+ZI) obj4.o(+RW)

}
DATA 0x100000 { obj4.o(+ZI) }

}
Notes

1 AREAs that need to be grouped together in memory must be put in the same
execution region.

2 Execution regions which have the same load and execution addresses need to be
placed first in the execution region.

6.14.7 Overlay handling

If overlays are present, the root PCIT will be generated along with the information necessary to
copy the PCIT to a read write execution region.

Linker

6-46 Reference Manual
ARM DUI 0020D

A table of information that will enable an overlay manager to perform overlay paging will be
generated. This table will be referred to by a linker generated symbol: Root$$OverlayTable .
The first word in the table is the number of entries in the table. The table will be a sequence of
entries each 3 words long. There will be one entry per overlay segment. Each entry is:

Word 0 Segment length in bytes

Word 1 Execution Address of the PCIT section for this overlay.

Word 2 Load Address of the overlay.

Overlays cannot be put into the root load region.

The linker will generate references to the symbols Image$$overlay_init and
Image$$load_seg . Image$$load_seg refers to the routine used to move segments to their
execution addresses when ‘paged in’.

6.14.8 Initialisation

Symbol generation

Symbols will be generated for each non overlaid execution region with a load address which
differs from its execution address. For zero initialised data, the symbols will be of the form

Image$$reg$$ZI$$Base
Image$$reg$$ZI$$Length

where reg is the execution region name.

The linker will sort AREAs within execution regions in the same order as for an AIF image. Hence
non zero initialised data that needs copying will be contiguous.

For other areas the symbols are

Load$$reg$$Base Load address of the region

Image$$reg$$Base Execution address of the region.

Image$$reg$$Length Execution region length in bytes (multiple of 4 bytes)

where reg is the execution region name.

A user could construct an initialisation routine using these symbols. The root PCIT will be in the
root read/write execution region and will be included in the copying operation for the root data.

In the example above, we could have the initialisation expressed in the following pseudo C.

void Init(void)
{

__copy(Image$$root$$Base,Load$$root$$Base,Image$$root$$Length);
__copy(Image$$SRAM$$Base,Load$$SRAM$$Base,Image$$SRAM$$Length);
__zero(Image$$root$$ZI$$Base, Image$$root$$ZI$$Length);
__zero(Image$$SRAM$$ZI$$Base, Image$$SRAM$$ZI$$Length);
__zero(Image$$DRAM$$ZI$$Base, Image$$DRAM$$ZI$$Length);

}

Linker

6-47Reference Manual
ARM DUI 0020D

where __copy performs a fast copy in the manner of memcpy, and __zero zeroes the specified
number of bytes.

The initialisation function will need to be called before the application main program is entered.
For example:

ENTRY __main
EXPORT __main
IMPORT Init
IMPORT __entry

__main
BL Init
BL __entry
END

Linker

6-48 Reference Manual
ARM DUI 0020D

7-1Reference Manual
ARM DUI 0020D

Symbolic Debugger

This chapter describes the ARM Symbolic Debugger and its command language.

7.1 About armsd 7-2

7.3 Command-line Options 7-3

7.2 Line-Speed Negotiation 7-2

7.4 Command Language 7-6

7.5 Specifying Source-level Objects 7-6

7.6 Accessing Variables 7-11

7.7 Symbols 7-14

7.8 Accessing and Executing Programs 7-15

7.9 Controlling Execution 7-17

7.10 Program Context 7-22

7.11 Low-level Debugging 7-23

7.12 Coprocessor Support 7-30

7.13 Miscellaneous Commands 7-32

7.14 Automatic Command Execution on Startup 7-35

7.15 Performance simulation using armsd 7-35

7.16 Semihosting under EmbeddedICE 7-41

7

Symbolic Debugger

7-2 Reference Manual
ARM DUI 0020D

7.1 About armsd
armsd can be used to debug programs assembled or compiled using the ARM Assembler, and
the ARM C compiler, if those programs have been produced with debugging enabled. A limited
amount of debugging information can be produced at link time, even if the object code being
linked was not compiled with debugging enabled. armsd is normally used to run ARM Image
Format images.

See ➲Chapter 2, C Compiler, ➲Chapter 3, Assembler and ➲Chapter 6, Linker for more
information on generating debugging data.

7.2 Line-Speed Negotiation
The debugger will attempt to operate at the configured line speed (9600, 19200 or 38400 baud).
When first invoked, and whenever it detects that the debuggee has been reset, the debugger
operates at 9600 baud. Similarly, when the debug monitor (demon) is reset, it operates at 9600
baud. One of its first acts after reset is to send a request to the debug monitor (at 9600 baud) to
start operating at the configured (higher) line rate.

The default configured line speed is:

SunOS 38400 baud

PC/DOS 19200 baud

Macintosh 19200 baud

This can be re-configured after installation using the reconfig utility (see ➲Chapter 12, ARM Tool
Reconfiguration Utility).

Symbolic Debugger

7-3Reference Manual
ARM DUI 0020D

7.3 Command-line Options
You invoke armsd using the command:

armsd {options } image-name {arguments }

The options are listed below. Upper-case is used to show the allowable abbreviations. The
options must go before the image name. Anything after the image name is treated as a
command-line option.

-Help Gives a summary of the armsd command-line options

-Size n Specifies the memory size required for the image being debugged.
n may be prefixed by 0x for hex values, and suffixed with either K
or M to specify KB or MB respectively. The result of this option
depends on the user-supplied memory model linked in with the
debugger. (See also ➲14.8 Memory Models on page 14-6.)

-Little Specifies that memory should be little endian

-Big Specifies that memory should be big endian

-SErial Specifies that the debugger should act as a front end to the Platform
Independent Evaluation Card

-Armul Specifies that the debugger should act as a front end to the software
ARM emulator, ARMulator

-Port n Specifies whether the first or second serial port should be used

-LINEspeed n Specifies the linespeed for communication through the serial port:
only the values 9600, 19200 and 38400 are permitted

-Processor Specifies the cpu type

-nofpe or -fpe Specifies whether the ARMulator should load the FPE on start-up.
(By default, the FPE is loaded, to match the Demon environment.)
When testing code compiled using the floating-point library, you may
wish not to load the FPE. See ➲Chapter 16, Software Floating Point
for more information on the floating-point library.

–oldexpressions Specifies that commands which accept low-level symbols by default
should revert to their pre-version 2.0 behaviour

–newexpressions Specifies that commands which accept low-level symbols by default
should follow the version 2.0 behaviour

-Clock Specifies the clock speed for the ARMulator. (➲7.15 Performance
simulation using armsd on page 7-35)

Note: Many of these options can be configured as the default, so you do not need to specify them.
See ➲Chapter 12, ARM Tool Reconfiguration Utility.

Symbolic Debugger

7-4 Reference Manual
ARM DUI 0020D

7.3.1 Extensions to armsd for EmbeddedICE

The following extensions have been added for use with EmbeddedICE

• Command-line options

• armsd commands

• armsd internal variables

Command-line options

-SErial Specifies that armsd should use a serial based RDP driver. This
is used to communicate with the EmbeddedICE board via the
serial port only.

-SERPAR Specifies that armsd should use both the serial and parallel
ports for RDP communication. This is used to communicate with
the EmbeddedICE board via both serial and parallel ports.

-Reset Holds the ARM’s reset pin HIGH while it is forcing the debuggee
to halt execution. This can be used to ensure that the ARM does
not execute any code before armsd takes control.

-SPort n Specifies which serial port should be used.You can set this
option to 1 or 2. When using a PC, you can specify an address
to be used as the port address.

-PPort n Specifies which parallel port should be used.You can set this
option to 1 or 2. When using a PC, you can choose to specify an
address to be used as the port address.

-LOadconfig name Specifies the file containing the configuration data to be loaded

-Selectconfig name Specifies the target configuration to use

armsd commands

listconfig Lists the configurations known to the debug agent

loadagent file Downloads a replacement EmbeddedICE ROM
image, and starts it (in RAM)

loadconfig file Loads an EmbeddedICE configuration data file.

selectconfig name version Selects an EmbeddedICE configuration to use:

name Is the name of the configuration data to be used

version Indicates the version which should be used:

any Accepts any version number (default)

n Must use version n

n+ Must use version n or later

Symbolic Debugger

7-5Reference Manual
ARM DUI 0020D

The highest-numbered version meeting the version constraint is used. For more information
see ➲18.3 Configuration Data on page 18-2.

armsd internal variables

$icebreaker_lockedpoints Shows or sets locked EmbeddedICE macrocell
points

$semihosting_enabled Enables semihosting

$semihosting_vector Sets up semihosting SWI vector

For more information about using these variables, see ➲7.16 Semihosting under EmbeddedICE
on page 7-41 and ➲18.4 Accessing the EmbeddedICE Macrocell Directly on page 18-3.

Symbolic Debugger

7-6 Reference Manual
ARM DUI 0020D

7.4 Command Language
The following sections describe the commands available under the command-line-based version
of the debugger. For details of how to produce images with suitable debugging data, see
➲Chapter 2, C Compiler, ➲Chapter 3, Assembler and ➲Chapter 6, Linker. Examples that
demonstrate running programs under the command-line-based armsd are given in the manual,
Software Development Toolkit Programming Techniques.

plain text Plain text in this form should be typed in as is.

typewriter Command syntax patterns are given throughout to show you
what you should type to achieve an effect.

oblique typewriter represents an item such as a filename or variable name; you
should replace this with the name of your file, variable etc.

{} Items in braces are optional; the braces are used for clarity and
should not be typed.

* A star (*) following a set of braces means that the items in those
braces can be repeated as many times as required in that
command. Note that many command names can be
abbreviated; the braces here show what can be left out. There is
one case where braces are required by the debugger; these are
enclosed in quote marks in the syntax pattern.

7.5 Specifying Source-level Objects

7.5.1 Variable names and context

It is often sufficient to refer to variables by their names in the original source code. To print the
value of a variable, simply type:

print variable

With structured high-level languages, variables defined in the current context can be accessed
by giving their names. Other variables should be preceded by the context (eg. filename of the
function) in which they are defined. This will also give access to variables that are not visible to
the executing program at the point at which they are being examined. The syntax in this case is:

procedure : variable

Global variables can be referenced by qualifying them with the module name or filename if this
is likely to lead to any ambiguity. For example, because the module name is the same as a
procedure name, you should prefix the filename or module name with #. The syntax in this case
is:

#module : variable

Symbolic Debugger

7-7Reference Manual
ARM DUI 0020D

If a variable is declared more than once within the same procedure, resolve the ambiguity by
qualifying the reference with the line number in which the variable is declared as well as, or
instead of, the function name:

#module : procedure : line-no : variable

To pick out a particular activation of a repeated or recursive function call, prefix the variable
name with a backslash (\) followed by an integer. Use 1 for the first activation, 2 for the second
and so on. A negative number will look backwards through activations of the function, starting
with \-1 for the previous one. If no number is specified and multiple activations of a function are
present, the debugger always looks at the most recent activation.

The way to refer to variable within a particular activation of a function is:

procedure \{-} activation-number : variable

The complete syntax for the various ways of expressing context is:

{#} module {{: procedure }* {\{-} activation - number }}
{#} procedure {{: procedure }* {\{-} activation - number }}
#

The complete syntax for specifying a variable name is:

{ context :.{ line - number : :: }} variable

Although the syntax of variables and contexts is complex, in practice the various syntax
extensions needed to differentiate between different objects rarely have to be used together.

7.5.2 Program locations

Some commands require arguments that refer to locations in the program. You can refer to a
place in the program by:

• procedure entry/exit

• program line numbers

• statement within a line

In addition to the high-level program locations described here, low-level locations can also be
specified. See ➲7.11.1 Low-level symbols on page 7-23 for further details.

Procedure entry/exit

Using a procedure name alone sets a breakpoint (see ➲7.9 Controlling Execution on page 7-17)
at the entry point of that procedure. To set a breakpoint at the end of a procedure, just before it
returns, use the syntax:

procedu re:$exit

Program line numbers

Program line numbers can be qualified in the same way as variable names, for example:

#module :123
procedure :3

Symbolic Debugger

7-8 Reference Manual
ARM DUI 0020D

Line numbers can sometimes be ambiguous, notably when a file is included within a function. To
resolve any ambiguities, add the name of the file or module in which the line occurs in
parentheses. The syntax is:

number (filename)

Statement within a line

To refer to a statement within a line, use the line number followed by the number of the statement
within the line, in the form:

line - number . statement - number

So, for example, 100.3 refers to the third statement in line 100.

7.5.3 Expressions

Some debugger commands require expressions as arguments. Their syntax is based on C. A full
set of operators is available. The lower the number, the higher the precedence of the operator.
In descending order of precedence these are:

Precedence Operator Purpose Syntax

1 () Grouping a * (b + c)

[] Subscript isprime[n]

. Record selection rec.field,a
.b.c

-> Indirect selection
(in fact rec->next is identical to (*rec).next)

rec->next

2 ! Logical NOT !finished

~ Bitwise NOT ~mask

- Unary minus -a

* Indirection *ptr

& Address &var

3 * Multiplication a * b

/ Division a / b

% Integer remainder a % b

 Table 7-1: armsd expressions

Symbolic Debugger

7-9Reference Manual
ARM DUI 0020D

Subscripting can only be applied to pointers and array names. armsd will check both the number
of subscripts and their bounds in languages which support such checking. Out-of-bound array
accesses will be warned against. As in C, the name of an array may be used without
subscripting to yield the address of the first element.

The prefix indirection operator * is used to de-reference pointer values. If ptr is a pointer, *ptr
will yield the object to which it points.

If the left-hand operand of a right shift is a signed variable, the shift is an arithmetic one and the
sign bit is preserved. If the operand is unsigned, the shift is a logical one and zero is shifted into
the most significant bit.

4 + Addition a + b

- Subtraction a - b

5 >> Right shift a >> 2

<< Left shift a >> 2

6 < Less than a < b

> Greater than a > b

<= Less than or equal a <= b

>= Greater than or equal a >= b

7 == Equal a == 0

!= Not equal a != 0

8 & Bitwise AND a & b

9 ^ Bitwise EOR a ^ b

10 | Bitwise OR a | b

11 && Logical AND a && b

12 || Logical OR a || b

Precedence Operator Purpose Syntax

 Table 7-1: armsd expressions (Continued)

Symbolic Debugger

7-10 Reference Manual
ARM DUI 0020D

7.5.4 Constants

Constants may be decimal integers, floating-point numbers, octal integers or hexadecimal
integers. Note that 1 is an integer whereas 1. is a floating-point number.

Character constants are also allowed. For example 'A' yields 65, the ASCII code for ‘A’.

Address constants may be specified by the address preceded with an ‘@’ symbol. For
commands which accept low-level symbols by default, the ‘@’ may be omitted.

7.5.5 Names used in syntax descriptions

These terms are used in the following sections for the command syntax descriptions.

context is the program’s activation state. See ➲7.5.1 Variable names and
context on page 7-6.

expression is an arbitrary expression using constants, variables and the
operators described in ➲7.5.3 Expressions on page 7-8. It is either a
low-level or a high-level expression, depending on the command.
list , find , examine , putfile , and getfile , require low-level
expressions as arguments; all others require high-level expressions.

Low-level expressions are arbitrary expressions using constants,
low-level symbols and operators. High-level variables may be
included in low-level expressions if their specification starts with # or
$, or if they are preceded by ^ .

High-level expressions are arbitrary expressions using constants,
variables and operators. Low-level symbols may be included in
high-level expressions by preceding them with @.

location is a location within the program. (➲7.5.2 Program locations on page
7-7)

variable is a reference to one of the program’s variables. Use the simple
variable name to look at a variable in the current context, or add more
information as described in ➲7.5.1 Variable names and context on
page 7-6 to see the variable elsewhere in the program.

format is either:

• hex

• ascii

• string
(This is a sequence of characters enclosed in double quotes
("). A backslash (\) may be used as an escape character
within a string.

• a C printf function format descriptor. ➲Table 7-2: Format
descriptors on page 7-11 shows some common descriptors.

Symbolic Debugger

7-11Reference Manual
ARM DUI 0020D

7.6 Accessing Variables

Print

This command examines the contents of the debugged program’s variables, or displays the
result of arbitrary calculations involving variables and constants. Its syntax is:

p{rint}{/ format } expression

For example,

print/%x listp->next

will print field next of structure listp .

If no format string is entered, integer values default to the format described by the variable
$format . Floating point values use the default format string is %g. Pointer values are treated
as integers, using a default fixed format %.8x , for example, 000100e4.

See Watch in ➲7.9 Controlling Execution on page 7-17 for details of possible difficulties with
register variables.

Type Format Description

int
%d
%u
%x

Only use this if f the expression being printed yields an integer
Signed decimal integer (default for integers)
Unsigned integer
Hexadecimal (lower case letters) - same as hex

char
%c

Only use this if the expression being printed yields an integer
Character-same as ascii

char * %s Pointer to character - same as string. Only use this for expressions
which yield a pointer to a zero-terminated string

void * %p Pointer (same as %.8x), eg. 00018abc.This is safe with any kind of
pointer

float
%e
%f
%g

Only use this for floating-point results
Exponent notation, eg. 9.999999e+00
Fixed point notation, eg. 9.999999
General floating point notation, eg. 1.1, 1.2e+06

 Table 7-2: Format descriptors

Symbolic Debugger

7-12 Reference Manual
ARM DUI 0020D

Let

The let command allows you to change the value of a variable or contents of a memory location.
Its syntax is:

{let} variable = expression { expression }*
{let} memory- location = expression { expression }*

An equals sign or a colon can be used to separate the variable or location from the expression.
If multiple expressions are used, they must be separated by commas or spaces.

Variables can only be changed to compatible types of expression. However, the debugger will
convert integers to floating point and vice versa, rounding to zero. The value of an array can be
changed, but not its address, since array names are constants. If the subscript is omitted, it
defaults to zero. If multiple expressions are specified, each expression is assigned to
variable[n- 1] , where n is the nth expression.

The let command is used in low-level debugging to change memory. If the left-hand side
expression is a constant or a true expression (and not a variable) it will be treated as a word
address, and memory at that location (and if necessary the following locations) will be changed
to the values in the following expression(s).

7.6.1 Summary of armsd variables

Many of the debugger’s defaults can be modified by setting variables. Most of these are
described elsewhere in this chapter in more detail:

$clock number of microseconds since simulation started.

$cmdline argument string for the debuggee

$echo non zero if commands from obeyed files should be echoed (initially
set to 0).

$examine_lines default number of lines for examine command (initially set to 8).

$format default format for printing integer values (initially set to “%d”).

$fpresult floating point value returned by last ‘called’ function (junk if none, or
if a floating point value was not returned). This variable is read-only.

$fr_full non zero if the fpregisters command should print exact contents
(initially set to 0).

$inputbase base for input of integer constants (initially set to 10).

$list_lines default number of lines for list command (initially set to 16).

$rdi_log rdi logging is enabled if non zero, and serial line logging is enabled if
bit 1 is set (initially set to 0).

$result integer result returned by last ‘called’ function (junk if none, or if an
integer result was not returned). This variable is read-only.

Symbolic Debugger

7-13Reference Manual
ARM DUI 0020D

$sourcedir directory containing source code for the program being debugged
(initially set to the current directory).

$statistics this variable can be used to output any statistics which the
ARMulator has been keeping. This variable is read-only.

$statistics_inc this variable is similar to $statistics , but outputs the difference
between the current statistics and those when $statistics was
last read. This variable is read only.

$type_lines default number of lines for the type command.

$vector_catch indicates whether or not execution should be caught when various
conditions arise. The default value is %RUsPDAifE. Capital letters
indicate that the condition is to be intercepted.

R reset
U undefined instruction
S SWI
P prefetch abort
D data abort
A address exception
I IRQ
F FIQ
E Error

7.6.2 Formatting integer results

Set the default format string used by the print command for the output of integer results by
using let with the root-level variable $format . This is initially set to %d.

{let} $format = string

Note: When using floating point formats, integers will not print correctly. The contents of string
should be a format as described in ➲7.5.5 Names used in syntax descriptions on page 7-10.

7.6.3 Specifying the base for input of integer constants

Use the $inputbase variable to set the base used for the input of integer constants.

{let} $inputbase = expression

If the input base is set to 0, numbers will be interpreted as octal if they begin with 0. Regardless
of the setting of $inputbase , hexadecimal constants are recognised if they begin with 0x.

Note: $inputbase only specifies the base for the input of numbers; specify the output format by
setting $format to an appropriate setting.

Symbolic Debugger

7-14 Reference Manual
ARM DUI 0020D

7.7 Symbols
This command lists all symbols (variables) defined in the given or current context, along with their
type information.

sy{mbols} { context }

The information produced is listed in the form:

name type , storage - class

To see global variables, use the filename with no path or extension as the context.

symbols $ gives internal variables.

7.7.1 Variable

The variable command provides type and context information on the specified variable (or
structure field).

v{ariable} variable

variable can also return the type of an expression.

7.7.2 Arguments

This command is used to show the arguments that were passed to the current procedure, or
another active procedure. :

a{rguments} { context }

If context is not specified, the current context is used (normally the procedure active when the
program was suspended). Each argument’s name and current value is displayed.

Symbolic Debugger

7-15Reference Manual
ARM DUI 0020D

7.8 Accessing and Executing Programs

Go

This command starts execution of the program. The first time go is executed, the program starts
from its normal entry point. Subsequent go commands resume execution from the point at which
it was suspended. The syntax is:

g{o} {w{hile} expression }

If while is used, expression is evaluated whenever a breakpoint is reached. if expression
evaluates to true (ie. non-zero) the breakpoint is not reported and execution continues.

Getfile

This command reads the contents of an area of memory from a file. Its syntax is:

ge{tfile} filename expression

The contents of the file are written to memory as a sequence of bytes, starting at the address
which is the value of expression . Low level symbols are accepted by default.

Load

This command loads an image for debugging. Its syntax is:

lo{ad}{/callagraph} image-file { arguments }

image-file is the name of the program to be debugged, and arguments are the
command-line arguments the program would normally take when run. image-file and any
necessary arguments may also be specified on the command-line when the debugger is
invoked. If no arguments are supplied, the arguments used in the most recent load, reload,
setting of $cmdline , or command-line invocation are used again. The load command clears
all breakpoints and watchpoints.

If specified, /callgraph directs the debugger to provide the image being loaded with counts
which enable the dynamic call-graph to be constructed (for use with profiling).

Sourcedir

The variable $sourcedir is used to specify the directory which contains the program source
files. It can be set using the command:

{let} $sourcedir = string

The string should be a valid directory name.

Command-line arguments

Command line arguments for the debuggee can be specified using the let command with the
root-level variable $cmdline . The syntax in this case is:

{let} $cmdline = string

The program name is automatically passed as the first argument, and thus should not be
included in the string. The setting of $cmdline can be examined using print .

Symbolic Debugger

7-16 Reference Manual
ARM DUI 0020D

Putfile

This command writes the contents of an area of memory to a file. Its syntax is:

pu{tfile} filename expression1 , {+} expression2

The lower bound of the area of memory to be written is the value of expression1 . The upper
bound is:

• the value of expression2 – 1 if expression2 is not preceded by ‘+’;

• the value of expression1 + expression2 - 1 if expression2 is preceded by ‘+’.

The file is written as a sequence of bytes. Low level symbols are accepted by default.

Reload

This command reloads the object file specified on the armsd command line, or the last load
command. Its syntax is:

rel{oad} { arguments }

If no arguments are specified, the arguments used in the most recent load, reload, setting of
$cmdline or command line invocation are used again. Breakpoints (but not watchpoints) remain
set after a reload command.

Type

This command types the contents of a source file, or any text file, between a specified pair of line
numbers. Its syntax is:

t{ype} { expression1 } {, {{+} expression2 } {, filename } }

The start line is given by expression1 . If expression1 is omitted, it defaults to:

• the source line associated with the current context minus 5, if the context has changed
since the last type command;

• the line following the last line displayed with the type command, if the context has not
changed.

The end line is given by expression2 , in one of three ways:

• if expressions2 is omitted, the end line is the start line +10.

• if expression2 is preceded by +, the end line is given by the value of the start line +
expression2

• if there is no + the end line is simply the value of expression2

To look at a file other than that of the current context, specify the filename required and the
locations within it.

To change the number of lines displayed from the default setting of 10, use the $type_lines
variable.

Symbolic Debugger

7-17Reference Manual
ARM DUI 0020D

7.9 Controlling Execution

Break

You can specify breakpoints at:

• procedure entry and exit

• lines

• statements within a line

The syntax of the break command is:

b{reak}{/size} { loc { count } {do '{' command{; command}'}'} {if expr }}

where:

size specifies which code type to break:

/16 breaks Thumb code
/32 breaks ARM code

With no size specifier, break tries to determine the size of breakpoint to use
by extracting information from the nearest symbol at or below the address to
be broken. This usually chooses the correct size, but you can set the size
explicitly

loc specifies where the breakpoint is to be inserted

count specifies the number of times the statement there must be executed before
the program is suspended. It defaults to 1, so if count is not specified, the
program will be suspended the first time the breakpoint is encountered

do specifies commands to be executed when the breakpoint is reached. Note
that these commands must be enclosed in braces, represented in the pattern
above by braces within quotes. Each command should be separated by
semicolons

break displays the program and source line at the breakpoint, unless a do
clause is specified; if you want the source line displayed in conjunction with
the do clause, use where as the first command in the do clause to display
the line

expr using this if clause makes the breakpoint conditional upon the value of expr

Each breakpoint is given a number prefixed by #; a list of current breakpoints and their numbers
is displayed if break is used without any arguments.

If a breakpoint is set at a procedure exit, several breakpoints may be set, with one for each
possible exit.

Deleting breakpoints: Use unbreak to delete any unwanted breakpoints, referring to them by
their number preceded by #. All breakpoints can also be deleted by referring to them by location.

Symbolic Debugger

7-18 Reference Manual
ARM DUI 0020D

Call

This command calls a procedure. The syntax is:

ca{ll}{/size} location {(expression - list)}

size specifies which code type to break:

/16 breaks Thumb code
/32 breaks ARM code

With no size specifier, call tries to determine the instruction set of the
destination code by extracting information from the nearest symbol at or below
the address to call. This usually chooses the correct size, but you can set the
size explicitly. The command correctly sets the PSR T bit before the call and
restores it on exit.

location is a function or low-level address

expression_list
is a list of arguments to the procedure. String literals are not permitted as
arguments. If you specify more than one expression, separate the expressions
with commas. If the procedure (or function) returns a value,you can examine it
using:

print $result for integer variables
print $fpresult for floating point variables.

Istep

This command steps execution through one or more instructions. Its syntax is:

is{tep} {in} {count|whi{le} expression }

is{tep} out

Its behaviour is identical to that of the step command when the language has been set to
none .

Return

This command returns to the caller of the current procedure, passing back a result where
required. The syntax of this command is:

ret{urn} { expression }

Note: There is no way to specify the return of a literal compound data type such as an array or record
using this command, but you can return the value of a variable or expression or compound type.

Symbolic Debugger

7-19Reference Manual
ARM DUI 0020D

Step

This command steps execution through one or more statements. The syntax is:

s{tep} {in} {out} { count |whi{le} expression }

s{tep} out

where:

in continues single stepping into procedure calls, so that each statement within
a called procedure is single stepped. If in is absent, each procedure call
counts as a single statement and is executed without single stepping.

count specifies the number of statements to be stepped through: if it is omitted only
one statement will be executed. The while clause continues single stepped
execution until its expression, which is evaluated after every step, evaluates
as false (ie. zero).

out Steps out of a function to the line of originating code which immediately
follows that function. This option is useful when step in has been used too
often.

To step by instructions rather than statements, set the language to none (using
language none), or use the istep command.

Unbreak

This command removes a breakpoint. Its syntax is:

unb{reak} { location }

location is either a source code location, or # followed by the breakpoint number, as
displayed by break .

If there is only one breakpoint, deleted it using unbreak without any arguments .

Note: Breakpoints are not renumbered following deletion of other breakpoints unless the breakpoint
deleted was the last one set. Once a breakpoint has been assigned a number it keeps it.

Unwatch

This command clears a watchpoint. Its syntax is:

unw{atch} { variable }

variable can be either a variable name or the number of a watchpoint (preceded by #) set
using watch . If only one watchpoint has been set, delete it using unwatch .

Symbolic Debugger

7-20 Reference Manual
ARM DUI 0020D

Watch

This command is used to set a watchpoint on a variable. When the variable is altered, program
execution is suspended.

The syntax is:

w{atch} { variable }

If variable is not specified, a list of current watchpoints is displayed along with their numbers.
As with break/unbreak , these numbers can subsequently be used to remove watchpoints.

Bitfields are not watchable.

Notes: The existence of watchpoints may make programs execute very slowly, because the value of
variables has to be checked every time they could have been altered. It is probably more practical
to set a breakpoint in the area of suspicion and set watchpoints once execution has been stopped
there.

If EmbeddedICE is available, ensure that watchpoints use hardware watchpoint registers to avoid
any performance penalty.

When using the C compiler, be aware that the code produced can use the same register to hold
more than one variable if their lifetimes don’t overlap. If the register variable you are investigating
is no longer being used by the compiler, you may see a value pertaining to a completely different
variable.

7.9.1 armsd watchpoints and breakpoints and EmbeddedICE

armsd provides break , watch , unbreak and unwatch commands. Their behaviour is
unchanged when used with EmbeddedICE. However, you should note the following points:

armsd watchpoints

All armsd watchpoints are data changed watchpoints, that is, they are not activated if the data is
read or written to, with the same data currently in memory.

You can implement other forms of watchpoints by accessing EmbeddedICE macrocell registers
directly (see ➲18.4 Accessing the EmbeddedICE Macrocell Directly on page 18-3).

Inspecting points

When inspecting breakpoints and watchpoints using the break and watch commands with no
arguments, the output specifies whether they are hardware or software points.

Hardware vs software breakpoints

Hardware breakpoints are implemented using an EmbeddedICE macrocell point to spot an
instruction fetch from the appropriate address. This works in all cases, even if the program being
debugged modifies itself as it executes, or if the code is in ROM. However, it completely ties up
one EmbeddedICE macrocell point.

Symbolic Debugger

7-21Reference Manual
ARM DUI 0020D

Software breakpoints are implemented using an EmbeddedICE macrocell point to spot an
instruction fetch of a particular bit pattern. This bit pattern will have previously been stored at the
appropriate location, and the instruction noted. Therefore, self-modifying code or code in ROM
cannot be debugged using this type of breakpoint (EmbeddedICE will not attempt to use
software breakpoints for code in ROM). Any number of software breakpoints can be supported
using a single EmbeddedICE macrocell point.

Hardware watchpoints are implemented using an EmbeddedICE macrocell point to spot data
writes to addresses which fall inside a mask. This type of watchpoint is efficient, as execution
will only stop when the relevant data area is written, but ties up an EmbeddedICE macrocell
point completely. Note also that if a structure or array is being watchpointed, the mask is likely
to include some addresses which are not part of the object being watchpointed. In this case
writes to these unwanted addresses will be filtered out by EmbeddedICE, but execution
performance will be slightly degraded.

Software watchpoints make no use of EmbeddedICE macrocell. Instead after each instruction,
the data concerned is read after each instruction and if it has changed execution is halted,
otherwise execution is resumed. This type of watchpoint reduces execution performance
drastically. In addition, it clearly cannot be used on write-only areas of memory such as some
memory mapped device registers.

The program counter after a watchpoint

Watchpoints are taken when the data being watchpointed has changed. Thus, when a
watchpoint is taken, the PC will point to the instruction after the one which caused the watchpoint
to be taken, and the value of the watchpointed data will be the new value, not the old value.

Symbolic Debugger

7-22 Reference Manual
ARM DUI 0020D

7.10 Program Context

Where

This command prints the current context as a procedure name, line number in the file, filename
and the line of code. Its syntax is:

wh{ere} { context }

If a context is specified after the where command, the debugger will display the location of that
context.

Backtrace

This command prints information about all currently active procedures, starting with the most
recent, or for a given number of levels, specified using count . The syntax is:

ba{cktrace} { count }

Context

This is used to set the context in which the variable lookups will occur. It affects the default
context used by commands which take a context as an argument. When program execution is
suspended, the search context is set to the active procedure. The syntax of this command is:

con{text} context

If context is not specified, the context will be reset to the active procedure.

Out and In

These commands are a shorthand way of changing the current context by one activation level.
Their syntax is:

ou{t} sets the context to that of the caller of the current context

in sets the context to that called from the current level.

It is an error to issue an out or in command when no further movement in that direction is
possible.

Symbolic Debugger

7-23Reference Manual
ARM DUI 0020D

7.11 Low-level Debugging
Low-level debugging tables are generated automatically when programs are linked with the
-debug flag set (this is enabled by default). In fact, it is not possible to include high-level
debugging tables in an image without the low-level ones as well. There is no need to enable
debugging at the compilation stage if only low level debugging is to be done; just specify
debugging when linking the program.

7.11.1 Low-level symbols

Low-level symbols are differentiated from high-level ones by preceding them with @. A low-level
symbol for a procedure refers to its call address, often the first instruction of the stack frame
initialisation, whereas the corresponding high-level symbol (if any) refers to the address of the
code generated by the first statement in the procedure.

Low-level symbols can be used with most debugger commands; for example, with watch they
stop execution if the word at the location named by the symbol changes. Memory addresses can
also be used with commands and should also be preceded by @.

Low-level symbols can also be used where a command would expect an expression; its value
is the address of the low-level symbol.

Certain commands (list, find, examine, putfile, and getfile) accept low-level symbols by default.
To specify a high-level symbol, precede it by ‘^’.

Predefined low-level symbols

There are several predefined low-level symbols:

r0 to r14 The general-purpose ARM registers 0 to 14.

r15 The address of the instruction which is about to execute. This may
include the condition code flags, interrupt enable flags, and processor
mode bits, depending on the target ARM architecture (ie. this
information is included in 26-bit address mode; not otherwise). Note
that this value may be different from the real value of register 15 due to
the effect of pipelining.

pc The address of the instruction which is about to execute, without any
processor status register (PSR) flags.

psr cpsr spsr psr and cpsr are synonyms for the current mode’s processor status
register. spsr is the saved status register for the current mode. The
values displayed for the condition code flags, interrupt enable flags,
and processor mode bits, are an alphabetic letter per condition code
and interrupt enable flag, and a mode name (preceded by an
underscore) for the mode bits. This mode name will be one of USER26,
IRQ26, FIQ26, SVC26, USER32, IRQ32, FIQ32, SVC32, UNDEF32
and ABORT32. Note that spsr is not defined if the processor is not
capable of 32-bit operation. See Application Note 11, Differences
Between ARM6 Series and Earlier Processors for more infomation.

Symbolic Debugger

7-24 Reference Manual
ARM DUI 0020D

f0 to f7 The floating point registers 0 to 7.

fpsr The floating point status register.

fpcr The floating point control register.

a1 to a4 These refer to arguments 1 to 4 in a procedure call (stored in r0 to r3).

v1 to v7 These refer to the five to seven general purpose register variables
which the compiler may allocate as it pleases (stored in r4 to r10).

sb Static base, as used in reentrant variants of the ARM Procedure Call
Standard (APCS) (r9/v6).

sl The stack limit register, used in variants of the APCS which
implement software stack limit checking (r10/v7).

fp The frame pointer (r11).

ip Used in procedure entry and exit and as a scratch register (r12).

sp The stack pointer (r13).

lr The link register (r14).

All these registers can be examined with the print command and changed with the let
command. For example, the form print/%x psr displays the processor status register (PSR).

let can also set the processor status register (PSR), using the usual syntax for PSR flags. For
example, the N and F flags could be set, the V flag cleared, and the I, Z and C flags left untouched
and the processor set to 26-bit supervisor mode, by typing:

let psr = %NvF_SVC26

Note: The percentage sign must precede the condition flags and the underscore which in turn must
precede the processor mode description.

These symbols are defined in the root context, so if you have a variable r0 and you wish to refer
to register 0 you can use # to specify the register, as follows:

print #r0

7.11.2 Language

The symbolic debugger uses any high-level debugging tables generated by a compiler to set the
default language to the appropriate one for that compiler, whether it is Pascal, Fortran or C. If it
does not find high-level tables it sets the default language to none, and modifies the behaviour
of where and step . In this case where reports the current program counter and instruction;
step steps by one instruction.

If your program contains high-level debugging information and you wish to use low-level
debugging, use the language command to set this up. The syntax is:

la{nguage} {none|C|F77|PASCAL|ASM}

Symbolic Debugger

7-25Reference Manual
ARM DUI 0020D

7.11.3 Registers

This command displays the contents of ARM registers 0 to 14, the program counter (PC) and
the status flags contained in the processor status register (PSR). The syntax is:

r{egisters} { mode}

If used with no arguments, or if mode is the current mode, the contents of all registers of the
current mode are displayed. If the mode argument is specified, but is not the current mode, the
contents of the banked registers for that mode are displayed. In addition to the mode names
listed in ➲7.11.1 Low-level symbols on page 7-23, mode may take the value all , in which case
the contents of all registers of the current mode are displayed, together with all banked registers
for other modes with the same address width.

A sample display produced by registers might look like this:

R0 = 0x00000000 R1 = 0x00000001 R2 = 0x00000002 R3 = 0x00000003

R4 = 0x00000004 R5 = 0x00000005 R6 = 0x00000006 R7 = 0x00000007

R8 = 0x00000008 R9 = 0x00000009 R10= 0x0000000a R11= 0x0000000b

R12= 0x0000000c R13= 0x0000000d R14= 0x0000000e

PC = 0x00008000 PSR= %NzcVIF_SVC26

7.11.4 Fpregisters

This command displays the contents of the eight floating point registers f0 to f7 and the floating
point processor status register FPSR. Its syntax is:

f{pregisters}

There are two formats for the display of floating point registers, selected using the root-level
variable $fr_full with let .

The simpler form displays the registers and FPSR, and the full version includes detailed
information on the floating point numbers in the registers. Use:

{let} $fr_full = 0

to produce the following display:

f0 = 0 f1 = 3.1415926535 f2 = Inf f3 = 0
f4 = 3.1415926535 f5 = 1 f6 = 0 f7 = 0
fpsr = %IZOux_izoux

Symbolic Debugger

7-26 Reference Manual
ARM DUI 0020D

Use the alternative:

{let} $fr_full = 1

to produce the more detailed display:

The format of this display is (for example):

F S Exp J Mantissa
I +u0x43ff 1 0x0000000000000000

where:

F is a precision/format specifier: F for single, D for double, E for extended, I for
internal format, and P for packed decimal

S is the sign

Exp is the exponent

J is the bit to the left of the binary point

Mantissa are the digits to the right of the binary point

The u between the sign and exponent indicates that the number is flagged as uncommon, in this
example infinity. This applies only to internal format numbers.

In the FPSR description, the first set of letters indicates the floating point mask and the second
the floating point flags. The status of the floating point mask and flag bits is indicated by their
case; upper case means the flag is set and lower case means that it is cleared. The flags are:

I Invalid operation

Z Divide by zero

O Overflow

U Underflow

X Inexact

f0 = 0 f1 = 3.1415926535 f2 = Inf f3 = 0
f4 = 3.1415926535 f5 = 1 f6 = 0 f7 = 0
fpsr = %IZOux_izoux
f0 = I + 0x3fff 1 0x0000000000000000 f1 = I + 0x4000 1 0x490fdaa208ba2000
f2 = I +u0x43ff 1 0x0000000000000000 f3 = I - 0x0000 0 0x0000000000000000
f4 = I + 0x4000 1 0x490fdaa208ba2000 f5 = I + 0x3fff 1 0x0000000000000000
f6 = I + 0x0000 0 0x0000000000000000 f7 = I + 0x0000 0 0x0000000000000000
fpsr = 0x01070000

Symbolic Debugger

7-27Reference Manual
ARM DUI 0020D

7.11.5 Examine

This command allows you to examine the contents of the memory between a pair of addresses,
displaying it in both hexadecimal and ASCII formats, with 16 bytes per line. Its syntax is:

e{xamine} { expression1 } {, {+} expression2 }

Low level symbols are accepted by default.

Start address

The start address is given by expression1 . If this is omitted the default address used is either:

• the address associated with the current context, minus 64, if the context has changed
since the last examine command was executed

• the address following the last address displayed by the last examine command, if the
context has not changed since the last examine command was executed.

End address

The end address is specified in expression2 , which may take three forms:

• if omitted, the end address is the value of the start address +128

• if expression2 is preceded by +, the end address is given by the value of the start
line + expression2 .

• if there is no +, the end line is the value of expression2 .

The $examine_lines variable can be used to alter the default number of lines displayed from
its initial value of 8 (128 bytes).

7.11.6 List

This command displays contents of the memory between specified pair of addresses in
hexadecimal, ASCII and instruction format, with 4 bytes (one instruction) per line. The syntax is:

l{ist}{/size} { expression1 }{, {+} expression2 }

Low-level symbols are accepted by default.

You can follow list by an optional size specifier:

/16 lists Thumb code

/32 lists ARM code.

With no size specifier, list tries to determine the instruction set of the destination code by
extracting information from the nearest symbol at or below the address to start the listing.
This usually chooses the correct size, but you can set the size explicitly.

Symbolic Debugger

7-28 Reference Manual
ARM DUI 0020D

Start address

expression1 gives the start address. If no address is specified, the default setting is either:

• the address associated with the current context minus 32, if the context has changed
since the last list command was issued;

• the address following the last address displayed by the last list command, if the
context has not changed since the last list command was issued.

End address

The end address is given by expression2 . It and may take three forms:

• if expression2 is omitted, the end address is the value of the start address + 64.

• if it is preceded by +, the end address is the start line + expression2 .

• If there is no +, the end line is the value of expression2 .

The $list_lines variable can alter the default number of lines displayed from its initial value
of 16 (64 bytes).

7.11.7 Find

This command finds all occurrences in memory of a given integer value or character string. Its
syntax is either of the following:

fi{nd} expression1 {, expression2 {, expression3 }}
fi{nd} string {, expression2 {, expression3 }}

Low-level symbols are accepted by default.

expression2 and expression3 specify the lower and upper bounds for the search. If
expression2 is absent, the base of the currently loaded image is used. If expression3 is
absent, the top (R/W limit) of the currently loaded image is used.

If the first form is used, the search is for words in memory whose contents match the value of
expression1 . If the second form is used, the search is for a sequence of bytes in memory
(starting at any byte boundary) whose contents match those of string .

7.11.8 Lsym

This command displays low-level symbols and their values. Its syntax is:

ls{ym} pattern

pattern is a symbol name or part of a symbol name.

Wildcards: A wildcard (indicated by *) can be used at the beginning and/or end of the pattern to
match any number of characters:

ls *fred displays information about fred, alfred

ls fred* displays information about fred, frederick

ls *fred* displays information about alfred, alfreda, fred, frederick

Symbolic Debugger

7-29Reference Manual
ARM DUI 0020D

The wildcard ? matches one character:

ls ??fred matches Alfred

ls Jo? matches Joe, Joy, and Jon

Symbolic Debugger

7-30 Reference Manual
ARM DUI 0020D

7.12 Coprocessor Support
The symbolic debugger’s coprocessor support allows access to registers of a coprocessor
through a debug monitor which is ignorant of the coprocessor. This is only possible if the registers
of the coprocessor are read (if readable) and written (if writeable) by a single coprocessor data
transfer (CPDT) or a coprocessor registers transfer (CPRT) instruction in a non-user mode. For
coprocessors with more exotic registers, there must be support code in a debug monitor.

7.12.1 Coproc

This command describes the register set of a coprocessor and specifies how the contents of the
registers are formatted for display. The syntax is:

c{oproc} cpnum { regdesc }*

regdesc may describe one register, or a range of registers which are accessed and are to be
formatted uniformly. It has the syntax:

rno{:rno1} size access-specifiers access-values { displaydesc }*

where:

size is the register size (in bytes)

access -specifiers may comprise the letters:

R the register is readable

W the register is writeable

D the register is accessed through CPDT instructions (if
this is not present, the register is accessed through
CPRT instructions).

access -values the format of this option depends whether the register is to be
accessed through CPRT instructions.

If so, it comprises four integer values separated by space or comma:

r0_7, r16_23, w0_7, w16_23

to form bits 0 to 7 and 16 to 23 of a MRC instruction to read the
register, and bits 0 to 7 and 16 to 23 of a MCR instruction to write the
register.

If not, it comprises two integer values:

b12_15, b22

to form bits 12 to 15 and bit 22 of CPDT instructions to read and write
the register.

displaydesc is one of the items listed in ➲Table 7-3: Displaying the contents of
coprocessor registers on page 7-31.

Symbolic Debugger

7-31Reference Manual
ARM DUI 0020D

For example, the floating-point coprocessor might be described by the command (reformatted
for clarity):

copro 1 0:7 16 RWD 1,8
 8 4 RW 0x10,0x30,0x10,0x20 w0[16:20] 'izoux' "_" w0[0:4] 'izoux'
 9 4 RW 0x10,0x50,0x10,0x40

Item Definition

string is printed as is.

field string string is to be used as a printf format string to display the
value of field.

field is one of the forms:

wn the (whole of the) nth word of
the register value

wn[bit] bit bit of the nth word of the
register value

wn[bit1 :bit2] bits bit1 to bit2 inclusive of
the nth word of the register
value. bit1 and bit2 may
be given in either order.

field '{' string {string }* '}' field must take on of the forms wn[bit] or wn[bit1 :bit2]
above. There must be one string for each possible value
of field . The string in the appropriate position for the
value of field is displayed (the first string for value 0,
and so on).

field ' letters ' field must take on of the forms wn[bit] or wn[bit1 :bit2]
above. There must be one character in letters for each bit
of field. The letters are displayed, in upper case if the
corresponding bit of the field is set, in lower case
otherwise. Otherwise, the lowest bit of the field
corresponds to the first letter if bit1 < bit2 , to the last
letter.

 Table 7-3: Displaying the contents of coprocessor registers

Symbolic Debugger

7-32 Reference Manual
ARM DUI 0020D

7.12.2 Cregisters

This command displays the contents of all readable registers of a coprocessor, in the format
specified by an earlier coproc command. The syntax is:

cr{egisters} cpnum

7.12.3 Cwrite

This command writes to a coprocessor register. The syntax is:

cw{rite} cpnum rno val { val }*

Register rno of coprocessor cpnum must have been specified as writeable; each val is an
integer value and there must be one val item for each word of the coprocessor register.

7.13 Miscellaneous Commands

7.13.1 Alias

This command defines, undefines or lists aliases. It allows you to define your own symbolic
debugger commands:

al{ias} { name { expansion }}

If no arguments are given, all currently defined aliases are displayed. If expansion is not
specified, the alias named is deleted. Otherwise expansion is assigned to the alias name:

alias n step

alias s step in

The expansion may be enclosed in double quotes (") to allow the inclusion of characters not
normally permitted or with special meanings, such as the alias expansion character ’`’ and the
statement separator ’;’.

Aliases are expanded whenever a command line or the command list in a do clause is about to
be executed.

Words consisting of alphanumeric characters enclosed in backquotes (`) are expanded. If no
corresponding alias is found they are replaced by null strings. If the character following the
closing backquote is non-alphanumeric, the closing backquote may be omitted. If the word is the
first word of a command, the opening backquote may be omitted. To use a backquote in a
command, precede it with another backquote (’``’):

7.13.2 Comment

This command writes a message to stderr :

com{ment} message

Symbolic Debugger

7-33Reference Manual
ARM DUI 0020D

7.13.3 Help

This command displays a list of available commands, or help on a particular command:

h{elp} { command}

If information about all commands as well as their names is required, type help * . The help
displayed includes syntax and a brief description of the purpose of each command.

7.13.4 Log

This command sens the output of subsequent commands tt to a file as well as to the screen:

log filename

where filename is the name of the file where the record of activity is being stored. To terminate
logging, type log without an argument. The file can then be examined using a text editor or the
type command.

Note: The debugger prompt, and input/output to or from the program being debugged is not logged.

7.13.5 Obey

This command executes a set of debugger commands which have previously been stored in a
file, as if they were being typed at the keyboard:

o{bey} command-file

where command-file is the name of the file containing the list of commands to be executed.

7.13.6 Pause

This command prompts the user to press a key to continue:

pa{use} prompt-string

The prompt string is written to stderr, and execution continues only when a key is pressed. If
ESC is pressed and commands are being read from a file, the file is closed before execution
continues.

7.13.7 ProfClear

This command resets profiling counts:

profc{lear}

7.13.8 ProfOn

This command starts collecting profiling data:

pro{fon} {interval}

interval is the time between PC-sampling in microseconds. Lower values have a higher
performance overhead, and will slow down execution, but higher values are not as accurate.

Symbolic Debugger

7-34 Reference Manual
ARM DUI 0020D

7.13.9 ProfOff

This command stops collectin profiling data:

profof{f}

7.13.10 ProfWrite

This command writes profiling information to a file:

profw{rite} {filename}

The generated information can be viewed using the armprof utility, as described in ➲Chapter
8, ARM Profiler.

7.13.11 While

This command is only valid at the end of an existing statement. You enter multi-statement lines
by separating the statements with ’;’ characters:

statement; {statement;} whi{le} expression

Interpretation of the line continues until expression evaluates to false (zero).

7.13.12 Quit

This command terminates the current symbolic debugger session and closes any open log or
obey files:

q{uit}

7.13.13 !

Any command whose first character is ! is passed to the host operating system for execution.
This gives access to the command line of the host system without quitting the debugger.

7.13.14 | (vertical bar)

This introduces a comment line.

7.13.15 ; (semicolon)

This is not a command, but may be used to separate two commands on a single line. Note that
armsd queues commands in the order it receives them, so that any commands attached to a
breakpoint will not be executed until all previously queued commands have been executed.

Symbolic Debugger

7-35Reference Manual
ARM DUI 0020D

7.14 Automatic Command Execution on Startup
The symbolic debugger will obey commands from an initialisation file if one exists before it reads
commands from the standard input. The initialisation file is called armsd.ini :

The current directory is searched first, and then the directory specified by the environment
variable HOME.

7.15 Performance simulation using armsd
You can simulate the performance of an ARM/Thumb system consisting of an ARM/Thumb
processor attached to one or more sections of internal or external memory.

Before performing the simulation you must define:

• The speed at which the ARM/Thumb processor is clocked.

• The number of regions of memory attached and, for each region:

- the address range to which that region is mapped

- the databus width (8, 16 or 32 bits)

- the access times for the memory region

You must then create a file called armsd.map which describes your memory layout. This file
consists of a number of lines, each line describing one region of memory.

7.15.1 Format of the armsd.map file

The format of each line is as follows:

start size name width access read-times write-times

The fields are:

start is the start address of the region of memory in hexadecimal.

size is the size of the region of memory in hexadecimal.

name is a single word which can be used to identify the region of memory
when the memory access statistics are displayed. This name is of no
significance to armsd, so any name can be used, but to ease
readability of the memory access statistics, use a descriptive name
such as SRAM, DRAM, EPROM

width is the width of the databus in bytes (ie. 1 for an 8 bit bus, 2 for a 16-bit
bus or 4 for a 32-bit bus).

access describes the type of access which may be performed on this region
of memory. The r is for read-only, w for write-only, rw for read-write,
or - for no access. The character ‘*’ may be appended to the access
to describe a system which uses a 32-bit databus but which has a
16 bit latch to latch the upper 16 bits of data so that a subsequent
16-bit sequential access may be fetched directly out of the latch.

Symbolic Debugger

7-36 Reference Manual
ARM DUI 0020D

read-times describes the non-sequential and sequential read times in
nanoseconds. These should be entered as the non-sequential read
access time followed by / (slash), followed by the sequential read
access time. Omitting the / and using only one figure indicates that
the non-sequential and sequential access times are the same.

write-times describes the non-sequential and sequential write times. The format
is identical to that of read times.

Examples are given below:

0 80000000 RAM 4 rw 135/85 135/85

This describes a system with a single contiguous section of RAM from 0 to 7FFFFFFF with a
32-bit databus, read/write access and N and S access times of 135 and 85 nanoseconds
respectively.

This is typical of a 20MHz PIE (Platform Independent Evaluation) card. Note that the N cycle
access time is one clock cycle longer than the S cycle access time. For a faster system a smaller
N cycle access time should be used, for example: for a 33MHz system the access times would
be defined as 115/85 115/85.

0 80000000 RAM 1 rw 120/70 120/70

This describes a system with the same single contiguous section of memory, but with an 8-bit
external databus and slightly faster access times.

You should not round the access times up to the nearest clock cycle. The symbolic debugger will
do this in any case, however, in the case where an 8-bit or 16-bit databus is attached the
debugger will need the precise access times to calculate the overall access time for a 32-bit
access, ie. A sequential 32-bit access on the above system would take: 4 * 70 = 280nS

This is then rounded up to the next cycle (to 300nS with a 20MHz clock). If the figures given for
the access times were rounded up to the nearest clock cycle (ie. 150/100 in this case) a 32-bit
access would take 4 * 100 = 400nS

Note: It may be the case that external memory accesses should be rounded up to the next clock cycle,
if, for example, the memory system uses the same clock when latching the 4 bytes of data to
perform the 32-bit access.

>00000000 8000 SRAM 4 rw 1/1 1/1

>00008000 8000 ROM 2 r 70/70 70/70

>00010000 8000 DRAM 2 rw 135/85 135/85

>7fff8000 8000 Stack 2 rw 135/85 135/85

This describes a system with four regions of memory:

• A fast region of memory from 0 to 7FFF with a 32-bit databus.

• A slower section of memory from 8000 to FFFF with a 16-bit databus. This is labelled
ROM and will contain the image code, hence it is marked as read-only.

Symbolic Debugger

7-37Reference Manual
ARM DUI 0020D

• Two sections of RAM, one from 10000 to 17FFF which will be used for image data and
one from 7FFF8000 to 7FFFFFFF which will be used for stack data (The stack pointer
is initialised to 0x80000000).

This would be typical of an embedded system with 32K on-chip memory, 32K external 16-bit
ROM and 32K external DRAM which will be used for both the image data and the stack data.
In the description above this is described as two regions of memory, however in the final
hardware these two would be combined. This does not make any difference as far as the
simulation is concerned.

Note that the SRAM region is given access times of 1nS. In effect this means that each access
will take 1 clock cycle as armsd rounds this up to the nearest clock cycle, however, specifying it
as 1nS allows the same map file to be used for a number of simulations with differing clock
speeds without having to update the map file.

Note: To ensure accurate simulations you should take care when specifying the memory map that all
areas of memory which the image you are simulating is likely to access are described in the
memory map.

To ensure that you have described all areas of memory you think the image should access, you
can define a single memory region which covers the entire address range as the last line in the
armsd.map file.

For example to the above description you could add a line:

00000000 80000000 Dummy 4 - 1/1 1/1

You can then detect if any reads or writes are occurring outside the regions of memory you
expect using the print $memory_statistics command described in ➲7.15.4 Reading the
memory statistics on page 7-38. This can prove a very useful debugging tool.

7.15.2 Specifying the clock speed

Before performing a simulation you must specify the clock speed of the processor. This may be
done either by using reconfig to change the configured clock speed of the symbolic debugger
or by specifying the clock speed on the debugger command line.

For details on how to change the configured clock speed of the symbolic debugger see
➲Chapter 12, ARM Tool Reconfiguration Utility.

To specify the clock speed on the command line use the -clock option. This should be followed
by the clock speed in Hz. If you wish to specify the clock speed in MHz place MHz after the clock
speed, for example:

armsd -clock 33000000 test_prog
armsd -clock 33MHz test_prog

7.15.3 Reading the simulated time

When performing a simulation, the symbolic debugger keeps track of the total time elapsed. This
value may be read either by the simulated program or from the armsd command line.

Symbolic Debugger

7-38 Reference Manual
ARM DUI 0020D

Reading the simulated time from assembler

To read the simulated clock from a program use SWI 0x61 (SWI_Clock). This is described in
➲17.3 Standard Monitor SWIs on page 17-4.

Reading the simulated time from C

The standard C library function clock() which returns the number of elapsed centi-seconds
calls SWI 0x61 so this may be used directly from C programs.

Reading the simulated time from armsd

The variable $clock contains the number of microseconds since simulation started. To display
this value, use the command:

Print $clock

Reducing the time required for simulation

You may be able to significantly reduce the time taken for a simulation by dividing the specified
clock speed by a factor of 10 and multiplying the memory access times by the corresponding
factor of 10. Take the time reported by the clock() function (or by SWI_Clock) and divide by the
same factor of 10.

The reason this works is because the simulated time is recorded internally in nanoseconds but
SWI_Clock only returns centiseconds. Therefore dividing the clock speed by 10 shifts digits from
the nanosecond count into the centisecond count allowing the same level of accuracy but taking
only 1/10th the time to simulate.

7.15.4 Reading the memory statistics

To read the memory statistics use the command:

Print $memory_statistics

The statistics will be reported in the following form.

address name w accR(N/S) W(N/S) reads(N/S) writes(N/S) time (ns)

00000000 Dummy 4 - 1/1 1/1 0/0 0/0 0
7FFF8000 Stack 4 rw 135/85 135/85 285237/82906 82906/145629 83321400
00008000 RO 4 r 70/70 70/70 1248865/38069713806971/90290578890740
00000000 SRAM 4 rw 135/85 135/85 27/0 0/0 4050

You can use Print $memstats as a shorthand version of Print $memory_statistics .

Symbolic Debugger

7-39Reference Manual
ARM DUI 0020D

7.15.5 Dhrystone simulation example

1 Compile the Dhrystone program in the examples directory using one of the following
commands:

ARM: armcc -o dhry_32 -Otime -DMSC_CLOCK dhry_1.c dhry_2.c

Thumb: tcc -o dhry_16 -Otime -DMSC_CLOCK dhry_1.c dhry_2.c

2 Create the following armsd.map file:

00000000 80000000 RAM 4 rw 135/85 135/85

3 Run the benchmark with the command:

armsd -clock 20MHz dhry_32

4 Enter go to start execution.

5 When requested for the number of Dhrystones, enter 35000. The program will report
the number of Dhrystones per second.

6 Record the value and repeat the simulation with the Thumb version of Dhrystone
(dhry_16).

You may get slightly different figures depending on the version of compiler and library you are
using. Try varying the clock speed, the memory access speeds and the databus width to see the
effect of these on performance.

When measuring Thumb on a 32-bit memory system, try placing a * after the memory
access rw (ie. enter rw*) to see the performance gain from putting a 16-bit latch on such a
system. The following tables show some sample results. Your results may vary depending on
compiler version, compiler options and the library version.

Note: These results are for Dhrystone version 2.1.

Symbolic Debugger

7-40 Reference Manual
ARM DUI 0020D

Memory ARM Thumb

32-bit memory 14204.5 11876.5

32-bit memory 14204.5 13636.4 (with 16-bit latch)

16-bit memory 7894.7 10067.1

8-bit memory 4731.9 5703.4

 Table 7-4: Clock speed = 20MHz, Memory access times (N = 135nS, S = 85nS)

Memory ARM Thumb

32-bit memory 16759.8 14018.7

32-bit memory 16759.8 17142.9 (with 16-bit latch)

16-bit memory 9063.4 11718.7

8-bit memory 4724.4 6237.0

 Table 7-5: Clock speed = 33MHz, Memory access times (N = 115nS, S = 85nS)

Memory ARM Thumb

32-bit memory 52083.3 43478.3

32-bit memory 52083.3 43478.3 (with 16 bit latch)

16-bit memory 27624.3 35971.2

8-bit memory 14285.7 18939.4

 Table 7-6: Clock speed = 33MHz, Memory access times (N = 30nS, S = 30nS)

Symbolic Debugger

7-41Reference Manual
ARM DUI 0020D

7.16 Semihosting under EmbeddedICE
Two new armsd internal variables have been added for semihosting support. These are only
supported by EmbeddedICE:

$semihosting_enabled Enable semihosting

$semihosting_vector Set up semihosting SWI vector

These should be set up prior to starting execution of an image, and should not be changed
further as execution progresses. In general, the following settings are used:

$semihosting_enabled = 1

$semihosting_vector = 8

The values above are the default values.

However, if semihosting is enabled ($semihosting_enabled = 1), a breakpoint is set up on
the SWI vector and EmbeddedICE checks to see whether the SWI being requested is one of the
ARM Debug Monitor SWI’s (see the Technical Specifications for full details), or a debuggee-
specific SWI. If it is a Debug Monitor SWI, EmbeddedICE will emulate it, and restart execution
transparently. If it is not an ARM Debug Monitor SWI execution will be restarted by executing
the normal SWI code (providing the vector instruction is a branch or an LDR PC, [PC, #n]).

If there were frequently called SWIs which were not ARM Debug Monitor SWIs this method of
semihosting would prove inefficient, as execution would stop much more frequently than was
actually required.

A refinement upon this allows you to specify a Debug Monitor SWI Vector. Do this by setting
$semihosting_vector to the address of this vector. When set,the semihosting SWI vector
specified is breakpointed instead of the standard SWI vector. The intention is that the debuggee
software’s SWI code should check for all non Debug Monitor SWI’s and process them, and then
for Debug Monitor SWIs branch to the semihosting SWI vector. This method will ensure that
SWIs only cause a breakpoint to be taken when it really needs to be.

Note that when $semihosting_enabled has been set to 1, the default value for
$semihosting_vector is 0. In this state the normal SWI vector is used, and all exceptions
and interrupts are trapped and reported as an error condition, no matter what the value of
$vector_catch . If however, $semihosting_vector is set to 8, the normal SWI vector is
still used, but exceptions and interrupts are not considered errors, and are only trapped and
reported if $vector_catch indicates that they should be.

Symbolic Debugger

7-42 Reference Manual
ARM DUI 0020D

8-1Reference Manual
ARM DUI 0020D

ARM Profiler

This chapter describes the ARM Profiler.

8.1 About armprof 8-2

8.2 Command-line Options 8-2

8.3 Profiler output 8-3

8

ARM Profiler

8-2 Reference Manual
ARM DUI 0020D

8.1 About armprof
The ARM Profiler, armprof, displays an execution profile of a program from a profile data file
generated by either the windowed debugger or by armsd. The profiler displays one of two types
of execution profile depending on the amount of information present in the profile data:

• If only PC sampling information is present, the profiler can display only a flat profile
giving the percentage time spent in each function itself excluding the time spent in any
of its children.

• If function call count information is present, the profiler can display a ‘call graph’ profile
which shows not only the percentage time spent in each function but also the
percentage time accounted for by calls to all children of each function and the
percentage time allocated to calls from different parents.

No special options are needed at compile time to allow profile data to be generated for a program,
nor is it necessary to take any special action at link time (other than ensuring that the program
image contains symbols, as is the linker default). In this release, profiling is available only for
programs loaded into store by the debugger; function call counting will never be available for
code in ROM. If function call counts are required, the debugger must be informed when the
program image is loaded (and it alters the program, diverting calls to counting veneers).

The debuggers allow the collection of PC samples to be turned on and off at arbitrary times,
allowing data to be generated only for the part of a program on which attention is focussed
(omitting initialisation code, for example). However, care should be taken that the time between
turning sampling on and off is long compared with the sample interval, or the data generated may
be meaningless. Note also that turning sampling on and off does not affect the gathering of call
counts.

8.2 Command-line Options
A number of options are available to control the format and amount of detail present in the profiler
output.

-Parent tells the profiler to display information about the parents of each
function in the profile listing. This gives information about how much
time is spent in each function servicing calls from each of its parents.

-Child tells the profiler to display information about the children of each
function. The profiler displays the amount of time spent by each child
performing services on behalf of the parent.

-NoParent turns off the parent listing.

-NoChild turn off the child listing.

-Sort Cumulative tells the profiler to sort the output by the total time spent in each
function and all of its children.

ARM Profiler

8-3Reference Manual
ARM DUI 0020D

-Sort Self tells the profiler to sort the output by the time spent in each function
(excluding the time spent in its children).

-Sort Descendants tells the profiler to sort the output by the time spent in all of a
function’s children but excluding time spent in the function itself.

-Sort Calls tells the profiler to sort the output by the number of calls to each
function in the listing.

By default, child functions are listed, but not parent functions, and the output is sorted by
cumulative time.

8.2.1 Example

armprof -parent sort.prf

8.3 Profiler output
The profiler output is split into a number of sections, each section separated by a line. Each
section gives information on a single function.

In a flat profile (ie. one with no parent or child function information) each section is just a single
line.

The following shows example sections for functions called ‘insert_sort’ and ‘strcmp’.

Name cum% self% desc% calls
--
 main 17.69% 60.06% 1
insert_sort 77.76% 17.69% 60.06% 1
 strcmp 60.06% 0.00% 243432
--
 qs_string_compare 3.21% 0.00% 13021
 shell_sort 3.46% 0.00% 14059
 insert_sort 60.06% 0.00% 243432
strcmp 66.75% 66.75% 0.00% 270512
--

Functions listed before the current function are parents of that function and functions listed
afterwards are child functions.

The cum% column is only applicable to the current function and gives the percentage of the total
time accounted for by this function and all of its children.

The other columns have slightly different meanings depending on whether the line is a parent
function, a child function or the current function itself.

For the current function the self% column gives the percentage time spent in this function itself,
the desc% column gives the percentage time spent in the children of this function, and the
calls column gives the number of calls to this function.

ARM Profiler

8-4 Reference Manual
ARM DUI 0020D

For a parent function the self% column gives the percentage time spent in the current function
itself on behalf of this parent, the desc% column gives the percentage time spent in the children
of the current function of behalf of this parent and the calls column gives the number of calls
made by this parent to the current function.

For a child function the self% column gives the percentage time spent in this child on behalf of
the current function, the desc% column gives the percentage time spent in this child’s children on
behalf of the current function and the calls column gives the number of times this child was
called by the current function.

9-1Reference Manual
ARM DUI 0020D

ARM Librarian

This chapter describes the ARM librarian tool.

9.1 About armlib 9-2

9.2 Command Line Options 9-2

9

ARM Librarian

9-2 Reference Manual
ARM DUI 0020D

9.1 About armlib
The ARM Librarian (armlib) allows sets of related AOF files to be collected together and
maintained in libraries. Such a library can then be passed to the linker in place of several AOF
files.

However, linking with an object library file does not necessarily produce the same results as
linking with all the object files collected into the object library file. This is due to the way armlink
processes its input files:

• each object file in the input list appears in the output unconditionally (although unused
areas will be eliminated if the output is AIF or if the -NOUNUSEDareas option is
specified)

• a module from a library file is only included in the output if an object file or previously
processed library file refers to it.

For more information on how armlink processes its input files refer to ➲6.4 Area Placement and
Sorting Rules on page 6-11.

The full specification of ARM Object Library Format can be found in chapter ➲21.3 ARM Object
Library Format on page 21-26.

9.2 Command Line Options
The format of the armlib command is:

armlib options library [file-list | member-list]

The wildcards ‘*’ and ‘?’ may be used in file-list and member-list .

options can be any of the following:

-h or -help give on-line details of the armlib command

-c create a new library containing files in file-list

-i insert files in file-list into the library. Existing members of the
library are replaced by members of the same name.

-d delete members in member-list

-e extract members in member-list , placing them in files of the same
name

-o add an external symbol table to an object library

-l list library. This may be specified together with any other option.

-s list symbol table. This may be specified together with any other
option.

-v file Additional arguments are read in from a via file, in the same way as
the armlink -via option. See ➲6.2.1 General options on page 6-3

10-1Reference Manual
ARM DUI 0020D

ARM Object Format Decoder

This chapter describes the ARM Object Format Decoder tool.

10.1 About decaof 10-2

10.2 Command-line Options 10-2

10

ARM Object Format Decoder

10-2 Reference Manual
ARM DUI 0020D

10.1 About decaof
The ARM Object Format (AOF) file decoder, decaof , is a tool which decodes AOF files such as
those produced by armasm and armcc . The full specification of AOF can be found in ➲21.2 ARM
Object Format on page 21-10.

10.2 Command-line Options
The format of the decaof command is:

decaof [- options] file [file ...]

options consists of a string of letters, which have the following meaning:

a prints area contents in hex (and implicitly includes -d)

b prints only the area declarations (brief)

c disassembles code areas (and implicitly includes -d)

d prints area declarations

g prints debug areas formatted readably

h or help gives on-line details of the decaof command

q gives a quick report of the area sizes only

r prints relocation directives (and implicitly includes -d)

s prints symbol tables

t prints string tables

z prints a one-line code and data size summary per file

If no options are specified, the effect is of -dst

Each file should be an AOF file, otherwise decaof will complain.

Example

decaof -q test.o
C$$code 4748
C$$data 152

11-1Reference Manual
ARM DUI 0020D

ANSI to PCC C Translator

This chapter describes the ANSI C to PCC C translator.

11.1 About topcc 11-2

11.2 Command Line Options 11-2

11.3 Translation Details 11-3

11.4 Issues with topcc 11-4

11

ANSI to PCC C Translator

11-2 Reference Manual
ARM DUI 0020D

11.1 About topcc
The program topcc helps to translate (suitable) C programs and headers from the ANSI dialect
of C into the PCC dialect of C, primarily by re-writing top-level function prototypes (whether
declarations or definitions).

topcc performs its translation prior to the C preprocessing phase of any following compilation,
and ignores preprocessor flag settings. It is therefore unable to help with the translation of
sources in which function prototypes have been obscured by, for example, preprocessor macros.

The translation performed is limited, and other differences between the ANSI and PCC dialects
must be dealt with in the source after or (preferably) before translation.

11.2 Command Line Options
The command format for topcc is:

topcc options [infile [outfile]]

where:

infile defaults to stdin

outfile defaults to stdout.

The options are as follows:

-d describe what the program does.

-c don’t remove keyword const .

-e don’t remove #error... .

-p don’t remove #pragma... .

-s don’t remove keyword signed .

-t don’t remove 2nd argument to va_start() .

-v don’t remove keyword volatile .

-l don’t add #line directives.

ANSI to PCC C Translator

11-3Reference Manual
ARM DUI 0020D

11.3 Translation Details
Primarily, topcc rewrites top-level function protoypes, whether definitions or declarations.

Top-level function declarations are rewritten with their argument lists enclosed in /* and */ . For
example, declarations like:

type foo(argument-list);

are rewritten as:

type foo(/* argument-list */);

Any comment tokens /* or */ in the original argument list are removed.

Function definition prototypes are re-written the PCC way. For example, definitions like:

type foo(type1 a1, type2 a2) {...}

are rewritten as:

type foo(a1, a2)
type1 a1;
type2 a2;
{...}

and:

type foo(void)
{...

is rewritten as:

type foo()
{...

Notes

1 ’...’’ in a function definition is replaced by int va_alist , and the second argument
to calls of the va_start macro is removed, (varargs.h defines va_start as a
macro taking one argument; stdarg.h adds a second argument). However, topcc
does not replace #include <varargs.h> with #include <stdargs.h> .

2 ANSI keywords const , signed , and volatile are removed (with warnings), and
enums are warned of (stricter usage under PCC).

3 Type void * is converted to VoidStar , which should be typedef'd to ’char *’ to
be compatible with PCC.

4 ANSI C’s unsigned and unsigned long constants are rewritten using the typecasts
(unsigned) and (unsigned long) . (For example, 300ul becomes (unsigned
long)300L .)

5 After rewrites that change the number of lines in the file, #line directives are included
that re-synchronise line numbering. These quote the source filename, so that
debugging tools then refer to the ANSI form of sources.

ANSI to PCC C Translator

11-4 Reference Manual
ARM DUI 0020D

11.4 Issues with topcc
topcc takes no account of the setting of conditional compilation options. This is quite deliberate:
it converts all conditionally compilable variants in parallel.

A price to be paid is that braces must be nested reasonably within conditionally compilable
sections, or topcc may lose track of the brace nesting depth, which is used to determine whether
it is within, or between top-level definitions and declarations.

In principle, tracking brace-nesting depth oblivious of preprocessing is impossible. In practice,
topcc uses heuristics to match conditionally compiled braces, usually successfully. If topcc finds
that it is lost it complains of “mis-matched, conditionally included braces”.

A second, niggling restriction is that topcc cannot concatenate adjacent string literals. In practice,
all important uses of ANSI-style implicit concatenation involve some mix of literals and
preprocessor variables (of which topcc is oblivious). topcc could easily concatenate adjacent
string literals–but then these can just as easily be eliminated from the input program by the user.

The one disaster for topcc is to find an extra closing brace and to start processing text
prematurely as if it were at the top level. This leads to damage to function calls and macro
invocations. In general it is a good idea to compare the output of topcc with its input (using a file
difference utility), as a check that changes have been reasonably localised to function headers
and declarations. If necessary, most of topcc’s other transliterations can be inhibited to make
these principal changes more visible (See ➲11.2 Command Line Options on page 11-2).

12-1Reference Manual
ARM DUI 0020D

ARM Tool Reconfiguration Utility

This chapter describes the utility used to reconfigure the default settings of the ARM tools.

12.1 About reconfig 12-2

12.2 Tool Reconfiguration 12-2

12.3 Using reconfig 12-8

12.4 Reconfiguration Errors 12-10

12

ARM Tool Reconfiguration Utility

12-2 Reference Manual
ARM DUI 0020D

12.1 About reconfig
This utility allows you to reconfigure the default settings of the ARM tools. It is useful to do this
when their current settings do not reflect the system in which you are using them. Settings include
Serial line Baud Rates for the ARM Symbolic Debugger and the size (in bits) of the Program
Counter for code produced by the ARM C Compiler.

reconfig can be run in a command-line mode, silently, or as a full-screen option editor.

When driven as a full-screen option editor, the program uses ANSI escape sequences to drive
the screen. Consequently, reconfig cannot be used in this mode on HP-UX when started up
in an HPTERM.

The tool settings are stored in the executable file for each tool. This utility patches in any changes

directly.

12.2 Tool Reconfiguration
The reconfig utility can configure all the major ARM tools. Their options are described in the
following sections.

12.2.1 Thumb C compiler (tcc)

The Thumb C compiler options and their possible values are shown below:

Option Command-line string Possible Values

Bytesex bytesex host
little
big

host
little
big

Stack limit check stacklimitcheck off
on

off
on

ARM/Thumb interworking interwork off
on

off
on

 Table 12-1: Thumb compiler options

ARM Tool Reconfiguration Utility

12-3Reference Manual
ARM DUI 0020D

12.2.2 ARM C compiler (armcc)

The ARM C compiler options and their possible values are shown below:

Option Command-line string Possible values

Bytesex bytesex host
little
big

host
little
big

ARM/Thumb interworking interwork off
on

off
on

Program Counter pc 26bit
32bit

26bit
32bit

FP Emulation fpe fpe2
fpe3

fpe2
fpe3

Stack limit checking stacklimitcheck off
on

off
on

Re-entrant code reentrantcode yes
no

yes
no

FP register args fpregargs yes
no

yes
no

No FP register nofp yes
no

yes
no

Use SW FP Library swfplib yes
no

yes
no

Unaligned word load/stores unalignedwordloadstores yes
no

yes
no

Old format asd tables oldformatasdtables yes
no

yes
no

Target CPU cpu arm6, arm7, arm7m, arm7tm

Max instrs / int literal intloadmax default, 1<=user_value

Max regs per LDM/STM ldmmax default, 3<=user_value<=16

 Table 12-2: ARM compiler options

ARM Tool Reconfiguration Utility

12-4 Reference Manual
ARM DUI 0020D

12.2.3 ARM assembler (armasm)

The ARM assembler options and their possible values are shown below:

Option Command-line string Possible Values

Bytesex bytesex host
little
big

host
liitle
big

Program Counter pc 26bit
32bit

26bit
32bit

Stack limit check stacklimitcheck off
on

off
on

Width of page widthofpage default default
0 <user_value < 255

Lines lines default default
0 <user_value < 255

CPU cpu Generic ARM
ARM6
ARM7
ARM7M
ARM8

Generic ARM
ARM6
ARM7
ARM7M
ARM8

ARM Architecture Version archvsn 3
4

3
4

UMULL support umull yes
no

yes
no

 Table 12-3: ARM assembler options

ARM Tool Reconfiguration Utility

12-5Reference Manual
ARM DUI 0020D

12.2.4 Thumb assembler (tasm)

The Thumb assembler options and their possible values are shown below:

Option Command-line string Possible Values

Bytesex bytesex host
little
big

host
little
big

Stack limit check stacklimitcheck off
on

off
on

Width of page widthofpage default default
0 <user_value < 255

Lines lines default default
0 <user_value < 255

CPU cpu Generic ARM
ARM6
ARM7
ARM7m
ARM7TM
ARM8

Generic ARM
ARM6
ARM7
ARM7M
ARM7TM
ARM8

ARM Architecture Version archvsn 3
4

3
4

UMULL support umull yes
no

yes
no

 Table 12-4: Thumb assembler options

ARM Tool Reconfiguration Utility

12-6 Reference Manual
ARM DUI 0020D

12.2.5 ARM symbolic debugger (armsd)

Not all of these options are always reconfigurable. It depends on the linked objects when the
executable was made. The options, and their possible values, are shown below:

Option Command-line string Possible Values

Bytesex bytesex little
big
dontcare

little
big
dontcare*

Load FPE fpe yes
no

yes
no

Serial linespeed seriallinespeed 9600
19200
38400

9600
19200
38400

Load FPE fpe yes
no

yes
no

Default tool option defaulttool armul
remote

armul
remote

Serial port serialport default default
0 <= user_value < 255

Parallel port parallelport default default
0 <= user_value < 255

Default RDP driver defaultrdp serial
serpar

serial
serpar

Default CPU emulated defaultcpu arm6, arm2, arm2as,
arm61, arm3, arm60,
arm600, arm610, arm620,
arm7, arm70, arm700,
arm7d, arm70d, arm7dm,
arm70dm, arm7tdm

CPU speed cpuspeed 20, 33,(suggested values)
or any value in MHz

Old expessions oldexpressions yes
no

yes
no

 Table 12-5: Symbolic debugger options

ARM Tool Reconfiguration Utility

12-7Reference Manual
ARM DUI 0020D

Note: dontcare means that armsd can debug and emulate images which have the same byte order as
that with which the ARMulator component of armsd is configured. When armsd is delivered, the
default is little endian host byte order (386/DOS) but, of course, you can configure armsd with
the big endian host byte order(SPARC/SunOS) if you wish. This in turn can be overridden on
the armsd command line.

12.2.6 ARM linker (armlink)

The armlink options and their possible values are shown below. All of the options refer to
attempts to match an unreferenced symbol with some derivative of it:

Option Command-line string Possible Values

Match _sym to sym _s-to-s no
yes

no
yes

 sym to _sym s-to-_s no
yes

no
yes

 Mod_Sym to Mod.Sym m_s-to-m.s no
yes

no
yes

 sym__type to sym s__t-to-s no
yes

no
yes

PC-rel.relocn=>code pcrelimpliescode no
yes

no
yes

 Table 12-6: Linker options

ARM Tool Reconfiguration Utility

12-8 Reference Manual
ARM DUI 0020D

12.3 Using reconfig
reconfig may be used in two modes:

on-screen mode is used when no parameters are supplied on the command line

command-line mode the options are set with command line arguments.
The changes are made silently unless errors occur.

In both modes, you must change directories so that the tools you want to reconfigure are in your
current directory. Run reconfig from there.

12.3.1 On-screen mode

Run reconfig by typing:

reconfig

Each tool is checked for existence and consistency. Problems that occur are displayed on the
screen. See ➲12.4 Reconfiguration Errors on page 12-10 for more information.

1 A menu is displayed, and you can move the select bar with TAB, SPACE and the
ARROW KEYS.

2 Move the select bar onto the tool you wish to reconfigure, and press ENTER.

The current settings for the selected tool are displayed, along with the list of possible
settings for each option. New settings can be assigned to the options for any tools that
were found and checked out OK. Use ENTER to assign the currently highlighted setting
to the selected option. If a user_value is to be entered, type it in after pressing ENTER.
When moving between options, the current setting is highlighted first by default.
If a tool did not check out OK, then the possible options and settings are displayed, but
these cannot be changed.

3 Type q to go back to the Main Menu. The other tools can be changed in the same way.

4 When you have reconfigured all that you require, exit from the Main Menu using the
menu option to quit, or just type q. You will be asked if you wish to save the current
configuration. The default is n - not to save them so press y if you do wish to save the
new settings, followed by RETURN. The program will tell you whether it saved the
settings.

5 Press ENTER at the prompt and you're finished.

Note If you are using anything other than a PC under DOS to run reconfig, then in order to use the
onscreen mode, ANSI escape sequences generated by reconfig must be interpreted correctly by
the Operating System or shell in which you are running. If this is not the case, the screen layout
will be wrong and you should use the command-line mode instead (see ➲12.3.2 Command-line
mode).

ARM Tool Reconfiguration Utility

12-9Reference Manual
ARM DUI 0020D

12.3.2 Command-line mode

The command line syntax is:

reconfig toolname [option1 =value1 [option2 =value2] ...]

The option and value separator is either whitespace or an equals sign, these may be mixed
on the same line.

If only the toolname is given, then the current settings are displayed. Otherwise, the specified
values are assigned to the specified options.

Each option and value is matched against those permitted for that tool. Only the number of
characters given on the command-line are matched, so they must be unambiguous (if not, then
the first match is assumed). The strings that should be typed for the options and values are given
in ➲12.2 Tool Reconfiguration on page 12-2.

12.3.3 Examples

The following all set the armcc tool to use a 32-bit Program Counter and to refrain from checking
the stack:

reconfig armcc pc=32bit stackcheck=no
reconfig armcc pc 32bit stackcheck no
reconfig armcc pc=32bit stackcheck no
reconfig armcc pc=32 stack=no
reconfig armcc p=3 s=n

The following could be used to set the armasm Program Counter to 26 bits and the listing width
to 80:

reconfig armasm pc=26bit widthofpage=80
reconfig armasm p 26 w 80

ARM Tool Reconfiguration Utility

12-10 Reference Manual
ARM DUI 0020D

12.4 Reconfiguration Errors
This section describes the errors that may be produced by reconfig, why they occur, and (where
appropriate) and how to correct them.

In on-screen mode, if the output to the screen becomes garbled, it is likely that the ANSI escape
sequences are not being interpreted correctly by your shell or Operating System. This should
only happen on systems running anything other than DOS. If this is the case, you must change
your OS/shell to one with ANSI interpretation, or use the command-line mode.

filename - File not found/writeable

This happens when a tool could not be found in the current directory, or if present, does
not have write permission. You must ensure that you are in the directory containing all
the tools that you wish to reconfigure, and that you have write permission for them.

filename - Can’t find configuration block

This happens when reconfig has read an executable file with an ARM tool filename, but
the tool is either corrupt, or the file is not an ARM tool at all. You must ensure that the
tool filename executables in the current directory are the ARM tools and not something
else with the same name(s).

filename is not ARM’s toolname

This happens when reconfig reads an ARM tool file executable that is not consistent
with its filename. (eg. executable file armcc is really armasm). You must ensure that the
installed files are not renamed to other tool names. It is best to install the tools again.

toolname - invalid tool name

This happens in command-line mode when the toolname specified on the
command-line is not an ARM tool. Check the spelling.

function() : Corrupted file

This will only happen if a tool executable has become corrupted. Re-install the tool(s)
and try again. If the problem persists, get another copy of the Release.

Option ’option’ cannot be reconfigured

This happens in command-line mode when an attempt is made to change the setting of
an option that is not reconfigurable under the current tool executable configuration. This
should only happen when attempting to reconfigure the armsd : default tool option.

Option ’option’: Value ’value’ is invalid

This happens in command-line mode when the specified value is not a valid setting for
the option. Check that value and option are both unambiguous and within range for user
values.

Option ’option’ is invalid

This happens in command-line mode when the specified option is not a valid one for the
selected tool. Check that the option specified is permitted and/or spelled correctly.

13-1Reference Manual
ARM DUI 0020D

ARM make Utility

This chapter introduces the ARM make utility included with the PC release of the ARM
Software Toolkit.

13.1 About armmake 13-2

13.2 Command-line Options 13-3

13.3 Makefile Format for armmake 13-4

13.4 Command Execution 13-6

13.5 Advanced Features 13-7

13.6 Miscellaneous Features 13-9

13

ARM make Utility

13-2 Reference Manual
ARM DUI 0020D

13.1 About armmake
armmake assists with the management of programs, documents, applications, and other
complex, structured objects made from several components, that need processing, and have
some consistency contraints between them. It is used most often to ease rebuilding programs
from their source code, recompiling a piece of source only when it—or other code upon which it
depends—has been updated.

Details of the format of armmake makefile entries are given in ➲13.3 Makefile Format for
armmake on page 13-4. The input to armmake is a text file describing the system to be managed.
The text file is usually called makefile , and its format is almost identical to most other make
utilities.

In its simplest form, a makefile consists of a sequence of entries which describe:

• what each component of a system depends on

• the commands that must be executed to make an up-to-date version of that component.

ARM make Utility

13-3Reference Manual
ARM DUI 0020D

13.2 Command-line Options
The armmake command has the following syntax:

armmake [options] [list-of-targets-and-macro-definitions]

options are as follows:

-f makefile Read the system description from makefile . makefile defaults
to makefile if omitted.

-i Ignore return codes from commands (equivalent to .IGNORE).
armmake usually stops if it encounters a bad (non-0) return code.

-k On encountering a bad (non-zero) return code, don't give up, but
continue with each branch of the makefile that does not depend on
the failing command. This is likely to be useful if you are rebuilding
a large system after making many changes and armmake is required
to do as much rebuilding as possible.

-n Don't execute any commands; just show on the screen what
commands would be executed, and give the reason for wanting to
execute each one.

-o command-file Don't execute commands to make the target(s) up-to-date; write
them to command-file for later execution.

-s Don't echo commands to be executed (equivalent to .SILENT). This
option will stop armmake from outputting messages but it does not
stop the commands it issues from outputting messages.

-t Generate commands to make target(s) up-to-date by setting source
time stamps consistently (only guaranteed to succeed if all sources
exist).

Notes

The list of targets and macro definitions is space-separated, and optional. List elements are:

• deemed a target to be built by armmake if they contain no '=' character. The target is
added to the list of objects to be built by armmake. If no targets are specified, the first
target in the makefile is built.

• deemed to be a macro definition if they contain an '=' character. The string to the left
of the '=' is interpreted as a macro name, which is initialised to be the string to the right
of the '=' character. Note that if any spaces are to be specified in the value of the macro,
the whole list element should be enclosed in double quotes.
For example:

armmake myprog "STRING=Three Blind Mice"

ARM make Utility

13-4 Reference Manual
ARM DUI 0020D

13.3 Makefile Format for armmake
An armmake makefile consists of a sequence of logical lines. A logical line may be continued over
several physical lines provided each but the last line ends with a \ .

Comments are ignored by armmake. A comment is introduced by a hash character (#) and runs
to the end of the logical line. A literal ’#’ character can be produced by escaping it with a
backslash thus: \# .

Other than comments, there are four kinds of non-empty logical lines in a makefile:

• dependency lines

• command lines

• macro definition lines

• rule and other special lines (see ➲13.5.3 Rule patterns, .SUFFIXES, $@, $*, $< and $?
on page 13-8).

13.3.1 Dependency lines

Dependency lines have the form:

space-separated-target-list : space-separated-prerequisite-list.

For example:

program.exe : module1.obj module2.obj module3.obj library.lib

A dependency line cannot begin with white space. Spaces before the ':' are optional, but some
white space must follow the ':', to distinguish ':' separating targets and prerequisites from ’:’ as
part of a filename.

A line with multiple targets is shorthand for several lines, each with one target and the same
righthand side (and the same associated commands, if any).

Multiple dependency lines referring to the same target accumulate, though only one such line
may have commands associated with it (armmake would not know in what order to execute the
commands otherwise). For example, the above dependency line could be rewritten as several
dependency lines:

program.exe : module1.obj
program.exe : module2.obj
program.exe : module3.obj
program.exe : library.lib

ARM make Utility

13-5Reference Manual
ARM DUI 0020D

13.3.2 Command lines

Command lines immediately follow a dependency line and begin with white space.

For maximum compatibility with UNIX makefiles, ensure that the first character of every
command line is a tab.

A semi-colon may be used instead of a new line to introduce commands on a dependency line.
This is most often useful when there are no prerequisites and only a single command associated
with a target. For example:

clean:; del *.obj

Note that in this case no white space is needed between the colon and the semicolon.

13.3.3 Macro definition lines

Macro definition lines have the form:

macro-name = some-text-to-the-end-of-the-logical-line

For example:

CC = armcc
CFLAGS = -li -apcs 3/32bit -fah -c
LINK = armlink
LIB = \release\lib\armlib.32l

The '=' can be surrounded with white space, or not, to taste. Thereafter, wherever $(name) or
${ name} is encountered, the whole of $(name) or ${ name} is replaced by the corresponding
definition. A reference to an undefined macro simply vanishes. An example that uses the above
macro definitions is:

program: program.obj $(LIB)
 $(LINK) -o program $(LFLAGS) program.obj $(LIB)

Note that $(LFLAGS) expands to nothing, as it is undefined.

Macros can also be defined on armmake's command line as described in ➲13.2 Command-line
Options on page 13-3.

ARM make Utility

13-6 Reference Manual
ARM DUI 0020D

13.4 Command Execution
When attempting to build a target, armmake uses all the dependency lines specifying the current
target as a target, and generates a list of all the corresponding prerequisites. Each of these
prerequisites is checked, and if they are not up-to-date will be made up-to-date before any further
processing is performed. Finally, the commands on the command lines for the current target are
executed.

These commands are executed sequentially. If a command returns a non zero return code
armmake will normally stop processing, taking this to mean that the build has failed.

Note that there is an MSDOS command length limit of 127 characters. If this is exceeded
armmake will give a warning message. This limit may cause problems, particularly with armlink,
which is often passed many object files to link together. However, armlink can read its object files
from a file, thus avoiding the problem. (See ➲6.2 Using the Linker on page 6-3 for more
information.) In addition, batch files containing complicated or long commands can be executed
from the command lines.

ARM make Utility

13-7Reference Manual
ARM DUI 0020D

13.5 Advanced Features

13.5.1 File naming

To help you use UNIX makefiles with armmake under MSDOS, armmake accepts both UNIX
and MSDOS filenames, internally converting them to the host system style. Thus all of the
following are acceptable:

UNIX-like: /tools/prog/test.c ../include/defs.h

MSDOS-like: \tool\prog\test.c ..\include\defs.h

In addition to filename interpretation on the dependency lines, armmake attempts to convert files
on the command lines too. This is not straightforward as command lines may contain anything.
armmake only changes a suspected filename if the filename has already been found on a
dependency line in the file.

13.5.2 VPATH

Usually armmake looks for files relative to the current directory or in places implicit in the
filename. The previous example contains the line:

program: program.obj $(LIB)

which refers to .\program.obj

Sometimes, particularly when dealing with multiple versions of large systems, it is convenient to
have a complete set of object files locally, a few sources locally, but most sources in a central
place shared between versions.

If the macro VPATH is defined, armmake will look in the list of places defined in it for any files it
can't find in the places implied by their names.

For example, we might have sources in \shared and \oldvsn. In order to tell armmake to look in
these places if the normal search fails, use the following VPATH setting:

VPATH = \shared \oldvsn

Unlike UNIX VPATH's, the path elements are separated by spaces rather than colons.

Note: VPATH is not applied to any target names.

ARM make Utility

13-8 Reference Manual
ARM DUI 0020D

13.5.3 Rule patterns, .SUFFIXES, $@, $*, $< and $?

All the examples given so far have used explicit rules for making targets. In fact, armmake can
infer rules for if you supply it with appropriate rule patterns. These are specified from a pseudo
dependency called .SUFFIXES using special target names consisting of the concatenation of
two suffixes.

An example is given below:

.SUFFIXES: .obj .c
program: program.obj $(LIB)
.c.obj:; $(CC) $(CFLAGS) -o $@ $*.c

The rule pattern .c.obj describes how to make .obj files from .c files. If, as in the above
fragment, there is no explicit entry describing how to make a particular .obj file (program.obj
in the above example) armmake will apply the first rule it has for making .obj files. Here, order
is determined by order in the .SUFFIXES pseudo-dependency.

Suppose .SUFFIXES were defined as .obj .c .s and that there were two rules, .c.obj:...
and .s.obj: ... armmake would choose the .c.obj rule because .c precedes .s in the
.SUFFIXES dependency. In applying the .c.obj rule, armmake infers a dependence on the
corresponding .c file (here program.c). So, in effect, it infers:

program.obj: program.c

 $(CC) $(CFLAGS) -o program.obj program.c

Note that $@ is replaced by the name of the target and $* by the name of the target with the
extension deleted from it. In a similar fashion, $< refers to the list of inferred prerequisites. So
the above example could be rewritten using the rule:

.c.obj:; $(CC) $(CFLAGS) -o $@ $<

However, if a VPATH were being used, this second form is obligatory. Consider, for example, the
fragment:

VPATH = \shared \oldvsn
program: ... module.obj ...
.c.obj:; $(CC) $(CFLAGS) -o $@ $<

There is no explicit rule for making module.obj , so armmake will apply the rule pattern .c.obj .
This might expand to:

module.obj: \shared\module.c
 $(CC) $(CFLAGS) -o module.obj \shared\module.c

Clearly $* could not have been used in this case.

Finally, $? can be used in any command to stand for the list of prerequisites with respect to which
the target is out of date (which may be only some of the prerequisites).

ARM make Utility

13-9Reference Manual
ARM DUI 0020D

13.5.4 Use of ::

If you use ‘::’, rather than ‘:’, to separate targets from prerequisites, the righthand sides of
dependencies which refer to the same targets are not merged. Furthermore, each such
dependency can have separate commands associated with it. Consider, for example:

t1.obj:: t1.c t1.h
 armcc -g -c t1.c # executed if t1.obj is out of
 # date wrt t1.c or t1.h
t1.obj:: t1.c t2.h
 armcc -c t1.c # executed if t1.obj is out of
 # date wrt t1.c or t2.h

13.6 Miscellaneous Features
The special pseudo-target .SILENT tells armmake not to echo commands to be executed to
your screen. Its effect is as if you used armmake -s .

The special pseudo-target .IGNORE tells armmake to ignore the return code from the
commands it executes. Its effect is as if you used armmake -i .

A command line, the first non-white-space character of which is @, is locally silent; the
command is not echoed.

A command line, the first non-white-space character of which is ‘-’ has its return code ignored
when it is executed. This is extremely useful in makefiles which use commands that do not set
the return code conventionally. Note particularly that for built-in commands under DOS, the
return codes are meaningless, and as such should not be relied upon to stop makefile execution
when they fail.

The special macro MFLAGS is given the value of the command line arguments passed to
armmake. This is most useful when a makefile itself contains armmake commands (for example,
when a system consists of a collection of subsystems, each described by its own makefile).
MFLAGS allows the same command-line arguments to be passed to every invocation of
armmake—even the recursive ones.

ARM make Utility

13-10 Reference Manual
ARM DUI 0020D

14-1Reference Manual
ARM DUI 0020D

ARMulator

This chapter describes the ARM instruction set simulator.

14.1 About the ARMulator 14-2

14.2 Modelling an ARM-Based System 14-2

14.3 ARMulator Release Components 14-3

14.4 Building an ARMulator Variant 14-4

14.5 Memory Interfacing 14-4

14.6 ANSI C Library 14-5

14.7 The ARMulator Environment 14-5

14.8 Memory Models 14-6

14.9 Co-processor Modelling 14-12

14.10 Modelling an Operating System or Low Level Monitor 14-16

14.11 Accessing ARMulator’s State 14-17

14.12 ARMulator Signals 14-18

14.13 Processor Selection 14-18

14.14 Event Handling 14-18

14.15 The ARM Debug Monitor 14-19

14

ARMulator

14-2 Reference Manual
ARM DUI 0020D

14.1 About the ARMulator
The ARMulator is a family of programs which emulate the instruction sets of various ARM
processors and their supporting architectures. The programs are written in C, and interface
directly to user-supplied models written in C or C++. An ARMulator suitably equipped to support
timing accuracy can be integrated into any hardware modelling system that accepts models
written in C.

The ARMulator:

• provides an environment for the development of ARM-targeted software on a range of
non ARM-based host systems

• allows accurate benchmarking of ARM-targeted software (though its performance will
be somewhat slow compared to real hardware)

• supports the simulation of prototype ARM based systems, ahead of the availability of
real hardware, so that software and hardware development can proceed in parallel

• provides a generic ARM processor core model for incorporation into hardware
simulation environments (via the foreign language interfaces to those environments)

ARMulator can be transparently connected to the ARM symbolic debugger to provide a
hardware-independent ARM software development environment. Communication takes place
via the Remote Debug Interface (RDI): see ➲Chapter 22, Remote Debugging for further
information. ARMulator also supports a full ANSI C library to allow complete C programs to run
on the emulated system.

14.2 Modelling an ARM-Based System
Three levels of modelling accuracy can be supported:

• Instruction-accurate

• Cycle-accurate

• Timing-accurate

The rest of this chapter describes instruction-accurate emulation. This models the instruction set
without regard to the precise timing characteristics of the processor. As a result, it is considerably
faster than the other variants, and is best suited to software development and benchmarking.

ARMulator

14-3Reference Manual
ARM DUI 0020D

14.3 ARMulator Release Components
The armul directory of the ARM Software Toolkit release contains the following files:

Makefile Used to build the symbolic debugger

readme This directs you to read this manual

armfast.c ARMulator ‘fast’ memory model (small contiguous memory)

armvirt.c ARMulator ‘virtual’ memory model (chunked memory)—the default

armproto.c ARMulator ‘prototype’ memory model

hostos.c Support functions and headers for C-library on PIE Card
hostos.h

armos.c Support functions and headers for C-library on ARMulator
armos.h

serdrive.c Source and headers for serial line driver for PIE Card
serdrive.h

armcopro.c ARMulator coprocessor model

aif.h Assorted files needed to build the symbolic debugger
armdefs.h
armfpe.h
dbg_conf.h
dbg_hif.h
pirdi.h

armsd.a symbolic debugger library

armsd armsd executable—placed in binaries directory (not armul)

The ARMulator is not a stand-alone product. To use it, you must link the parts together with a
debugger to produce an executable file. The debugger enables you to load and execute ARM
Image Format images.

The ARMulator can be customised by modifying the supplied C source files.

ARMulator

14-4 Reference Manual
ARM DUI 0020D

14.4 Building an ARMulator Variant
To build a debugger with options different to those provided in the release, modify the source files
appropriately. Then select armul as the current working directory and enter one of the following
commands:

make Builds the symbolic debugger

make armsd Builds the command-line debugger

make MODEL=armfast Builds both, using the ‘fast’ memory model

Any customised source files (eg. armfast.c , armos.c , serdrive.c) will be automatically
recompiled by the Makefile and included in the generated debugger executables.

14.5 Memory Interfacing
For instruction and program based emulation, a memory interface must be constructed to allow
ARMulator to load instructions and access data. The interface can be constructed in two ways.

• Rapid prototype interface. This is designed to allow rapid prototyping of systems, and
requires the construction of only three routines:

ARMul_MemoryInit
ARMul_MemoryExit
ARMul_MemAccess

See ➲14.8.2 Rapid prototype memory model on page 14-10.
• High speed memory interface. This form requires the construction of 25 separate

routines for handling instruction and data accesses, word and byte accesses, and so
forth.
See ➲14.8.1 High-speed memory interface functions on page 14-6.

14.5.1 Coprocessor interfacing

ARMulator defines two ways of modelling a coprocessor:

• by accessing the modelled ARM’s state directly through the ARMul_State structure

• by building a software interface that uses ARMulator to handle the difficult handshaking
and timing constraints of the simulation environment

14.5.2 Event scheduling

There are two routines to assist with the handling of asynchronous events:

ARMul_Time returns the number of clock ticks executed since system reset,
modulo 232.

ARMul_ScheduleEvent allows a function to be called a number of clock ticks into the
future, thus enabling code such as multi-cycle floating point
instructions to present their results at the appropriate time.

ARMulator

14-5Reference Manual
ARM DUI 0020D

14.5.3 Adding an operating system

The function ARMul_HandleSWI supports rapid prototyping of operating systems. The SWI
numbers of all executed SWI (software interrupt) instructions are passed to this function,
allowing support code to perform system-specific operations. The function may refuse to handle
a SWI by returning FALSE, in which case a SWI exception will occur. If the function returns
TRUE, execution will continue normally after the SWI instruction has completed.

14.6 ANSI C Library
A full ANSI C Library is available to support the emulation of complete C programs with
ARMulator. This library uses the ARMulator Operating System to perform filing operations on
the emulation host, and an emulator for full floating-point support.

14.7 The ARMulator Environment
An ARMulator consists of four parts:

1 the ARM processor model, together with the Remote Debug Interface and utility
functions to support system modelling

2 a memory interface which transfers data between the ARM model and the memory
model or memory management unit model

3 a co-processor interface to optional ARM co-processor models

4 an operating system interface to provide an execution environment.

Part 1 incorporates the Remote Debug Interface (RDI), which connects the ARMulator to the
symbolic debugger, in order to provide a hardware-independent, low-level software
development environment: see ➲22.1 ARM Remote Debug Interface on page 22-2.

Sample models of memory, a co-processor, and a simple operating system are supplied in
source form with the ARMulator.

The file armdefs.h defines functions, data structures and useful macros to support modelling.

Floating point support

On start-up, the host debugger loads a software floating-point emulator into the ARMulator.
Under armsd, this can be overridden using the –nofpe option. Programs using the software
floating point library do no need this emulator to be loaded.

ARMulator

14-6 Reference Manual
ARM DUI 0020D

14.8 Memory Models
For instruction-based and program-based emulation, a memory model must be constructed to
allow the ARMulator to load instructions and access data. A model can be built at two levels, the
first designed for rapid prototyping and the second for maximum emulation performance.

An example of each type of model is supplied in source form with the ARMulator.

The ARMul_State structure contains four pointers (type char* in C) that the memory interface
can use to refer to the memory model:

MemDataPtr is a pointer to the memory system’s private data structures, for
example to a Translation Lookaside Buffer.

MemInPtr is used to refer to memory attached to ARM’s DataInBus

MemOutPtr used to refer to memory attached to ARM’s DataOutBus

MemSparePtr is free for any extra data that may require referencing

If the multiple instantiation property of the ARMulator is to be preserved, it is essential that
memory models declare no static data of their own, but chain dynamically allocated (malloc ’d)
state-containing structures off MemDataPtr .

A fifth field in ARMul_State structure, MemSize, is used by the C runtime system to find the top
of RAM memory. If this value is set, the C user stack will descend from this address, otherwise
the runtime system will use a default value.

14.8.1 High-speed memory interface functions

To maximise the performance of a memory model (thus maximising the number of instructions
emulated per second), the following high speed memory interface should be used. This interface
can distinguish between different sorts of memory access using different access functions.

Twenty five functions have to be implemented (in C). These are described on the following pages,
grouped according to function.

ARMulator

14-7Reference Manual
ARM DUI 0020D

Initialisation/finalisation
unsigned ARMul_MemoryInit(ARMul_State *state,

unsigned long memorysize)

This function is called once, before any other routines are called, to allow the memory
manager to initialise itself. If initialisation fails, the routine should return FALSE,
otherwise it should return TRUE.

The memorysize argument specifies the minimum amount of memory required by
the ARMulator. If this cannot be supplied, initialisation should fail. For systems
implementing a fixed size memory, memorysize should be used to set the value of
MemSize in ARMul_State . The memory model can use this opportunity to attach to
other parts of the ARMulator—an MMU model would probably want to attach to
coprocessor 15 and the ModeChange upcall, for example.

unsigned ARMul_MemoryExit(ARMul_State *state,
unsigned long memorysize)

This function is called once to allow the memory manager to perform finalisation code
(for tasks such as deallocating memory). If finalisation fails, the function should return
FALSE, otherwise it should return TRUE.

Load instruction
ARMword ARMul_LoadInstrS(ARMul_State *state, ARMword address)

This function should return the instruction addressed by address . The address was
produced by the address incrementer, and sequentially follows that of the preceding
memory access.

ARMword ARMul_LoadInstrN(ARMul_State *state, ARMword address)

This function should return the instruction addressed by address . The address does
not sequentially follow that of the preceding memory access.

ARMword ARMul_LoadInstr16S(ARMul_State *state, ARMword address)

This function loads 16-bit (Thumb) instructions, and should return the value in the lower
16 bits of the result. The address was produced by the address incrementer, and
sequentially follows that of the preceding memory access.

ARMword ARMul_LoadInstr16N(ARMul_State *state, ARMword address)

This function loads 16-bit (Thumb) instructions, and should return the value in the lower
16 bits of the result. The address does not sequentially follow that of the preceding
memory access.

ARMulator

14-8 Reference Manual
ARM DUI 0020D

Load data
ARMword ARMul_LoadWordS(ARMul_State *state, ARMword address)

This function should return the word addressed by address . The address was
produced by the address incrementer and sequentially follows that of the preceding
memory access.

ARMword ARMul_LoadWordN(ARMul_State *state, ARMword address)

This function should return the word addressed by address . The address does not
sequentially follow that of the preceding memory access.

ARMword ARMul_LoadByte(ARMul_State *state, ARMword address)

This function should return the byte addressed by address . The byte should be
returned in the least significant eight bits of the returned value.

ARMword ARMul_LoadHalfWord(ARMul_State *state, ARMword address)

This function loads a halfword, and returns the value in the least significant sixteen bits
of the returned value.

Store data
void ARMul_StoreWordS(ARMul_State *state, ARMword address,

ARMword data)

This function stores the word data to memory at address address . The address was
produced by the address incrementer and sequentially follows that of the preceding
word stored.

void ARMul_StoreWordN(ARMul_State *state, ARMword address,
ARMword data)

This function stores the word data to memory at address address . The address does
not sequentially follow that of the preceding word stored.

void ARMul_StoreByte(ARMul_State *state, ARMword address, ARMword data)

This function stores the byte in the least significant eight bits of data to memory, at
address address .

void ARMul_StoreHalfWord(ARMul_State *state, ARMword address,
ARMword data)

This function stores the byte in the least significant sixteen bits of data to memory, at
address address .

ARMulator

14-9Reference Manual
ARM DUI 0020D

Swap
ARMword ARMul_SwapByte(ARMul_State *state, ARMword address

 ARMword data)

This function should load the byte addressed by address , store the byte from the least
significant eight bits of data at address , and return the loaded value.

ARMword ARMul_SwapWord(ARMul_State *state, ARMword address,
 ARMword data)

This function should load the word addressed by address , store the word data at
address, and return the loaded value.

Read
ARMword ARMul_ReadByte(ARMul_State *state, ARMword address)
ARMword ARMul_ReadWord(ARMul_State *state, ARMword address)
ARMword ARMul_ReadHalfWord(ARMul_State *state, ARMword address)

These three functions must be pure and must transfer data from the memory model
without updating any other internal state. Both are used by implementations of the
Remote Debug Interface to inspect the modelled memory (see ➲22.1 ARM Remote
Debug Interface on page 22-2).

As a general rule, these calls should reflect the same memory mapping as that seen
by the processor in its current state, but should not, for example, cause cache
line-fetches.

Write
void ARMul_WriteByte(ARMul_State *state, ARMword address, ARMword data)
void ARMul_WriteWord(ARMul_State *state, ARMword address, ARMword data)
void ARMul_WriteHalfWord(ARMul_State *state, ARMword address,

ARMword data)

These three functions must be pure and must transfer data to the memory model
without updating any other internal state. Both are used by implementations of the
Remote Debug Interface to alter the modelled memory (see ➲22.1 ARM Remote
Debug Interface on page 22-2).

As a general rule, these calls should reflect the same memory mapping as that seen
by the processor in its current state, but should not enforce protection attributes, nor
account for the accesses.

Execute cycles
void ARMul_Ccycles(ARMul_State *state, unsigned number,

ARMword address)

This function is used to inform the memory system that the processor is about to
execute number co-processor cycles.

ARMulator

14-10 Reference Manual
ARM DUI 0020D

void ARMul_Icycles(ARMul_State *state, unsigned number,
ARMword address)

This function is used to inform the memory system that the processor is about to
execute number internal (I) cycles. The address of the next memory access will be
address .

Attach mode change handler
void ARMul_ModeChangeUpcall(ARMul_State *state, ARMword old,

ARMword new)

The memory system is at liberty to attach a handler to the ModeChange upcall. This is
a function pointer in ARMul_State , and is called every time the processor mode is
changed. This allows access permissions to be switched. The handler should take a
copy of the old pointer value, and pass the call on to that function when it has finished
(the default value of the pointer is a do-nothing function). The function is called as
shown above, immediately after the register banks have been switched (if appropriate).

14.8.2 Rapid prototype memory model

Providing the ARMulator with a prototype memory model involves writing just three C functions.
(Veneer implementations of the functions listed in the previous section are supplied with
ARMulator in source code form.)

The three functions are as follows.

unsigned ARMul_MemoryInit(ARMul_State *state, unsigned long memorysize)

This function is called once, before any other routine, to allow the memory manager to
initialise itself. If initialisation fails, the routine should return FALSE, otherwise it should
return TRUE.

The memorysize argument specifies the minimum amount of memory required by the
ARMulator. If the size cannot be supplied, initialisation should fail. For systems
implementing a fixed size memory, memorysize should be used to set the value of
MemSize in ARMul_State .

unsigned ARMul_MemoryExit(ARMul_State *state, unsigned long memorysize)

This function is called once to allow the memory manager to perform finalisation code
(for tasks such as deallocating memory). If finalisation fails, the function should return
FALSE, otherwise it should return TRUE.

ARMword ARMul_MemAccess(
ARMul_State *state,
ARMword address,
ARMword dataOut,
ARMword mas1,
ARMword mas0,
ARMword rw,
ARMword seq,

ARMulator

14-11Reference Manual
ARM DUI 0020D

ARMword mreq,
ARMword opc,
ARMword lock,
ARMword trans,
ARMword account)

This routine must perform a memory access by modelling the ARM memory interface
pins.

The parameters following the state parameter have the following meanings:

address encodes ARM’s address bus and always has a valid value.

dataOut encodes ARM’s dataOut bus and only has a valid value during memory write
requests.

mas1 mas0 encode ARM’s mas[1:0] bus, which encodes the width of the data transfer
requested. Possible values are:

Its value is only valid when the value of mreq (see below) is LOW, ie, during
data transfer cycles.

rw represents ARM’s Not Read/Write pin, and has a value of LOW for read
requests and HIGH for write requests. Its value is only valid when mreq (see
below) is LOW (ie. during data transfers). Byte read requests should return
the entire word from the memory. The ARMulator will extract the required
byte, just as ARM itself would. Byte Write operations receive the byte to be
written replicated four times in dataOut ; the memory model must extract the
correct byte.

seq represents ARM’s Sequential pin, and has a value of HIGH when the address
specified is sequential with the previous access. Its value is always valid.

mreq represents ARM’s Not Memory Request Pin, and has a value of LOW when
the access should actually load or store data. Its value is always valid.

opc represents ARM’s Not OpCode Pin, and has a value of LOW if the access is
an instruction fetch. Its value is only valid when the value of mreq (see above)
is LOW (ie. during data transfers).

lock represents ARM’s Lock Pin, and has a value of HIGH if the memory system
should deny other devices access to the memory. The signal is only valid
when mreq (see above) is LOW (ie. during data transfers).

trans represents ARM’s Not Trans Pin, and has a value of LOW if the processor is
in a User mode. Its value is always valid.

mas1 mas0
0 0 byte
0 1 halfword
1 0 word
1 1 reserved

ARMulator

14-12 Reference Manual
ARM DUI 0020D

account is used to inform the memory system that it should account for the number of
cycles used in this memory access by updating the fields NumScycles ,
NumNcycles , NumIcycles and NumCcycles in the ARMul_State structure
pointed to by state .

When rw is LOW, ARMul_MemAccess should return the contents of the memory location
addressed by address , otherwise it should return 0. Aborts in the memory system are modelled
using two macros defined in armdefs.h .

If an Abort occurs during an instruction prefetch (opc equals LOW), the macro
ARMul_PREFETCHABORT should be called, passing the address of the abort (from the address
argument to ARMul_MemAccess) as a parameter.

If a Data Abort occurs, the macro ARMul_DATAABORT should be called, again using address as
its parameter. In both cases the value ARMul_ABORTWORD should be returned.

14.9 Co-processor Modelling
The ARMulator models a co-processor via a software interface that uses the ARMulator to handle
most of the difficult handshaking and timing constraints. Each co-processor modelling function
must be installed in the ARMul_CoProInit function defined in armcopro.c using the function
ARMul_CoProAttach , and de-installed using the function ARMul_CoProDetach .

14.9.1 Installing a co-processor model

Each co-processor modelling function is installed using the function ARMul_CoProAttach :

void ARMul_CoProAttach(ARMul_State *state, ARMword number,
 ARMul_CPInits *init, ARMul_CPExits *exit,
 ARMul_LDCs *ldc, ARMul_STCs *stc,
 ARMul_MRCs *mrc, ARMul_MCRs *mcr,
 ARMul_CDPs *cdp,
 ARMul_CPReads *read, ARMul_CPWrites *write,
 ARMword *regwords)

This installs up to nine functions for co-processor number number . The remaining
arguments are pointers to functions (see ➲14.9.2 Co-processor modelling functions,
below). If an argument is NULL, the relevant handler is not changed.

The regwords argument describes to ARMulator the shape of your co-processor’s
registers. It consists of a single word giving the number of registers followed by a vector
of the minimum number of words required to contain the register. For an example, see
the definition of the minimal MMU system in armos.c .

The state structure contains the field:

char *CPData[16]

which can be used by a co-processor to point to private data. Each co-processor should
use the element of the array corresponding to its co-processor number.

ARMulator

14-13Reference Manual
ARM DUI 0020D

14.9.2 Co-processor modelling functions

The following functions may be passed to ARMul_CoProAttach .

Initialisation/finalisation functions
unsigned ARMul_CPInits(ARMul_State *state)

This function is called once, before any other routine, to allow the co-processor to
initialise. If initialisation is not possible, the routine should return FALSE, otherwise it
should return TRUE.

unsigned ARMul_CPExits(ARMul_State *state)

This function is called last, allowing the co-processor to finalise. If finalisation is not
possible, the routine should return FALSE, otherwise it should return TRUE.

Co-processor read/write functions
unsigned ARMul_CDPs(ARMul_State *state, unsigned type, ARMword instr)

This function is called whenever the ARMulator encounters a CDP instruction destined
for this co-processor. Unless it returns the value BUSY, it will only be called once with
type set to FIRST: see ➲Read/write function parameters on page 14-14.

unsigned ARMul_MRCs(ARMul_State *state,
unsigned type, ARMword instr, ARMword *value)

This function is called whenever the ARMulator encounters an MRC instruction
destined for this co-processor.

The value argument is a pointer to (the model of) an ARM register where the result of
the transfer should be stored (if it was successfully emulated). This location should be
considered write-only. Unless the function returns the value BUSY, it will only be called
once with type set to FIRST: see ➲Read/write function parameters on page 14-14 .

unsigned ARMul_MCRs(ARMul_State *state,
unsigned type, ARMword instr, ARMword value)

This function is called whenever the ARMulator encounters an MCR instruction
destined for this co-processor. The value argument is the value of the ARM register
to transfer (if it was successfully emulated). Unless the function returns BUSY, it will only
be called once with type set to FIRST: see ➲Read/write function parameters on page
14-14.

unsigned ARMul_LDCs(ARMul_State *state,
unsigned type, ARMword instr, ARMword value)

This function is called whenever the ARMulator encounters an LDC instruction
destined for this co-processor. The value argument is the data loaded from memory.
This function will be called first with type set to FIRST. Assuming the function does
not return BUSY, the function will then be called with type set to TRANSFER, and finally
with type set to DATA, at which point the value argument will be valid. The function

ARMulator

14-14 Reference Manual
ARM DUI 0020D

may request further data by returning the value INC, in which case subsequent calls will
have type set to DATA and the value argument will be valid: see ➲Read/write function
parameters on page 14-14.

unsigned ARMul_STCs(ARMul_State *state,
unsigned type, ARMword instr, ARMword *value)

This function is called whenever the ARMulator encounters an STC instruction destined
for this co-processor. The value argument should be set to the value to be stored to
memory. This location should be considered write-only.

ARMul_STCs will be called first with type set to FIRST. Assuming it does not return
BUSY, the function will then be called with type set to DATA, at which point it should
store the data to be written to memory in value .

The function may request further data to be transferred by returning the value INC.
Subsequent calls will have type set to DATA and value should be set to the value to
be written to memory: see ➲Read/write function parameters on page 14-14.

Read/write function parameters

The functions listed in the previous section accept a parameter called type . This can have one
of five values:

FIRST indicates that this is the first time the co-processor has been called
with this instruction.

TRANSFER indicates that this is the load cycle of an LDC instruction (the data is
being loaded from memory).

DATA indicates that the co-processor is being called with valid data (LDC
and MCR), or is expected to return valid data (STC and MRC).

INTERRUPT is used to warn the co-processor that the ARMulator is about to
service an interrupt, so the co-processor should discard the current
instruction. Usually, the instruction will be retried later, in which case
the type parameter will be reset to FIRST.

BUSY is used as the reply to a previous call that returned BUSY (see below)

The instr parameter is the co-processor instruction itself.

The functions must return one of four values:

BUSY indicating that the co-processor is busy and the ARMulator should
busy-wait, recalling the routine repeatedly

CANT indicating that the co-processor cannot execute this particular
instruction

INC indicating that the ARMulator should produce the next address for an
LDC or STC instruction, and call the co-processor function again

DONE indicating successful completion of the instruction.

ARMulator

14-15Reference Manual
ARM DUI 0020D

Debug functions

Finally, two functions allow a debugger to read and write co-processor registers via the Remote
Debug Interface (see ➲22.1 ARM Remote Debug Interface on page 22-2):

unsigned ARMul_CPReads(ARMul_State *state,
unsigned reg, ARMword *value)

This reads the co-processor register numbered reg , and transfers its value to the
location addressed by value .

unsigned ARMul_CPWrites(ARMul_State *state,
unsigned reg, ARMword *value)

This sets the value of the co-processor register numbered reg to the value addressed
by value.

14.9.3 De-installing a co-processor

A co-processor is de-installed using the following function.

extern void ARMul_CoProDetach(ARMul_State *state, ARMword number)

This sets the default handlers for co-processor number number . These consist of no
initialisation, finalisation, read or write functions, and dummy operation functions which
cause ARM undefined instructions.

ARMulator

14-16 Reference Manual
ARM DUI 0020D

14.10 Modelling an Operating System or Low Level Monitor
Rapid prototyping of low-level operating system code is supported via the following four functions
in the file armos.c . In all cases, the ARMul_State structure pointed to by state contains a
pointer called OSptr , which can be used to point to a structure holding the operating system
model’s state.

unsigned ARMul_OSInit(ARMul_State *state)

ARMul_OSInit informs the OS model that it should initialise itself. The function may
return FALSE, indicating that initialisation was impossible. The memory system is
guaranteed to be operating at this time, and thus the memory interface routines
described in ➲14.8 Memory Models on page 14-6 may be used to install default trap
handlers, etc.

unsigned ARMul_OSHandleSWI(ARMul_State *state, unsigned SWInum)

ARMul_OSHandleSWI is passed the SWI number (in SWInum) of each SWI instruction
executed by the ARMulator, as it is executed, allowing support code to simulate
operating system operations. You can extend this code to model as much of your
operating system as you choose. This OS model can, of course, communicate with the
emulated application, by reading and writing the emulated ARM state using the routines
described in ➲14.11 Accessing ARMulator’s State on page 14-17.

The function may refuse to handle a SWI by returning FALSE, in which case the SWI
exception vector is taken by the ARMulator. If the function returns TRUE, execution
continues normally once the SWI has completed.

ARMword ARMul_OSLastErrorP(ARMul_State *state)

This function should return the last software error reported to the debuggee via a default
Error Vector handler. If no handler is installed, the routine should return zero.

unsigned ARMul_OSException(ARMul_State *state, ARMword vector,
ARMword pc)

ARMul_OSException is called whenever a hardware exception occurs. The CPU
state is frozen immediately after the exception has occurred, but before the CPU has
switched processor state, or taken the appropriate exception vector. The argument
vector contains the address of the vector about to be executed: 0 for Reset, 4 for
Undefined Instruction, 0x1c for Fast Interrupt (FIQ) and so on. The argument pc
contains the value of the program counter (including the effect of pipelining) at the time
the exception occurred.

The function may choose to ignore the exception by returning TRUE, and execution will
continue from the instruction following the aborted instruction. A return value of TRUE
will cause the exception to occur normally.

ARMulator

14-17Reference Manual
ARM DUI 0020D

14.11 Accessing ARMulator’s State
The ARMulator provides several functions that allow full access to its internal state. These may
only be called at the beginning of a new instruction—ie. from:

• any initialisation or finalisation function

• ARMul_OSHandleSWI , ARMul_LoadInstrS and ARMul_LoadInstrN
(or ARMul_OSHandleSWI , ARMul_LoadInstr16S and ARMul_LoadInstr16N for
the 16-bit versions)

• a routine called by the ARMulator’s event handler: see ➲14.14 Event Handling on page
14-18

At any other time the ARMulator’s state is undefined.

ARMword ARMul_GetReg(ARMul_State *state, unsigned mode, unsigned reg)
void ARMul_SetReg(ARMul_State *state, unsigned mode, unsigned reg)

These functions allow the value of a register from a given mode to be read and written.
Register 15 should not be accessed with these functions.

The mode numbers are defined in armdefs.h as follows:

USER26MODE USER32MODE
FIQ26MODE FIQ32MODE
IRQ26MODE IRQ32MODE
SVC26MODE SVC32MODE

ABORT32MODE
UNDEF32MODE

ARMword ARMul_GetPC(ARMul_State *state)
void ARMul_SetPC(ARMul_State *state, ARMword value)
ARMword ARMul_GetR15(ARMul_State *state)
void ARMul_SetR15(ARMul_State *state, ARMword value)

These functions allow access to Register 15. (If the processor is in a 26-bit mode, the
PC variants strip/preserve the condition code and mode bits from register 15.)

ARMword ARMul_GetCPSR(ARMul_State *state)
void ARMul_SetCPSR(ARMul_State *state, ARMword value)

These functions allow the CPSR to be read and written. The format of the CPSR is the
same as that of ARM6, regardless of whether the processor is in 26 bit mode or not.

ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode)
void ARMul_SetSPSR(ARMul_State *state, ARMword mode, ARMword value)

These functions allow the SPSR of a specified mode to be read and written. The format
of an SPSR is the same as that of ARM6, regardless of whether the processor is in 26
bit mode or not.

ARMulator

14-18 Reference Manual
ARM DUI 0020D

14.12 ARMulator Signals
Some of ARM’s I/O signals can be read and written at any time by accessing the fields of the
ARMul_State structure. The following fields are guaranteed to contain valid values at all times:

ARMword instr
ARMword pc
unsigned NresetSig
unsigned NfiqSig
unsigned NirqSig
unsigned abortSig
unsigned NtransSig
unsigned bigendSig
unsigned prog32Sig
unsigned data32Sig
unsigned lateabtSig

The instr field contains the address of the instruction that is currently being executed, the pc
field contains the address of that instruction. The meaning of the other fields are described in the
ARM datasheets, and should be set to the value HIGH or LOW. The signals Nreset , Nfiq and
Nirq are only checked if Exception in the state structure is set to TRUE.

14.13 Processor Selection
The following function can be used to change the processor being emulated.The full range of
possible processors is listed in armdefs.h .

void ARMul_SelectProcessor(ARMul_State *state, int processor)

This function will, as a side-effect, alter the values of various I/O signals.

Note: There is currently no way to specify processor requirements over the RDI. To specify a processor,
use ARMul_SelectProcessor from within your ARMulMemoryInit implementation.

14.14 Event Handling
The ARMulator has two routines to assist with scheduling asynchronous events.

unsigned long ARMul_Time(ARMul_State *state)

This function returns the number of clock ticks executed since system reset,
modulo 232.

void ARMul_ScheduleEvent(ARMul_State *state,
unsigned howlong, unsigned (*func)(ARMul_State *state))

This function allows a function (passed in the argument func) to be called howlong
clock ticks into the future, therefore allowing code like multicycle FPU instructions to
produce results some time into the future. The function is called with a pointer to the
emulation state pertaining at the time of the call. The value of howlong must not exceed
1000.

ARMulator

14-19Reference Manual
ARM DUI 0020D

14.15 The ARM Debug Monitor
The files armos.h , armfpe.h and armos.c define a low level interface between the
ARMulator and the host’s operating system, used for debugging applications running under the
ARMulator and for supporting the semi-hosted ANSI C library via the host’s C library. The same
interface is used between the ARM debug monitor (for platform independent ARM evaluation
and development cards) and the ARM symbolic debugger. This gives a common low-level
programming, C library and debugging environment across:

• the ARMulator under the symbolic debugger

• the ARM Platform Independent Evaluation (PIE) card for the ARM60 driven by the
symbolic debugger

For further details, please refer to ➲Chapter 17, Demon.

ARMulator

14-20 Reference Manual
ARM DUI 0020D

15-1Reference Manual
ARM DUI 0020D

C Library

This chapter describes the ARM C library and how to port it to other targets.

15.1 An Introduction to the Run-Time Libraries 15-2

15.2 Porting the ARM C Library 15-3

15.3 Source Organisation 15-4

15.4 Building a Target-Specific Library 15-6

15.5 Retargeting the Library 15-7

15.6 Details of Target-Dependent Code 15-10

15

C Library

15-2 Reference Manual
ARM DUI 0020D

15.1 An Introduction to the Run-Time Libraries
There are two run-time libraries provided to support cross-compiled C:

• the minimal standalone run time library

• the ANSI C library

Both libraries are supplied in source form and will need to be re-targeted to your ARM-based
hardware. However, both have been designed to make re-targeting straightforward. Both
libraries are also provided in binary form targeted at the ARMulator, ARM's user-extensible CPU
emulator, so you can run and debug programs running on an emulated ARM immediately. For
details see ➲Chapter 7, Symbolic Debugger.

15.1.1 Minimal standalone run-time library

The minimal standalone run time library provides only those functions required by code compiled
with the ARM C compiler:

• division and remainder functions

• stack-limit checking functions

• lowest-level memory management (stack + heap)

• program startup (calling main())

• program termination (_exit())

This library is a single module written in ARM assembly language. It is a few pages of code, a
high proportion of which is comment. Only a few small functions need to be re-written for each
new environment, and thus re-targeting typically takes an hour or two and is right first time.

Once the standalone library is operational, code compiled from C may be run, beginning with the
supplied test programs.

C Library

15-3Reference Manual
ARM DUI 0020D

15.1.2 ANSI C library

The full ANSI C library contains the following:

• target-independent modules written in ANSI C (eg. printf());

• target-independent modules written in ARM assembly language (eg. divide() ,
memcpy());

• target-dependent modules written in ANSI C (eg. default signal handlers, clock());

• target-dependent modules written in ARM assembly language.

The target-independent portions of the library can be built immediately. The target-dependent
parts require some effort to implement. An example implementation for a commercially available
ARM-based personal computer is provided in the tools release, and this can be modified as
required.

Re-targeting the ANSI C library will require some knowledge of ARM assembly language, and
some understanding of the ARM processor and hardware being used. It will be necessary to
refer to the relevant ARM datasheet, and also to ➲3.3 Assembly Language Overview on page
3-6 and ➲Chapter 4, ARM Instruction Set.

Because of its modular structure, not all of the library needs to be re-targeted at once: re-target
only what will be used. Re-targeting the C library is described in section ➲15.2 Porting the ARM
C Library.

15.2 Porting the ARM C Library
The retargetable ARM C library conforms to the ANSI C library specification. Example code is
included which targets the library at:

1 the common operating environment supported by the ARM emulator (ARMulator), the
ARM Evaluation and Development boards

2 Acorn’s proprietary RISC OS operating system. (RISC OS is a cooperative multi-
tasking system, but the targeting is at a level such that its multi-tasking nature does not
obtrude.)

The following sections provide information on how to port the ARM C library to other targets.

C Library

15-4 Reference Manual
ARM DUI 0020D

15.3 Source Organisation
The supplied source structure holds the following directories:

stdh contains the ANSI header files (which should require no change in
retargeting). These files are also built into armcc.

util contains the source of the makemake utility, written in classic C.

semi contains targeting code for the semi-hosted C Library, which targets
the debug monitor supported by:

• the ARMulator

• ARM Platform Independent Evaluation (PIE) card for the
ARM60

together with SunOS-hosted make definitions and library build
options. (The library is called semi-hosted because many functions
such as file I/O are implemented on the host computer, via the host's
C library). In principle, a targeting of the library requires both a target
directory and a host directory; however, where there is only one
hosting, it is convenient to amalgamate the two directories.

thumb contains Thumb specific C Library assembly code together with
Thumb make definitions and library build options.

fplib contains source code for the software floating point library.

riscos contains targeting code for Acorn's RISC OS operating system for its
ARM-based computers, together with SunOS-hosted make
information.

fpe340 contains object code of the Floating Point Emulator (for which source
code is not provided).

*.c, *.h, *.s (top-level) contain target-independent source code.

The target-independent code is mostly grouped into one file per section of the ANSI library
(though with exceptions: stdlib is implemented partly in alloc.c and partly in stdlib.c), with
use of conditional compilation or assembly to enable construction of a fine-grain library
(approximately one object file per function). The ARMulator-targeted code is similarly grouped.

15.3.1 Constructing a makefile

The first stage in constructing a makefile for a targeting of the library uses the utility program
makemake. This allows description of library variants in a host-independent manner, and permits
the building of a library on a host that severely limits the number of files in a directory.

makemake takes as input the files makedefs from the host directory and sources and
options from the target directory (see below for a description of their content). It produces as
output a makefile called Makefile in the host directory (often, the host directory and the target
directory will be the same).

C Library

15-5Reference Manual
ARM DUI 0020D

The arguments to makemake are the name of the host directory and, if distinct, the name of the
target directory.

In order to retarget the library, at least the following files must be provided:

makedefs (in the host directory)

Host-dependent definitions of tools, paths, options etc. to include in the constructed
Makefile for the library. Use the file makedefs from the semi directory as a template.

options (in the target directory)

library variant selection (a number of lines, each of the form option_name = value).
See ➲15.5 Retargeting the Library on page 15-7. Use the file options from the semi
directory as a template.

sources (in the target directory)

list of objects to include in the target library, and sources from which they are to be
constructed. Each line (other than those controlling variant selection) has one of the
forms:

• object_name source_name

• object_name source_name [compiler_options]

where object_name lacks the .o extension. Variant selection involves lines of the
form:

#if expression
#elif expression
#else
#end

with the obvious significance. Expression primaries are option_name = value and
option_name != value , and expression operators are && and || (of equal
precedence, note). Use the file sources from the semi subdirectory as a template,
modifying it as needed.

hostsys.h (in the target directory)

defines the functions which must be supplied for a full retargeting of the library, and
also defines certain target-dependent values required by target-independent code.
Use the file hostsys.h from the semi subdirectory as a template, changing the
values in it appropriately (see ➲15.5 Retargeting the Library on page 15-7 and ➲15.6
Details of Target-Dependent Code on page 15-10).

C Library

15-6 Reference Manual
ARM DUI 0020D

config.h (in the target directory)

contains the hardware description. The version of this file in the semi directory will
suffice for a little-endian ARM with mixed-endian doubles; a big-endian ARM needs
BYTESEX_ODD defined (and BYTESEX_EVEN not). Truly little-endian floating-point
values are not supported by the floating-point emulator or library.

The files containing the target-specific implementation code are also provided in the
target directory.

15.4 Building a Target-Specific Library
When the target-dependent files have been provided, construction of a library proceeds as
follows:

1 cd util
cc -o makemake makemake.c

(Since makemake is written portably in ‘classic’ C it should just compile and go. The
options to C compilers vary, but most support this way of making an executable program
called makemake from the source makemake.c)

2 cd ..
util/makemake targetdir [hostdir]

(hostdir is needed only if it is different from targetdir) (under DOS, use
util\makemake ...)

3 cd hostdir
make depend

(this augments Makefile ; as a side-effect it also makes the assembler-sourced
objects.)

4 make

(this makes armlib.o ... if everything succeeds).

C Library

15-7Reference Manual
ARM DUI 0020D

15.5 Retargeting the Library
The following generic variants are available as ‘tick box’ options through the options file in the
target directory:

fp_type

=linked includes the object module containing the floating point emulator in the library
(and linked into any image), along with a small interface module to take
control of the illegal instruction vector on startup, and relinquish it on
closedown.

=module floating point emulation is provided externally (present in ROM, for example).
In this case, if the target-dependent kernel follows the code of the riscos
example, functions __fp_initialise , __fp_finalise and
__fp_address_in_module must be provided (see ➲15.6.3 Floating-point
support on page 15-12).

=library includes the software floating point routines in the C library. This can be used
to produce a standalone image which does not require a floating point
emulator. See ➲Chapter 16, Software Floating Point.

memcpy

=small memcpy , memmove and memset are implemented by generic C code (which
attempts to do as much as possible in word units): each occupies about 100
bytes.

=fast memmove and memcpy are implemented together in assembler, which
attempts to do the bulk of the move 8 words at a time using LDM/STM (about
1200 bytes). memset is implemented similarly (about 200 bytes).

divide

=small the fully rolled implementations.

=unrolled unsigned and signed divide are unrolled 8 times for greater speed, but
obviously use more code.
Complete unrolling of divide is possible, but should be done with care since
the significant size increase might give decreased rather than increased
performance on a cached ARM. Whichever variant is selected, fast unsigned
and signed divide by 10 are included.

stack (see ➲15.5.2 Address space model on page 15-8).

stdfile_redirection

=on _main extracts Unix-style stdstream connection directives from the image’s
argument string (<, >, >>, >&, 1>&2).

C Library

15-8 Reference Manual
ARM DUI 0020D

backtrace

=on the default signal handler ends by producing a call-stack traceback to stderr.
(Use of this variant is not encouraged, since it increases the proportion of the
library that is linked into all images, while providing functionality better obtained
from a separate debugger).

15.5.1 Basic choices

After the tick box choices have been made, basic choices then have to be made about the
address-space model and the I/O model the library will follow.

15.5.2 Address space model

Two address space models are supported: contiguous stack and chunked stack.

Contiguous stack

Choosing stack = contiguous gives:

<–––– top of memory (high address)

<–––– stack pointer (sp)

<–––– stack limit pointer (sl)

<–––– stack low-water mark (sl - StackSlop)

<–––– top of heap (HeapTop)

<–––– top of application (Image$$RW$$Limit)

the application’s memory image

<–––– application load address

Stack space

.............

Free stack

..............

Unused memory

Heap space

Static data

.............

Code

C Library

15-9Reference Manual
ARM DUI 0020D

Chunked stack

Choosing stack = chunked gives:

A third variant, like the first, but with the stack outside of the heap and not under the application's
control, can easily be synthesised. This may be a more appropriate variant if there is a skeletal
operating system which implements an address-mapped stack segment.

15.5.3 I/O model

The library, as supplied, only conveniently handles byte-stream files, (which is not to say that
other file types cannot be handled in the target-dependent IO support level, but such support
may well be complicated; block stream files, for example, are simple to support in the absence
of user-supplied buffers).

<–––– initial top of memory (HeapLimit)
(may be raised—see _osdep_heapsuppt_extend in ➲15.6.5
Miscellaneous on page 15-14)

<–––– top of heap (HeapTop)
chained stack chunks within heap

<–––– top of application (Image$$RW$$Limit)
the application’s memory image

<–––– application load address

Unused memory

Heap space

Static data

..............

Code

C Library

15-10 Reference Manual
ARM DUI 0020D

15.6 Details of Target-Dependent Code

15.6.1 ANSI library functions

The following ANSI standard functions have an implementation completely dependent on the
target operating system. No functions are used internally by the library (so if any are
unimplemented, only clients which directly call the functions will fail).

clock_t clock(void)

(The compiler is expected to predefine __CLK_TCK if the units of clock_t differ from
the default of centiseconds. If this is not done, time.h must be adjusted to define
appropriate values for CLK_TCK and CLOCKS_PER_SEC).

void _clock_init(void) (declared weak)

clock_init() (if you provide it) is called from the library's initialisation code,
(clock() needs initialising if a read-only timer is all it has to work with).

time_t time(time_t *timer)
int remove(const char *pathname)
int rename(const char *old, const char *new)
int system(const char *string)
char *getenv(const char *name)
void getenv_init(void) (declared weak)

getenv_init() is called from the library's initialisation code if you provide an
implementation of it.

15.6.2 I/O support

If any I/O function is to be used, hostsys.h must define the type FILEHANDLE, values of which
identify an open file to the host system. There must be at least one distinguished value of this
type, defined by the macro NONHANDLE, used to distinguish a failed call to _sys_open .

For an unaltered __rt_lib_init , the macro TTYFILENAME must be defined to a string to be
used in opening a file to terminal.

The macro HOSTOS_NEEDSENSURE should be defined if the host OS requires an ensure
operation to flush OS file buffers to disc if an OS write is followed by an OS read that requires a
seek, (the flush happens before the seek). The RISC OS targeting needs this macro to be
defined, thanks to an OS file-buffering bug; it is unlikely to be wanted otherwise.

FILEHANDLE _sys_open(const char *name, int openmode)

openmode is a bitmap, whose bits mostly correspond directly to the ANSI mode
specification: for details, see hostsys.h in ➲15.3 Source Organisation on page 15-4.
(Target-dependent extensions are possible, in which case freopen() must be
extended too). The function _sys_open() is needed by fopen() and freopen() ,
which in turn are required if any I/O function is to be used.

C Library

15-11Reference Manual
ARM DUI 0020D

int _sys_iserror(int status)

A _sys_iserror() function, or a _sys_iserror() macro, is required if any of the
following int-returning functions is provided (to determine whether the return value
indicates an error).

int _sys_close(FILEHANDLE fh)

The return value is 0 or an error indication. It must be defined if any I/O function is to
be used.

int _sys_write(
FILEHANDLE fh, const unsigned char *buf, unsigned len, int mode)

The mode argument is a bitmap describing the state of the FILE connected to fh . (See
the _IOxxx constants in ioguts.h for the its meaning: only a few of these bits are
expected to be needed by _sys_write). The return value is the number of characters
not written (ie. non-0 denotes a failure of some sort), or an error indicator. This function
must be defined if any output function or sprintf variant is to be used.

int _sys_read(FILEHANDLE fh, unsigned char *buf, unsigned len, int
mode)

The mode argument is a bitmap describing the state of the FILE connected to fh , as
for _sys_write . The return value is the number of characters not read (ie. len -
result were read), or an error indication, or an EOF indicator. The target-independent
code is capable of handling either early EOF (the last read from a file returns some
characters plus an EOF indicator), or late EOF (the last read returns just EOF). The
EOF indication involves the setting of 0x80000000 in the normal result. The function
_sys_read() must be defined if any input function or sscanf variant is to be used.

int _sys_seek(FILEHANDLE fh, long pos)

This function positions the file pointer at offset pos from the beginning of the file. The
result is >= 0 if OK, negative for an error. The function must be defined if any input or
output function is to be used.

int _sys_ensure(FILEHANDLE fh)

A call to _sys_ensure () flushes any buffers associated with fh , and ensures that the
file is up to date on the backing store medium. The result is >= 0 if OK, negative for an
error. This function is only required if you define HOSTOS_NEEDSENSURE (see above).

long _sys_flen(FILEHANDLE fh)

The above function returns the current length of the file fh (or a negative error
indicator). It is needed in order to convert fseek(, SEEK_END) into (, SEEK_SET)
as required by _sys_seek . It must be defined if fseek() is to be used. (Note that it
is possible to adopt a different model here if the underlying system directly supports
seeking relative to the end of a file, in which case, _sys_flen() can be eliminated.)

C Library

15-12 Reference Manual
ARM DUI 0020D

void _ttywrch(int ch)

This function writes a character, notionally to the console. Used (in the host-
independent part of the library) in the last-ditch error reporter, when writing to stderr is
believed to have failed or to be unsafe (eg. in default SIGSTK handler). This function
must be defined.

int _sys_istty(FILE *)

This function returns non-0 if the argument file is connected to a terminal. It is used to
provide default unbuffered behaviour (in the absence of a call to set(v)buf), and to
disallow seeking. It must be defined if any output function (including sprintf variants)
or fseek is to be used.

void _sys_tmpnam(char *name, int fileno);

This function returns the name for temporary file number fileno in the buffer name. It
must be defined if tmpnam() or tmpfil() are to be used.

15.6.3 Floating-point support

int __fp_initialise(void)
void __fp_finalise(void)

If the variant fp_type == module is selected, and the target-dependent library kernel
follows the pattern of the RISC OS example, these two functions must be supplied
(though they need not do anything). The function __fp_initialise() returns 1 if
floating-point instructions are available, otherwise 0.

bool __fp_address_in_module(void *)

If the variant fp_type == module is selected and the supplied abort handlers are
used, the above function must be provided. It should return 1 if the argument address
falls within the code of the fp emulator, (to allow the abort handler to describe what is
really an abort on a floating-point load or store as such, rather than somewhere within
the emulator's code).

C Library

15-13Reference Manual
ARM DUI 0020D

15.6.4 Kernel

The Kernel handles the entry to, and exit from, an application linked with the library. It also
exports some variables for use by other parts of the library. Details of what the kernel must do
are strongly dependent on details of the target environment. The ARMulator version of this file
(kernel.s in the semi directory) can be used as a prototype. The following are the main
interfaces to the kernel:

__main()

The entry point to the application. Must perform low-level library initialisation, then call
_main . (What initialisation needs to be done is target environment dependent: it may
include heap, stack, and fp support, calling various osdep_xxx_init() functions if
they exist). __rt_lib_init must be called to initialise the body of the library.

void __rt_exit(int);

This function finalises the library (including calling atexit() handlers), then returns
to the OS with its argument as a completion code. It must be provided.

char *__rt_command_string(void);

This function returns the address of (maybe a copy of) the string used to invoke the
program. It must be provided.

void __rt_trap(__rt_error *, __rt_registers *);

__rt_trap() handles a fault (processor detected trap, enabled fp exception, or the
like). The argument register set describes the processor state at the time of the fault,
with the pc value addressing the faulting instruction (except perhaps in the case of
imprecise floating-point exceptions). This function must be provided. The
implementation in the ARMulator kernel will usually be adequate.

unsigned __rt_alloc(unsigned minwords, void **block);

__rt_alloc() is the low-level memory allocator underlying malloc() . (malloc()
allocates only memory between HeapBase and HeapTop; a call to __rt_alloc()
attempts to move HeapTop: cf Unix sbrk()). __rt_alloc should try to allocate a
block of sensible size >= minwords . If this is not available, and if
__osdep_heapsupport_extend is defined, it should call that to attempt to move
HeapLimit. Otherwise (or if the call fails) it should allocate the largest possible block of
sensible size. The return value is the size of block allocated, and *block is set to point
to the start of the allocated block (the return may be 0 if no sensibly sized block can be
allocated). Allocations are rounded up to a suitable size to avoid an excessive number
of calls to __rt_alloc .

C Library

15-14 Reference Manual
ARM DUI 0020D

void *(*__rt_malloc)(size_t)

This is a function pointer, which the kernel should initialise to some primitive memory
allocation function. The library itself contains no calls to malloc() , (other than those
from functions of the malloc family, such as calloc()), instead the function pointed to
by __rt_malloc is called. __rt_malloc is set to malloc during initialisation (if
malloc is linked into the image). The use of __rt_malloc ensures that allocations
made before malloc is initialised succeed, and prevents malloc from being
necessarily linked into an image, even when unused.

extern void (*__rt_free)(void *)

This is a function pointer, which the kernel should initialise to some primitive memory-
freeing function. (see __rt_malloc above).

15.6.5 Miscellaneous

void __osdep_traphandlers_init(void)

This arranges to catch processor aborts (and pass them to __rt_trap).

void __osdep_traphandlers_finalise(void)

This removes the processor abort handlers installed by ..._init() .

void __osdep_heapsupport_init(HeapDescriptor *)

This function must be provided, but may be null.

void __osdep_heapsupport_finalise(void)

This function must be provided, but may be null.

{ int, void *} __osdep_heapsupport_extend(int size, HeapDescriptor *)

This function requests extension of the heap by at least size bytes. The return values
are number of bytes acquired, and base address of the new acquisition. This function
must be provided, (but a null version just returning 0 will suffice if heap extension is not
needed).

char *_hostos_error_string(int no, char *buf);

This function is called to return a string describing an error outside the set ERRxxx
defined in errno.h . (It may generate the message into the supplied buf if it needs to
do so). It must be defined if perror() or strerror() is to be used.

char *_hostos_signal_string(int no)

This function is called to return a string describing a signal whose number is outside the
set SIGxxx defined in signal.h .

16-1Reference Manual
ARM DUI 0020D

Software Floating Point

This chapter describes the ARM software floating point arithmetic library.

16.1 Introduction 16-2

16.2 The ARM Floating Point Library 16-2

16.3 Usage 16-3

16.6 Controlling Floating Point Exceptions from C 16-6

16.4 Interworking Between hardfp and softfp Systems 16-3

16.5 Calling the Floating Point Library from Assembler 16-3

16.7 Formats 16-10

16

Software Floating Point

16-2 Reference Manual
ARM DUI 0020D

16.1 Introduction
Floating point arithmetic on the ARM has traditionally been done using the floating point
extensions to the ARM instruction set. Systems use either a hardware floating point unit (the
FPA), or a software emulator (the FPE) which traps calls to the FPA. The system allows code to
take advantage of a hardware unit if one is available, without the need for recompilation.

Floating point variables are held in registers on the (emulated) FPA, and co-processor
instructions are used to manipulate these variables. However the extra cost of intercepting,
decoding and emulating the FPA instruction set is quite high.

In many applications (eg. embedded control) the flexibility offered by this approach is not
required. In such situations the use of a software floating point library is a considerable
advantage.

For more information on floating point, refer to the FPA datasheet, and IEEE754 (the IEEE
standard for binary floating point arithmetic).

16.2 The ARM Floating Point Library
The ARM software floating point library provides a set of functions that the C compiler uses in
place of the FPA instructions (eg. _dadd to add two doubles). Although based on the FPE, the
library removes much of the overhead of emulating the FPA.

This approach has a number of advantages over the FPE:

• Significantly faster code.
By avoiding the decoding and emulation of the FPA instructions, the floating point library
typically achieves twice the floating point performance of the FPE.

• Smaller code.
Although the executable for a given program will be larger since all the floating point
code is linked to it, the actual memory used in a system should be less because there
is no need to include the FPE. For example the linpack program increases in size
from 24Kb to 34Kb, but no longer needs 26Kb of FPE.

• No need to port the FPE to your target environment.
The FPE must be modified for use in a new environment because it effectively forms
part of the operating system. It requires some dedicated workspace which must be
allocated in the target memory map. Multi-tasking environments must preserve the
floating point context between task switches. There is no need for any porting if the
software library is used. This reduces development time significantly.

The main disadvantage is that code compiled using the library will not take advantage of a
hardware floating point accelerator.

Software Floating Point

16-3Reference Manual
ARM DUI 0020D

16.3 Usage
There is a new APCS option to control which floating point mechanism is used by armcc :

-apcs /softfp generate calls to ARM software floating point library (default)

-apcs /hardfp generate in-line ARM floating point instructions

Note that the compiler warns if you use softfp in conjunction with the following since these
options only apply to a hardfp system.

-apcs /fpe3

-apcs /fpe2

-apcs /fpregargs

16.4 Interworking Between hardfp and softfp Systems
Functions that return a floating point type under software floating point use the ARM’s integer
registers (returning a double in r0 and r1, and a float in r0). Under the FPE results are returned
in the floating point register f0. Hence the two are not compatible.

You should not need to mix ARM floating point instructions and calls to the softfp library.

16.5 Calling the Floating Point Library from Assembler
The software floating point library provides a number of functions for basic floating point
operations. IEEE double precision (double) values are passed in pairs of registers, and single
precision (float) numbers in a single register.

For example _dadd is the function to add two double precision numbers and return the result.

It can be considered as having the prototype:

extern double _dadd(double, double);

that is, the two numbers to be added are passed in R0/R1 and R2/R3, and the result is returned
in R0/R1.

Similarly the function _fadd (single precision add) has the two arguments passed in R0 and R1,
and the result returned in R0.

Thumb: The tcc always uses software floating point.

Software Floating Point

16-4 Reference Manual
ARM DUI 0020D

The complete set of functions are given in ➲Table 16-1: Library functions:

Function Operation Arg1 (type) Arg2 (type) Result (type)

_dadd A+B R0/R1 (double) R2/R3 (double) R0/R1 (double)

_dsub A-B R0/R1 (double) R2/R3 (double) R0/R1 (double)

_drsb B-A R0/R1 (double) R2/R3 (double) R0/R1 (double)

_dmul A*B R0/R1 (double) R2/R3 (double) R0/R1 (double)

_ddiv A/B R0/R1 (double) R2/R3 (double) R0/R1 (double)

_drdv B/A R0/R1 (double) R2/R3 (double) R0/R1 (double)

_dneg -A R0/R1 (double) R0/R1 (double)

_fadd A+B R0 (float) R1 (float) R0 (float)

_fsub A-B R0 (float) R1 (float) R0 (float)

_frsb B-A R0 (float) R1 (float) R0 (float)

_fmul A*B R0 (float) R1 (float) R0 (float)

_fdiv A/B R0 (float) R1 (float) R0 (float)

_frdv B/A R0 (float) R1 (float) R0 (float)

_fneg -A R0 (float) R0 (float)

_dgr A>B R0/R1 (double) R2/R3 (double) R0 (boolean)

_dgeq A>=B R0/R1 (double) R2/R3 (double) R0 (boolean)

_dls A<B R0/R1 (double) R2/R3 (double) R0 (boolean)

_dleq A<=B R0/R1 (double) R2/R3 (double) R0 (boolean)

_dneq A!=B R0/R1 (double) R2/R3 (double) R0 (boolean)

_deq A==B R0/R1 (double) R2/R3 (double) R0 (boolean)

_fgr A>B R0 (float) R1 (float) R0 (boolean)

_fgeq A>=B R0 (float) R1 (float) R0 (boolean)

 Table 16-1: Library functions

Software Floating Point

16-5Reference Manual
ARM DUI 0020D

In addition the library provides some functions for dealing with extended precision values, but
these are not documented.

_fls A<B R0 (float) R1 (float) R0 (boolean)

_fleq A<=B R0 (float) R1 (float) R0 (boolean)

_fneq A!=B R0 (float) R1 (float) R0 (boolean)

_feq A==B R0 (float) R1 (float) R0 (boolean)

_dflt (double)A R0 (int) R0/R1 (double)

_dfltu (double)A R0 (unsigned) R0/R1 (double)

_dfix (int)A R0/R1 (double) R0 (int)

_dfixu (unsigned)A R0/R1 (double) R0 (unsigned)

_fflt (float)A R0 (int) R0 (float)

_ffltu (float)A R0 (unsigned) R0 (float)

_ffix (int)A R0 (float) R0 (int)

_ffixu (unsigned)A R0 (float) R0 (unsigned)

_d2f (double)A R0 (float) R0/R1 (double)

_f2d (float)A R0/R1 (double) R0 (float)

Thumb: In the Thumb software floating point library the thumb entry points are predefined with __16
(eg. __16_dadd). This is to allow both ARM and Thumb versions of floating point functions
to be present when interworking ARM and Thumb.

Function Operation Arg1 (type) Arg2 (type) Result (type)

 Table 16-1: Library functions

Software Floating Point

16-6 Reference Manual
ARM DUI 0020D

16.6 Controlling Floating Point Exceptions from C
Both the hardfp and softfp modes provide a function (__fp_status) for setting and reading
the status of either the FPE/FPA or the floating point library.

The following is an extract from stdlib.h :

extern unsigned int __fp_status(unsigned int /* mask */,
unsigned int /*flags*/);
#define __fpsr_IXE 0x100000 Inexact exception trap enable bit
#define __fpsr_UFE 0x80000 Underflow exception trap enable bit
#define __fpsr_OFE 0x40000 Overflow exception trap enable bit
#define __fpsr_DZE 0x20000 Divide by zero exception trap enable bit
#define __fpsr_IOE 0x10000 Invalid operation exception trap enable bit

#define __fpsr_IXC 0x10 Inexact exception flag bit
#define __fpsr_UFC 0x8 Underflow exception flag bit
#define __fpsr_OFC 0x4 Overflow exception flag bit
#define __fpsr_DZC 0x2 Divide by zero exception flag bit
#define __fpsr_IOC 0x1 Invalid operation exception flag bit

mask and flags are bit-fields which correspond directly to the floating point status register
(FPSR) in the FPE/FPA and the software floating point library.

The function __fp_status returns the current value of the status register, and also sets the
writable bits of the word (the exception control and flag bytes) to:

new = (old & ~mask) ^ flags;

Four different operations can be performed on each status register bit, determined by the
respective bits in mask and flags :

The __fp_status function always returns the current value of the status register, before any
changes are applied.

Initially all exceptions are enabled, and no flags are set.

mask bit flags bit Effect

0 0 no effect

0 1 toggle bit in status register

1 0 clear bit in status register

1 1 set bit in status register

 Table 16-2: Status register bit operations

Software Floating Point

16-7Reference Manual
ARM DUI 0020D

16.6.1 Examples

status = __fp_status(0,0);
/* reads the status register, does not change it */

__fp_status(__fpsr_DZE,0);
/* disable divide-by-zero exception trap */

inexact = __fp_status(__fpsr_OFC,0) & __fpsr_OFC;
/* read (and clear) overflow exception flag bit */

/* Report the type of floating point system being used. */
switch (flags=(__fp_status(0,0)>>24))
 {

case 0x0: case 0x1:
printf("Software emulation\n");
break;

case 0x40:
printf("Software library\n");
break;

case 0x80: case 0x81:
printf("Hardware\n");
break;

default:
printf("Unknown ");
if (flags & (1<<7))

printf("hardware\n");
else

printf("software %s\n",
flags & (1<<6) ? "library"
: "emulation");

break;
}

16.6.2 System ID byte

Bits 31:24 contain a system ID byte. The currently defined values are:

0x00 Pre-FPA floating point emulator

0x01 FPA compatible floating point emulator

0x40 Floating point library

Software Floating Point

16-8 Reference Manual
ARM DUI 0020D

0x80 FPPC (obsolete)

0x81 FPA10 (with FPSC module)

The top bit (bit 31) is used to distinguish between hardware and software systems, and bit 30 is
used to distinguish between software emulators and libraries.

16.6.3 Exception trap enable byte

Each bit of the exception trap enable byte corresponds to one type of floating point exception.

Bits 23:16 control the enabling of exceptions on floating point errors:

bits 23:21 Reserved

bit 20 IXE Inexact exception enable*

bit 19 UFE Underflow exception enable*

bit 18 OFE Overflow exception enable

bit 17 DZE Divide by zero exception enable

bit 16 IOE Invalid operation exception enable

A set bit causes the system to take an exception trap if an error occurs. Otherwise a bit is set in
the cumulative exception flags (see below) and the IEEE defined result is returned.

Note: The current floating point library will never produce those exceptions marked with a *.

A bit in the cumulative exception flags byte is set as a result of executing a floating point
instruction only if the corresponding bit is not set in the exception trap enable byte. If the
corresponding bit in the exception trap enable byte is set, a runtime error will occur (SIGFPE will
be raised in a C environment).

16.6.4 System control byte

This byte is not used on the floating point library system. Refer to the FPA datasheet for details
of its meaning under FPA and FPE systems.

In particular, the NaN exception control bit (bit 9) is not yet supported by the floating point library,
but may be in a future version.

23 22 21 20 19 18 17 16

Reserved IXE UFE

Exception Trap Enable Byte

OFE DZE IOE

Software Floating Point

16-9Reference Manual
ARM DUI 0020D

16.6.5 Exception flags byte

Bits 7:0 contain flags for whether each exception has occurred in the same order as the
Exception Trap Enable Byte. Exceptions occur as defined by IEEE 754.

7...5 4 3 2 1 0

Reserved IXC UFC OFC DZC IOC

Cumulative Exception Flags Byte

Software Floating Point

16-10 Reference Manual
ARM DUI 0020D

16.7 Formats
int and unsigned 32-bit integer quantities.

boolean Either 0 (False) or 1 (True).

float IEEE single precision floating point number.

 Figure 16-1: IEEE single precision

double IEEE double precision floating point number.

 Figure 16-2: IEEE double precision

31 30 23 22

lsb

0

sign Exponent msb Fraction

 31 30 20 19 0

sign (ms part) lsbFirst Word

msb Fraction (ls part) lsb

Exponent msb Fraction

Second Word

17-1Reference Manual
ARM DUI 0020D

Demon

This chapter describes the ARM debug monitor, Demon.

17.1 Introduction 17-2

17.2 Target Memory Map 17-3

17.3 Standard Monitor SWIs 17-4

17.4 The Implementation of Demon for the PIE Card 17-8

17

Demon

17-2 Reference Manual
ARM DUI 0020D

17.1 Introduction
The ARM debug monitor, demon, provides a common low-level programming, C library and
debugging environment across the ARM emulator, linked with the symbolic debugger.

This chapter describes the common programming and debugging environment supported by
implementations of demon. For implementation details refer to the following:

• For the ARMulator model of demon, see armos.h and armos.c in the armul directory
of this release.

• For the implementation used in the PIE, see the PIE User Manual.

• To see how the functions of the debug monitor are used to implement a semi-hosted
C library, see the semi subdirectory of the clib directory in this release.

Demon

17-3Reference Manual
ARM DUI 0020D

17.2 Target Memory Map
An initial memory map is defined as follows:

Address Description

0x00000 CPU Reset Vector

0x00004 CPU Undefined Instruction Vector

0x00008 CPU Software Interrupt Vector

0x0000c CPU Prefetch Abort Vector

0x00010 CPU Data Abort Vector

0x00014 CPU Address Exception Vector

0x00018 CPU Interrupt Vector

0x0001c CPU Fast Interrupt Vector

0x00020 ~1 KBytes for FIQ routine and FIQ mode stack

0x00400 256 bytes for IRQ mode stack

0x00500 256 bytes for Undefined mode stack

0x00600 256 bytes for Abort mode stack

0x00700 256 bytes for SVC mode stack

0x00800 Debug monitor Private Workspace

0x01000 Free for user supplied Debug Monitor

0x02000 Floating Point Emulator space

0x08000 Application space

Top of memory an implementation-dependent address returned by the debug monitor
SWI SWI_Getenv . For the PIE and ARMulator variant it has the value
0x80000 (512 KBytes). The C library support uses the top of memory
address for the base of the user mode stack. All stacks grow towards
address zero.

 Table 17-1: Initial memory map

Demon

17-4 Reference Manual
ARM DUI 0020D

17.3 Standard Monitor SWIs
Demon implements a number of useful SWIs:

SWI_WriteC (SWI 0)

Write a byte, passed in register 0, to the debug channel. When executed under the
symbolic debugger, the character will appear on the display device connected to the
debugger.

SWI_Write0 (SWI 2)

Write the null-terminated string, pointed to by register 0, to the debug channel. When
executed under the symbolic debugger, the characters will appear on the display device
connected to the debugger.

SWI_ReadC (SWI 4)

Read a byte from the debug channel, returning it in register 0. The read is notionally
from the keyboard attached to the debugger.

SWI_CLI (SWI 5)
This SWI is not available in the PC/DOS release.

Pass the string, pointed to by register 0, to the host's command line interpreter.

SWI_GetEnv (SWI 0x10)

Returns in register 0 the address of the command-line string used to invoke the
program, and in register 1 the highest available address in user memory.

SWI_Exit (SWI 0x11)

Halt emulation. This is the way a program exits cleanly, returning control to the
debugger.

SWI_EnterOS (SWI 0x16)

Put the processor into supervisor mode. For a 32-bit demon, SVC32 is entered. If the
demon was built with CONFIG=26, SVC26 is entered.

SWI_GetErrno (SWI 0x60)

Return, in r0, the value of the C library errno variable associated with the host support
for this debug monitor. errno may be set by a number of C library support SWIs,
including SWI_Remove, SWI_Rename, SWI_Open, SWI_Close, SWI_Read,
SWI_Write, SWI_Seek, etc. Whether or not, and to what value errno is set is
completely host-specific, except where the ANSI C standard defines the behaviour.

SWI_Clock (SWI 0x61)

Return, in r0, the number of centi-seconds since the support code began execution.
In general, only the difference between successive calls to SWI_Clock , can be
meaningful.

SWI_Time (SWI 0x63)

Return, in r0, the number of seconds since the beginning of 1970 (the Unix time origin).

Demon

17-5Reference Manual
ARM DUI 0020D

SWI_Remove (SWI 0x64)

Delete (remove, un-link, wipe, destroy) the file named by the nul-terminated string
addressed by r0. Return (in r0) a zero if the removal succeeds, or a non-zero,
host-specific error code if it fails.

SWI_Rename (SWI 0x65)

r0 and r1 address NUL-terminated strings, the old-name and new-name, respectively.
If the rename succeeds, zero is returned in r0; otherwise, a non-zero, host-specific
error code is returned.

SWI_Open (SWI 0x66)

r0 addresses a NUL-terminated string containing a file or device name; r1 is a small
integer specifying the file-opening mode, as shown in ➲Table 17-2: File-opening
mode. If the open succeeds, a non-zero handle is returned in r0, which can be quoted
to SWI_Close, SWI_Read, SWI_Write, SWI_Seek, SWI_Flen and
SWI_IsTTY. Nothing else may be asserted about the value of the handle. If the open
fails, the value 0 is returned in r0.

r1 value ANSI C fopen() mode

0 "r"

1 "rb"

2 "r+"

3 "r+b"

4 "w"

5 "wb"

6 "w+"

7 "w+b"

8 "a"

9 "ab"

10 "a+"

11 "a+b"

 Table 17-2: File-opening mode

Demon

17-6 Reference Manual
ARM DUI 0020D

SWI_Close (SWI 0x68)

On entry, r0 must be a handle for an open file, previously returned by SWI_Open. If the
close succeeds, zero is returned in r0; otherwise, a non-zero value is returned.

SWI_Write (SWI 0x69)

On entry, r0 must contain a handle for a previously opened file; r1 points to a buffer in
the callee; and r2 contains the number of bytes to be written from the buffer to the file.
SWI_Write returns, in r0, the number of bytes not written (and so indicates success
with a zero return value).

SWI_Read (SWI 0x6a)

On entry, r0 must contain a handle for a previously opened file or device; r1 points to a
buffer in the callee; and r2 contains the number of bytes to be read from the file into the
buffer. SWI_Read returns, in r0, the number of bytes not read, and so indicates the
success of a read from a file with a zero return value. If the handle is for an interactive
device (SWI_IsTTY returns non-zero for this handle), then a non-zero return from
SWI_Read indicates that the line read did not fill the buffer.

SWI_Seek (SWI 0x6b)

On entry, r0 must contain a handle for a seekable file object, and r1 the absolute byte
position to be sought to. If the request can be honoured then SWI_Seek returns 0 in r0;
otherwise it returns a host-specific non-zero value. Note that the effect of seeking
outside of the current extent of the file object is undefined.

SWI_Flen (SWI 0x6c)

On entry, r0 contains a handle for a previously opened, seekable file object. SWI_Flen
returns, in r0, the current length of the file object, otherwise it returns -1.

SWI_IsTTY (SWI 0x6e)

On entry, r0 must contain a handle for a previously opened file or device object. On exit,
r0 contains 1 if the handle identifies an interactive device; otherwise r0 contains 0.

SWI_TmpNam (SWI 0x6f)

On entry, r0 points to a buffer and r1 contains the length of the buffer (r1 should be at
least the value of L_tmpnam on the host system). On successful return, r0 points to the
buffer which contains a host temporary file name. If the request cannot be satisfied (eg.
because the buffer is too small) then 0 is returned in r0.

SWI_InstallHandler (SWI 0x70)

SWI_InstallHandler installs a handler for a hardware exception. On entry, r0
contains the exception number (see ➲Table 17-3: Hardware exception handling on
page 17-7); r1 contains a value to pass to the handler when it is eventually invoked; and
r2 contains the address of the handler. On return, r2 contains the address of the
previous handler and r1 contains its argument.

Demon

17-7Reference Manual
ARM DUI 0020D

When the exception occurs, the handler is entered in the appropriate non-user mode,
with r10 holding a value dependent on the exception type, and r11 holding the handler
argument (as passed to InstallHandler in r1). r10, r11, r12 and r14 (for the processor
mode in which the handler is entered) are saved on the stack of the mode in which the
handler is entered; all other registers are as at the time of the exception. (Any effects
of the instruction causing the exception have been unwound, and the saved r14 points
at the instruction that failed, rather than one or two words ahead.) If the handler returns,
the exception will be passed to the debugger (regardless of the value of the debugger
variable $vector_catch).

SWI_GenerateError (SWI 0x71)

On entry, r0 points to an error block (containing a 32-bit error number, followed by a
zero-terminated error string); r1 points to a 17-word block containing the values of the
ARM CPU registers at the instant the error occurred (the 17th word contains the PSR).

SWI_GenerateError calls the (software) error vector: if bit 8 of $vector_catch is
set this causes the debugger to be entered directly; otherwise, the installed error
handler is called (see SWI_InstallHandler) .

No. Exception Mode r10 value

0 branch through zero svc32 -

1 undefined instruction undef32 -

2 swi svc32 swi number

3 prefetch abort abort32 -

4 data abort abort32 -

5 address exception svc32 -

6 IRQ irq32 -

7 FIQ fiq32 -

8 Error svc32 error pointer

 Table 17-3: Hardware exception handling

Demon

17-8 Reference Manual
ARM DUI 0020D

17.4 The Implementation of Demon for the PIE Card
The debug monitor is split into two parts, called Level 0 and Level 1. The code in Level 1 is
replaceable, allowing new targets to be debugged using the same standard interface. The
Remote Debug Protocol (RDP) is implemented between the debugger and the debuggee. See
➲22.2 ARM Remote Debug Protocol on page 22-21 for a complete description. Quite simply, the
RDP defines a protocol that can communicate with a debugger and a debug monitor. Level 0 is
responsible for recognising incoming RDP messages from the debug channel, and dispatching
them to Level 1 of the debug monitor. Level 0 also drives the debug channel, at the request of
Level 1.

Level 1 handles RDP messages from the debugger, and generates RDP messages to support
the actions of the application using it. The Level 1 code implements a number of SWI instructions
to allow an application access to high level functions. See ➲17.3 Standard Monitor SWIs on
page 17-4.

The interface between Level 0 and Level 1 is via a number of entry addresses situated at the
beginning the Level 0 code. Their layout is as follows:

Offset

0x00000 Reset Instruction

0x00004 Address of Reset routine

0x00008 Address of InstallRDP routine

0x0000c Address of ResetChannel routine

0x00010 Address of ChannelSpeed routine

0x00014 Address of GetByte routine

0x00018 Address of PutByte routine

0x0001c Address of ReadTimer routine

0x00020 Address of SetLED routine

The first two words are mapped into address 0 and 4 when the CPU is reset to provide the initial
code entry.

Demon

17-9Reference Manual
ARM DUI 0020D

17.4.1 Debug channel routines

InstallRDP is used by the Level 1 code to register a handler of all RDP
messages. The address of the handler should be passed in register
0, and the address of the previous handler will be returned in register
0. Level 1 code that does not wish to handle all RDP messages may
pass unhandled messages to the previous handler. The RDP
handler is entered in FIQ mode, with interrupts disabled and the
RDP message number in register 0. Exit from the handler by loading
the program counter from the stack with an instruction such as:

LDMFD sp!, {pc}

All register values have been saved before entry to the handler, and
will be restored after exit. Once the Level 1 RDP handler has been
entered, it may read successive bytes from the debug channel using
the GetByte routine, and send replies using the PutByte routine.
The Level 1 handler may also formulate RDP messages to support
application code that it has been called by, and these too are sent
using PutByte .

ResetChannel can be used to reset the debug channel driver, should an error be
detected by the Level 1 Code.

ChannelSpeed is used to change the speed of the debug channel in an
implementation designed fashion. Currently the PIE board supports
baud rates of 9600, 19200 and 38400 bits per second over its serial
channel. These speeds can be selected by sending the values 1, 2
or 3 respectively to the ChannelSpeed routine. A value of 0 selects
the default (power on reset) value, which for the PIE is 9600 bps.
The meaning of all other values is undefined.

GetByte gets bytes to and from the debug channel, as described above.

PutByte puts bytes to and from the debug channel, as described above.

ReadTimer returns in register 0 a centi-second count from an on board timer.
If an on-board timer is not available, this routine will always return
0xFFFFFFFF (-1).

SetLED allows the setting and clearing of an on-board Light Emitting Diode
(LED). Register 0 dictates the action required: 0 turns the LED off;
any other values turn it on.

Demon

17-10 Reference Manual
ARM DUI 0020D

18-1Reference Manual
ARM DUI 0020D

EmbeddedICE

This chapter describes aspects of EmbeddedICE.

18.1 The Effect of EmbeddedICE on the Debuggee 18-2

18.2 Vector Breakpoints 18-2

18.3 Configuration Data 18-2

18.4 Accessing the EmbeddedICE Macrocell Directly 18-3

18.5 Floating Point and Other Coprocessors 18-4

18

EmbeddedICE

18-2 Reference Manual
ARM DUI 0020D

18.1 The Effect of EmbeddedICE on the Debuggee
EmbeddedICE has been designed to allow debugging via the JTAG port to be as non-intrusive
as possible:

• The debuggee needs no special hardware to support debugging (the ICEbreaker and
the JTAG TAP controller is all that is required).

• No memory in the debuggee system need be set aside for debugging, and no special
software need be incorporated to allow debugging.

• Execution of the debuggee should only be halted when a breakpoint or watchpoint has
been hit or the user requests that the debuggee be halted.

Although EmbeddedICE is generally non-intrusive, there are two exceptions:

• When armsd is started up it attempts to find out the state of the debugee. To do this, it
halts the debuggee and inspects the state of the ARM registers. This, however, can be
considered non-intrusive if the debugging session is started once armsd has been
started.

• Watchpoints on structures or arrays larger than one word may cause the debuggee to
halt execution when writes occur close to the watchpointed area. EmbeddedICE will
restart execution transparently to the user, but this may still cause problems if the
application is real time. For more information see ➲7.3.1 Extensions to armsd for
EmbeddedICE on page 7-4.

18.2 Vector Breakpoints
When you start execution (using go or step), EmbeddedICE puts into place any breakpoints
specified by the armsd internal variable $vector_catch . This means that when you start
executing, user breakpoints and watchpoints may have to be downgraded from hardware ones
to software ones without any warning being given. See the Software Development Toolkit
documentation for more information.

18.3 Configuration Data
Building a configuration data file is not generally required, so you may not need to read this
section.

EmbeddedICE has built in configuration data for ARM70DM. However, if for any reason different
configuration data needs to be supplied to EmbeddedICE you can

• use armsd commands

• use armsd invocation options.

The syntax of these is described in ➲7.3.1 Extensions to armsd for EmbeddedICE on page 7-4.

A configuration file consists of a number of configuration blocks simply concatenated. Each block
contains data for a particular system. You can load a configuration file using loadconfig . You
can then select the desired configuration block using selectconfig .

EmbeddedICE

18-3Reference Manual
ARM DUI 0020D

Building a configuration block is relatively simple, and is done using armcc and armlink . The
configuration block built into EmbeddedICE for ARM70DM has been supplied in a form which
can be modified if necessary. The iceconf.h file contains well commented descriptions of all
the data structures needed in a configuration block so, together with the arm70dm example
configuration file, should allow new configuration data blocks to be created.

A readme file is included with simple instructions to build this configuration block It can be found
in the config directory.

18.4 Accessing the EmbeddedICE Macrocell Directly
No armsd commands have been added to allow you to manipulate ICEbreaker registers
directly. Instead you can use the commands which display and set coprocessor registers, with
coprocessor number 0 specified. Coprocessor 0 is defined to never be implemented, so this
cannot clash with user or ARM developed coprocessors.

For example, the command cregisters 0 will display the contents of a number of registers,
which are in fact ICEbreaker's registers. The correspondence between coprocessor 0 registers
displayed and ICEbreaker registers is simple. The register address field in the ICEbreaker
scan chain is precisely the register number. See your ARM data sheet for more information
about ICEbreaker.

You may read ICEbreaker registers freely in this manner, but writing them needs some more
care, as EmbeddedICE also makes use of ICEbreaker registers to set up breakpoints and
watchpoints. Thus when you write an ICEbreaker register (eg. cwrite 0 20 0x44),
EmbeddedICE checks to see if the breakpoint which that register is a part of is in use. If it is,
EmbeddedICE will attempt to free it (by degrading hardware breakpoints to software
breakpoints), and then set a lock on that breakpoint so that EmbeddedICE makes no further
attempt to use it.

It is possible to see which breakpoints have been locked in this way by printing the value of
$icebreaker_lockedpoints . This armsd internal variable can also be set to unlock
breakpoints. In the ARM70DM the breakpoints are numbered 1 and 2, and bits 1 and 2 in
$icebreaker_lockedpoints indicate their status.

If a breakpoint or watchpoint which has been set up in this way gets taken, EmbeddedICE will
not know why execution has stopped (it wasn't due to one of the break/watch points it knows
about), and so will halt debuggee execution reporting Unknown watchpoint .

Take care when writing ICEbreaker registers 0 and 1, the control and status registers, as
EmbeddedICE uses these to perform many of its operations. Thus if these are written at all, they
should always be returned to their original values afterwards.

Note also that requests to armsd to read or write ICEbreaker registers do not necessarily cuase
the registers to be read or written directly. This is because, in the interests of efficiency, the B/I
S/W caches the contents of the ICEbreaker registers, only updating changed registers before
execution of the debuggee is resumed.

EmbeddedICE

18-4 Reference Manual
ARM DUI 0020D

18.5 Floating Point and Other Coprocessors
By default EmbeddedICE assumes that there are no coprocessors attached to the debuggee. If
in fact there are coprocessors attached, then a suitable coproc command should be issued to
armsd .

19-1Reference Manual
ARM DUI 0020D

ARM Procedure Call Standard

This chapter describes the ARM procedure call standard.

19.1 Introduction 19-2

19.2 The ARM Procedure Call Standard 19-3

19.3 APCS Variants 19-11

19.4 C Language Calling Conventions 19-14

19.5 Function Entry 19-16

19.6 The APCS in Non-User ARM Modes 19-25

19

ARM Procedure Call Standard

19-2 Reference Manual
ARM DUI 0020D

19.1 Introduction
The ARM Procedure Call Standard (APCS) is a set of rules which regulate and facilitate calls
between separately compiled or assembled program fragments.

The APCS defines:

• constraints on the use of registers

• stack conventions

• format of a stack-based data structure, used by stack tracing programs to reconstruct a
sequence of outstanding calls

• passing of machine-level arguments, and the return of machine-level results at
externally visible function/procedure calls

• support for the ARM shared library mechanism; a standard way for shared (re-entrant)
code to address the static data of its clients (see ➲6.11 ARM Shared Library Format on
page 6-18 for details)

Since the ARM CPU is used in a wide variety of systems, the APCS is not a single standard but
a consistent family of standards: see section ➲19.3 APCS Variants on page 19-11 for details of
the variants in the family. Implementors of run-time systems, operating systems, embedded
control monitors, etc., must choose the variant(s) most appropriate to their requirements.

Naturally, there can be no binary compatibility between program fragments which conform to
different members of the APCS family. Developers who are concerned with long-term binary
compatibility must choose their options carefully.

In the following, the term function is used to mean function, procedure or subroutine.

19.1.1 Design criteria

Throughout its history, the APCS has compromised between fastest, smallest and easiest to use.

The criteria we have considered to be important are:

• Function calls should be fast and it should be easy for compilers to optimise function
entry sequences.

• The function call sequence should be as compact as possible.

• Extensible stacks and multiple stacks should be accommodated.

• The standard should encourage the production of re-entrant code, with writeable data
separated from code.

• The standard should be simple enough to be used by assembly language programmers,
and should support simple approaches to link editing, debugging and run-time error
diagnosis.

Overall, we have tended to rank compact code and a clear definition most highly, with simplicity
and ease of use ahead of performance in matters of fine detail where the impact on performance
is small.

ARM Procedure Call Standard

19-3Reference Manual
ARM DUI 0020D

19.2 The ARM Procedure Call Standard
This section defines the ARM Procedure Call Standard. Explanatory text, not itself part of the
standard, is given in parentheses.

Program fragments

(The following explanation may help you to understand the APCS but is not itself part of the
APCS. If an explanation appears to conflict with the standard, the standard should be
considered definitive and the narrative merely an indication of intent.)

A program fragment which conforms to the APCS while making a call to an external function
(one which is visible between compilation units) is said to be conforming. A program which
conforms to the APCS at all instants of execution is said to be strictly conforming.

(In general, compiled code is expected to be strictly conforming, hand-written code merely
conforming.)

Whether or not (and if so, when) program fragments for a particular ARM-based environment
are required to conform strictly to the APCS, is part of the definition of that environment.

19.2.1 Register names

The ARM has 15 visible general registers, a program counter register and 8 floating point
registers.

(In non-user machine modes, some general registers are shadowed. In all modes, the
availability of the floating point instruction set depends on the processor model, hardware and
operating system.)

In the context of the APCS, the ARM registers have the names and functions described in
➲Table 19-1: ACPS registers on page 19-4.

ARM Procedure Call Standard

19-4 Reference Manual
ARM DUI 0020D

19.2.2 General registers

Notes: The 16 integer registers are divided into 3 sets:

• 4 argument registers which can also be used as scratch registers or as caller-saved
register variables;

• 5 callee-saved registers, conventionally used as register variables;

• 7 registers which have a dedicated role, at least some of the time, in at least one variant
of APCS-3 (see ➲19.3 APCS Variants on page 19-11.)

The 5 frame registers fp, ip, sp, lr and pc have dedicated roles in all variants of the APCS.

The ip register has a dedicated role only during function call; at other times it may be used as a
scratch register. (Conventionally, ip is used by compiler code generators as the/a local code
generator temporary register.)

There are dedicated roles for sb and sl in some variants of the APCS; in other variants they may
be used as callee-saved registers.

The APCS permits lr to be used as a register variable when it is not in use during a function call.
It further permits an ARM system specification to forbid such use in some, or all, non-user ARM
processor modes.

Register
Number

APCS
Name

APCS Role

0
1
2
3

a1
a2
a3
a4

argument 1 / integer result / scratch register
argument 2 / scratch register
argument 3 / scratch register
argument 4 / scratch register

4
5
6
7
8

v1
v2
v3
v4
v5

register variable
register variable
register variable
register variable
register variable

9
10
11
12
13
14
15

sb/v6
sl/v7
fp
ip
sp
lr
pc

static base / register variable
stack limit / stack chunk handle / reg. variable
frame pointer
scratch register / new-sb in inter-link-unit calls
lower end of current stack frame
link address / scratch register
program counter

 Table 19-1: ACPS registers

ARM Procedure Call Standard

19-5Reference Manual
ARM DUI 0020D

19.2.3 Floating point registers

(Each ARM floating point (FP) register holds one FP value of single, double, extended or internal
precision. A single-precision value occupies one machine word; a double-precision value 2
words; an extended precision value occupies 3 words, as does an internal precision value.)

(The floating point (FP) registers are divided into two sets, analogous to the subsets a1-a4 and
v1-v5/v7 of the general registers:

• Registers f0-f3 need not be preserved by called functions; f0 is the FP result register
and f0-f3 may hold the first four FP arguments: see ➲19.2.8 Data representation and
argument passing on page 19-10 and ➲19.3 APCS Variants on page 19-11.

• Registers f4-f7, the so called ‘variable’ registers, preserved by callees.)

Name Number APCS Role

f0
f1
f2
f3

0
1
2
3

FP argument 1 / FP result / FP scratch register
FP argument 2 / FP scratch register
FP argument 3 / FP scratch register
FP argument 4 / FP scratch register

f4
f5
f6
f7

4
5
6
7

floating point register variable
floating point register variable
floating point register variable
floating point register variable

 Table 19-2: Floating point registers

ARM Procedure Call Standard

19-6 Reference Manual
ARM DUI 0020D

19.2.4 The stack

The stack is a singly-linked list of activation records, linked through a stack backtrace data
structure (see ➲19.2.5 The stack backtrace data structure on page 19-7), stored at the high-
address end of each activation record.

• The stack must be readable and writeable by the executing program.

• Each contiguous chunk of the stack must be allocated to activation records in
descending address order. At all instants of execution, sp must point to the lowest used
address of the most recently allocated activation record.

• There may be multiple stack chunks, and there are no constraints on the ordering of
these chunks in the address space.

Stack chunk limit

Associated with sp is a possibly implicit stack chunk limit, below which sp must not be
decremented. (See ➲19.3 APCS Variants on page 19-11).

At all instants of execution, the memory between sp and the stack chunk limit must contain
nothing of value to the executing program: it may be modified unpredictably by the execution
environment.

Implicit stack chunk limit: The stack chunk limit is said to be implicit if chunk overflow is
detected and handled by the execution environment: otherwise it is explicit.

If the stack chunk limit is implicit, sl may be used as v7, an additional callee-saved variable
register.

If the conditions of the remainder of this subsection hold at all instants of execution, then the
program conforms strictly to the APCS; otherwise, if they hold at and during external
(inter-compilation-unit-visible) function calls, the program merely conforms to the APCS.

If the stack chunk limit is explicit, sl must:

• point at least 256 bytes above it

• identify the current stack chunk in a system-defined manner

• identify the same chunk as sp points into at all times

The values of sl, fp and sp must be multiples of 4.

(sl >= stack chunk limit + 256 allows the most common limit checks to be made very cheaply
during function entry.)

This final requirement implies that on changing stack chunks, sl and sp must be loaded
simultaneously using:

LDM ..., {..., sl, sp}.

(In general, this means that return from a function executing on an extension chunk to one
executing on an earlier-allocated chunk, should be via an intermediate function invocation,
specially fabricated when the stack was extended.)

ARM Procedure Call Standard

19-7Reference Manual
ARM DUI 0020D

19.2.5 The stack backtrace data structure

The value in fp must be zero or must point to a list of stack backtrace data structures which
partially describe the sequence of outstanding function calls.

(If this constraint holds when external functions are called, the program is conforming; if it holds
at all instants of execution, the program is strictly conforming.)

The stack backtrace data structure has the format:

save code pointer [fp] <-fp points to here
return link value [fp, #-4]
return sp value [fp, #-8]
return fp value [fp, #-12]
[saved v7 value]
[saved v6 value]
[saved v5 value}
[saved v4 value]
[saved v3 value]
[saved v2 value]
[saved v1 value]
[saved a4 value]
[saved a3 value}
[saved a2 value]
[saved a1 value]
[saved f7 value] three words
[saved f6 value] three words
[saved f5 value] three words
[saved f4 value] three words

This shows between four and twenty-seven words, with those words higher on the page being
at higher addresses in memory. The values shown in brackets are optional, and their presence
need not imply the presence of any other. The floating point values are stored in an internal
format, and occupy three words each.

ARM Procedure Call Standard

19-8 Reference Manual
ARM DUI 0020D

19.2.6 Function invocations and backtrace structures

If function invocation A calls function B, then A is termed a direct ancestor of the invocation of B.
If invocation A[1] calls invocation A[2] calls... calls B, then each of the A[i] is an ancestor of B and
invocation A[i] is more recent than invocation A[j] if i > j.

The return fp value must be 0, or must be a pointer to a stack backtrace data structure
created by an ancestor of the function invocation which created the backtrace structure pointed
to by fp. No more recent ancestor must have created a backtrace structure. (There may be any
number of tail-called invocations between invocations that create backtrace structures.)

Function exit

Value Restored to

return link value pc

return sp value sp

return fp value fp

APCS variants

APCS variant Save code pointer

32-bit PC variant Must point twelve bytes beyond the start of the sequence of
instructions that created the stack backtrace data structure.

26-bit PC variant When cleared of PSR and mode bits, must point twelve bytes
beyond the start of the sequence of instructions that created the
stack backtrace data structure.

19.2.7 Control arrival

At the instant when control arrives at the target function:

• pc contains the address of an entry point to the target function (re-entrant functions may
have two entry points)

• lr contains the value to restore to pc on exit from the function (the return link value
—see ➲19.2.5 The stack backtrace data structure on page 19-7)
(In 26-bit variants of the APCS, lr contains the PC + PSR value to restore to pc on exit
from the function: see ➲19.3 APCS Variants on page 19-11.)

• sp points at or above the current stack chunk limit; if the limit is explicit, it must point at
least 256 bytes above it: see ➲19.2.4 The stack on page 19-6

• fp contains 0 or points to the most recently created stack backtrace structure: see
➲19.2.5 The stack backtrace data structure on page 19-7

ARM Procedure Call Standard

19-9Reference Manual
ARM DUI 0020D

• the space between sp and the stack chunk limit is readable and writeable memory
which the called function can use as temporary workspace and overwrite with any
values before the function returns: see ➲19.2.4 The stack on page 19-6

• arguments are marshalled as described in ➲19.2.8 Data representation and argument
passing on page 19-10

A re-entrant target function (see ➲19.3 APCS Variants on page 19-11) has two entry points.
Control arrives:

• at the intra-link-unit entry point if the caller has been directly linked with the callee

• at the inter-link-unit entry point if the caller has been separately linked with a stub of
the callee

(Sometimes the two entry points are at the same address: usually they will be separated by a
single instruction.)

On arrival at the intra-link-unit entry point, sb must identify the static data of the link unit which
contains both the caller and the callee.

On arrival at the inter-link-unit entry point, ip must identify the static data of the link unit
containing the target function, or the target function must make neither direct nor indirect use of
static data.
(In practice this usually means the callee must be a leaf function making no direct use of static
data.)

The way in which sb identifies the static data of a link unit is not specified by the APCS.
See ➲6.11 ARM Shared Library Format on page 6-18 for details of support for re-entrant code
and shared libraries.

If the call is by tail continuation, calling function means the function which will be returned to if
the tail continuation is converted to a return.

If code is not required to be re-entrant or sharable, sb may be used as v6, an additional variable
register—see ➲Table 19-1: ACPS registers on page 19-4).

ARM Procedure Call Standard

19-10 Reference Manual
ARM DUI 0020D

19.2.8 Data representation and argument passing

Argument passing in the APCS is defined in terms of an ordered list of machine-level values
passed from the caller to the callee, and a single word or floating point result passed back from
the callee to the caller. Each value in the argument list is:

• a word-sized, integer value, or

• a floating point value (of size 1, 2 or 3 words)

A callee may corrupt any of its arguments, howsoever passed.

(The APCS does not define the layout in store of records, arrays and so forth, used by ARM-
targeted compilers for C, Pascal, Fortran-77, etc., nor does it prescribe the order in which
language-level arguments are mapped into their machine-level representations. In other words,
the mapping from language-level data types and arguments to APCS words is defined by each
language implementation, not by the APCS. Indeed, there is no formal reason why two ARM-
targeted implementations of the same language should not use different mappings and, hence,
not support cross-calling. Obviously, it would be very unhelpful to stand by this formal position so
implementors are encouraged to adopt not just the letter of the APCS but also the natural
mappings of source language objects into argument words. Guidance about this is given in
➲19.4 C Language Calling Conventions on page 19-14.)

At the instant control arrives at the target function, the argument list must be allocated as follows:

• in APCS variants which support the passing of floating point arguments in floating point
registers (see ➲19.3 APCS Variants on page 19-11), the first 4 floating point arguments
(or fewer if the number of floating point arguments is less than 4) are in machine
registers f0-f3

• the first 4 remaining argument words (or fewer if there are fewer than 4 argument words
remaining in the argument list) are in machine registers a1-a4

• the remainder of the argument list (if any) are in memory, at the location addressed by
sp and higher-addressed words thereafter

A floating point value not passed in a floating point register is treated as 1, 2 or 3 integer values,
as appropriate to its precision.

ARM Procedure Call Standard

19-11Reference Manual
ARM DUI 0020D

19.2.9 Control return

When the return link value for a function call is placed in the pc:

• sp, fp, sl/v7, sb/v6, v1-v5, and f4-f7 must contain the same values as they did at the
instant of control arrival

• if the function returns a simple value of size one word or less, then the value must be
in a1 (a language implementation is not obliged to consider all single-word values
simple. See ➲19.4 C Language Calling Conventions on page 19-14)

• if the function returns a simple floating point value, the value must be in f0 for hardfp.
For softfp, the results are returned in r0, or r0 and r1.

(The values of ip, lr, a2-a4, f1-f3 and any stacked arguments are undefined.)

The definition of control return means that this is a callee saves standard.

In 32-bit ARM modes, the caller’s PSR flags are not preserved across a function call. In 26-bit
ARM modes, the caller’s PSR flags are naturally reinstated when the return link pointer is placed
in pc. Note that the N, Z, C and V flags from lr at the instant of entry must be reinstated; it is not
sufficient merely to preserve the PSR across the call. Consider a function ProcA which tail
continues to ProcB as follows:

 CMPS a1, #0
 MOVLT a2, #255
 MOVGE a2, #0
 B ProcB

If ProcB just preserves the flags it sees on entry, rather than restoring flags from lr, the wrong
flags may be set when ProcB returns direct to ProcA ’s caller. See ➲19.3 APCS Variants on
page 19-11.)

19.3 APCS Variants
There are 2 x 2 x 2 x 2 = 16 APCS variants, derived from four independent choices. In each
case, code conforming to one variant is not compatible with code conforming to the other. The
only true user-level choice is between re-entrant versus non-re-entrant variants. Since the
alternatives are compatible, each may be used where appropriate.

1 32-bit PC vs 26-bit PC . This is fixed by your ARM CPU.

2 Implicit vs explicit stack-limit checking . This is fixed by a combination of memory
management hardware and operating system software. Use implicit stack-limit
checking if your ARM-based environment supports it; otherwise use explicit stack-limit
checking.

3 Passing floating-point arguments . This supports efficient argument-passing where:

a) the floating-point instruction set is emulated by software and floating-point
operations are dynamically very rare.

b) the floating-point instruction set is supported by hardware or floating-point
operations are dynamically common.

ARM Procedure Call Standard

19-12 Reference Manual
ARM DUI 0020D

19.3.1 32-bit PC vs 26-bit PC

Older ARM CPUs and the 26-bit compatibility mode of newer CPUs use a 24-bit, word-address
program counter, and pack the 4 status flags (NZCV) and 2 interrupt-enable flags (IF) into the top
6 bits of r15, and the 2 mode bits (m0, m1) into the least-significant bits of r15. Thus r15
implements a combined PC + PSR.

Newer ARM CPUs use a 32-bit program counter (in r15) and a separate PSR.

In 26-bit CPU modes, the PC + PSR is written to r14 by an ARM branch with link instruction, so
it is natural for the APCS to require the reinstatement of the caller’s PSR at function exit (a caller’s
PSR is preserved across a function call).

In 32-bit CPU modes this reinstatement would be unacceptably expensive in comparison to the
gain from it, so the APCS does not require it and a caller’s PSR flags may be corrupted by a
function call.

19.3.2 Implicit vs explicit stack-limit checking

ARM-based systems vary widely in the sophistication of their memory management hardware.
Some can easily support multiple, auto-extending stacks, while others have no memory
management hardware at all.

Safe programming practices demand that stack overflow be detected.

The APCS defines conventions for software stack-limit checking sufficient to support efficiently
most requirements (including those of multiple threads and chunked stacks).

The majority of ARM-based systems are expected to require software stack-limit checking.

19.3.3 Floating point arguments in floating point registers

Historically, many ARM-based systems have made no use of the floating point instruction set, or
have used a software emulation of it.

On systems using a slow software emulation and making little use of floating point, there is a
small disadvantage to passing floating point arguments in floating point registers: all variadic
functions (such as printf) become slower, while only function calls which actually take floating
point arguments become faster.

Note: If your system has no floating point hardware and is expected to make little use of floating point,
it is better not to pass floating point arguments in floating point registers.

ARM Procedure Call Standard

19-13Reference Manual
ARM DUI 0020D

19.3.4 Re-entrant vs non-re-entrant code

The re-entrant variant of the APCS supports the generation of code that is free of relocation
directives. This is position-independent code which addresses all data indirectly via a static base
register. Such code is ideal for placement in ROM and can be shared between several client
processes: see ➲6.11 ARM Shared Library Format on page 6-18 for further details.

In general, code to be placed in ROM or loaded into a shared library is expected to be re-entrant,
while applications are expected not to be re-entrant.

See also ➲19.4 C Language Calling Conventions on page 19-14.

19.3.5 APCS-2 compatibility

(APCS-2— the second definition of The ARM Procedure Call Standard—is recorded in
Technical Memorandum PLG-APCS, issue 4.00, 18-Apr-89, reproduced in the following Acorn
publications: RISC OS Programmer’s Reference Manual, vol IV, 1989, (Acorn part number
0483,023); ANSI C Release 3, September 1989, (Acorn part number 0470,101)).

APCS-R (APCS-2 for Acorn’s RISC OS) is the following variant of APCS-3:

• 26-bit PC

• explicit stack-limit checking

• no passing of floating point arguments in floating point registers

• non-re-entrant code

with the Acorn-specific constraints on the use of sl noted in APCS-2.

APCS-U (APCS-2 for Acorn’s RISCiX) is the following variant of APCS-3:

• 26-bit PC

• implicit stack-limit checking (with sl reserved to Acorn)

• no passing of floating point arguments in floating point registers

• non-re-entrant code

The (in APCS-2) obsolescent APCS-A has no equivalent in APCS-3.

ARM Procedure Call Standard

19-14 Reference Manual
ARM DUI 0020D

19.4 C Language Calling Conventions

19.4.1 Argument representation

A floating point value occupies 1, 2, or 3 words, as appropriate to its type. Floating point values
are encoded in IEEE 754 format, with the most significant word of a double having the lowest
address. (See ➲16.7 Formats on page 16-10.)

The C compiler widens arguments of type float to type double to support inter-working between
ANSI C and classic C.

Char, short, pointer and other integral values occupy 1 word in an argument list. Char and short
values are widened by the C compiler during argument marshalling.

On the ARM, characters are naturally unsigned. In PCC mode (-pcc option), the C compiler
treats a plain char as signed, widening its value appropriately when used as an argument.
(Classic C lacks the signed char type, so plain chars are considered signed; ANSI C has signed,
unsigned and plain chars.)

A structured value occupies an integral number of integer words (even when it contains only
floating point values).

19.4.2 Argument list marshalling

Argument values are marshalled in the order written in the source program.

If passing floating point (FP) arguments in FP registers, the first 4 FP arguments are loaded into
FP registers.

The first 4 of the remaining argument words are loaded into a1-a4, and the remainder are pushed
onto the stack in reverse order (so that arguments later in the argument list have higher
addresses than those earlier in the argument list). As a consequence, an FP value can be passed
in integer registers, or even split between an integer register and the stack.

This follows from the need to support variadic functions (functions that have a variable number
of arguments, such as printf , scanf , etc.). Alternatives which avoid the passing of FP values
in integer registers require the caller to know that a variadic function is being called, and use
different argument marshalling conventions for variadic and non-variadic functions.

ARM Procedure Call Standard

19-15Reference Manual
ARM DUI 0020D

19.4.3 Non-simple value return

A non-simple type is any non-floating point type of size greater than 1 word (including structures
containing only floating point fields), and certain 1 word structured types.

A structure is termed integer-like if its size is less than or equal to one word, and the offset of
each of its addressable sub-fields is zero. An integer-like structured result is considered simple
and is returned in a1.

struct {int a:8, b:8, c:8, d:8;} and union {int i; char *p;} are both integer-like; struct {char a; char
b; char c; char d;} is not.

A multi-word or non-integer-like result is returned to an address passed as an additional first
argument to the function call.

At the machine level:

TT tt = f(x, ...);

is implemented as:

TT tt; f(&tt, x, ...);

ARM Procedure Call Standard

19-16 Reference Manual
ARM DUI 0020D

19.5 Function Entry
A complete discussion of function entry is complex; here we cover a few of the most important
issues and special cases.

The important issues for function entry are:

• establishing the static base (if the function is to be re-entrant)

• creating the stack backtrace data structure (if needed)

• saving the floating point variable registers (if required)

• checking for stack overflow (if the stack chunk limit is explicit)

Leaf functions

A function is termed leaf if its body contains no function calls.

A leaf function which makes no use of static data need not establish a static base.

Tail calls or tail continuations

If function F calls function G immediately before an exit from F, the call- exit sequence can often
be replaced instead by a return to G. After this transformation, the return to G is called a tail call
or tail continuation.

There are many subtle difficulties with tail continuations. Suppose stacked arguments are
unstacked by callers (almost mandatory for variadic callees), then G cannot be directly tail-called
if G itself takes stacked arguments. This is because there is no return to F to unstack them.

If this call to G takes fewer arguments than the current call to F, then some of F’s stacked
arguments can be replaced by G’s stacked arguments. However, this can be hard to assert if F
is variadic. There may be no tail-call of G if the address of any of F’s arguments or local variables
has “leaked out” of F. This is because on return to G, the address may be invalidated by
adjustment of the stack pointer. In general, this precludes tail calls if any local variable or
argument has its address taken.

V-registers

A function does not need to create a stack backtrace structure if it uses no v-registers and:

• it is a leaf function, or

• all the function calls it makes from its body are tail calls

(Such functions are also termed frameless.)

ARM Procedure Call Standard

19-17Reference Manual
ARM DUI 0020D

19.5.1 Establishing the static base

(See also ➲6.11.2 The shared library addressing architecture on page 6-20.)

The ARM shared library mechanism supports both:

• direct linking together of functions into a link unit

• indirect linking of functions with the stubs of other link units

Thus a re-entrant function can be entered directly via a call from the same link unit (an
intra-link-unit call), or indirectly via a function pointer or direct call from another link unit (an
inter-link-unit call).

The general scheme for establishing the static base in re-entrant code is:

intra MOV ip, sb ; intra link unit (LU) calls target here
inter ; inter-LU calls target here, having loaded

; ip via an inter-LU or fn-pointer veneer.

create backtrace structure, saving sb

 MOV sb, ip ; establish sb for this LU

rest of entry

Code which does not have to be re-entrant does not need to use a static base. Code which is
re-entrant is marked as such, allowing the linker to create the inter-LU veneers needed between
independent re-entrant link units, and between re-entrant and non-re-entrant code.

19.5.2 Creating the stack backtrace structure

For non-re-entrant, non-variadic functions, the stack backtrace structure can be created using
three instructions:

MOV ip, sp ; save current sp, ready to save as old sp
STMFD sp!, {a1-a4, v1-v5, sb, fp, ip, lr, pc} ;as needed
SUB fp, ip, #4

Each argument register a1-a4 only has to be saved if a memory location is needed for the
corresponding parameter (either because it has been spilled by the register allocator or because
its address has been taken).

Each of the registers v1-v7 only have to be saved if it used by the called function. The minimum
set of registers to be saved is {fp, old-sp, lr, pc}.

A re-entrant function must avoid using ip in its entry sequence:

STMFD sp!, {sp, lr, pc}
STMFD sp!, {a1-a4, v1-v5, sb, fp} ; as needed
ADD fp, sp, #8+4*|{a1-a4, v1-v5, sb, fp}|; as used above

ARM Procedure Call Standard

19-18 Reference Manual
ARM DUI 0020D

sb (also known as v6) must be saved by a re-entrant function if it calls any function from another
link unit (which would alter the value in sb). This means that, in general, sb must be saved on
entry to all non-leaf, re-entrant functions.

For variadic functions the entry sequence is still more complicated. Usually, you have to make a
contiguous argument list on the stack. For non re-entrant variadic functions, use:

MOV ip, sp ; save current sp, ready to save as old sp
STMFD sp!, {a1-a4} ; push arguments on stack
SFMFD f0, 4, [sp]! ; push FP arguments on stack...
STMFD sp!, {v1-v6, fp, ip, lr, pc} ; as needed
SUB fp, ip, #20 ; if all of a1-a4 pushed...

It is not necessary to push arguments corresponding to fixed parameters (though saving a1-a4
is little more expensive than just saving, say, a3-a4).

If floating point arguments are not being passed in floating point registers, there is no need for
the SFMFD. SFM is not supported by the issue-1 floating point instruction set and must be
simulated by 4 STFE instructions. See section ➲19.5.3 Saving and restoring floating point
registers on page 19-18.

For re-entrant variadic functions, the requirements are yet more complicated and the sequence
becomes less elegant.

19.5.3 Saving and restoring floating point registers

The issue-2 floating point instruction set defines two new instructions for saving and restoring the
floating point registers: Store Floating Multiple (SFM) and Load Floating Multiple (LFM). These are
as follows:

• SFM and LFM are exact inverses.

• SFM will never trap, whatever the IEEE trap mode and the value transferred (unlike
STFE which can trap on storing a signalling NaN).

• SFM and LFM transfer 3-word internal representations of floating point values which vary
from implementation to implementation, and which, in general, are unrelated to any of
the supported IEEE representations.

• any 1-4, cyclically contiguous floating point registers can be transferred by SFM/LFM (eg.
{f4-f7}, {f6, f7, f0}, {f7, f0}, {f1})

In issue-1 floating point instruction set compatibility modes, SFM and LFM have to be simulated
using sequences of STFEs and LDFEs.

Function entry

On function entry, a typical use of SFM might be as follows:

SFMFD f4, 4, [sp]! ; save f4-f7 on a Full Descending stack,
; adjusting sp as values are pushed.

ARM Procedure Call Standard

19-19Reference Manual
ARM DUI 0020D

Function exit

On function exit, the corresponding sequence might be:

LFMEA f4, 4, [fp, #-N] ; restore f4-f7; fp-N points just
; above the floating point save area.

On function exit, sp-relative addressing may be unavailable if the stack has been
discontiguously extended.

19.5.4 Checking for stack limit violations

In some environments, stack overflow detection will be implicit: an off-stack reference will cause
an address error or memory fault which may in turn cause stack extension or program
termination.

In other environments, the validity of the stack must be checked on function entry and at other
times if the function:

• uses 256 bytes or less of stack space

• uses more than 256 bytes of stack space, but the amount is known and bounded at
compile time

• uses an amount of stack space unknown until run time

The third case does not arise in C, apart from in stack-based implementations of the non-
standard, BSD-Unix alloca() function. The APCS does not support alloca() in a
straightforward manner.

In Modula-2, Pascal and other languages there may be arrays created on block entry or passed
as open array arguments, the size of which is unknown until run time. These are located in the
callee’s stack frame, and so impact stack limit checking. In practice this adds little
complication—see ➲19.5.7 Stack limit checking (vari-sized frames) on page 19-21.

The check for stack limit violation is made at the end of the function entry sequence, by which
time ip is available as a work register. If the check fails, a standard run-time support function is
called (__rt_stkovf_split_small or __rt_stkovf_split_big).

Any environment that supports explicit stack limit checking must provide these functions, which
can do one of the following:

• terminate execution

• extend the existing stack chunk, decrementing sl

• allocate a new stack chunk, resetting sp and sl to point into it, and guaranteeing that
an immediate repeat of the limit check will succeed

ARM Procedure Call Standard

19-20 Reference Manual
ARM DUI 0020D

19.5.5 Stack limit checking (small, fixed frames)

For frames of 256 bytes or less the limit check is as follows:

create stack backtrace structure

CMPS sp, sl
BLLT |__rt_stkovf_split_small|
SUB sp, sp, #size of locals ; <= 256, by hypothesis

This adds 2 instructions and, in general, only 2 cycles to function entry.

After a call to __rt_stkovf_split_small , fp and sp do not necessarily point into the same
stack chunk: arguments passed on the stack must be addressed by offsets from fp, not by offsets
from sp.

19.5.6 Stack limit checking (large, fixed frames)

For frames bigger than 256 bytes, the limit check proceeds as follows:

SUB ip, sp, #FrameSizeBound ; can be done in 1 instr
CMPS ip, sl
BLLT |__rt_stkovf_split_big|
SUB sp, sp, #InitFrameSize ; may take more than 1 instr

FrameSizeBound can be any convenient constant at least as big as the largest frame the
function will use.

Notes: Functions containing nested blocks may use different amounts of stack at different instants
during their execution.

InitFrameSize is the initial stack frame size: subsequent adjustments within the called
function require no limit check.

After a call to __rt_stkovf_split_big , fp and sp do not necessarily point into the same stack
chunk: arguments passed on the stack must be addressed by offsets from fp, not by offsets from
sp.

ARM Procedure Call Standard

19-21Reference Manual
ARM DUI 0020D

19.5.7 Stack limit checking (vari-sized frames)

(For Pascal-like languages.)

The handling of frames whose size is unknown at compile time is identical to the handling of
large frames, with the following exceptions:

• the computation of the proposed new stack pointer is more complicated, involving
arguments to the function itself

• the addressing of vari-sized objects is more complicated than the addressing of fixed
size objects

• vari-sized objects have to be initialised by the called function

Stack layout

The general scheme for stack layout in this case is shown in ➲Figure 19-1: Stack layout, below:

 Figure 19-1: Stack layout

Objects notionally passed by value are actually passed by reference and copied by the callee.

The callee addresses the copied objects via pointers located in the fixed size part of the stack
frame, immediately above sp. These can be addressed relative to sp. The original arguments
are all addressable relative to fp.

After a call to __rt_stkovf_split_big , fp and sp do not necessarily point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not by
offsets from sp.

If a nested block extends the stack by an amount which can’t be known until run time, the block
entry must include a stack limit check.

Stack-based arguments

Stack backtrace data structure
... reg save area...

<---- fp points here

Area for vari-sized objects, passed by value or
created on block entry

Fixed size remainder of frame <---- sp points here

ARM Procedure Call Standard

19-22 Reference Manual
ARM DUI 0020D

19.5.8 Function exit

A great deal of design effort has been devoted to ensuring that function exit can usually be
implemented in a single instruction (this is not the case if floating point registers have to be
restored). Typically, there are at least as many function exits as entries, so it is always
advantageous to move an instruction from an exit sequence to an entry sequence. (Fortran may
violate this rule by virtue of multiple entries.)

If exit is a single instruction, further instructions can be saved in multi-exit functions by replacing
branches to a single exit with the exit instructions themselves.

Exit from functions that use no stack and save no floating point registers is simple:

MOV pc, lr

(26-bit compatibility demands MOVS pc, lr to reinstate the caller’s PSR flags, but this must not
be used in 32-bit modes.)

Exit from other functions which save no floating point registers is by:

LDMEA fp, {v1-v5, sb, fp, sp, pc}; as saved

Here, it is important that fp points just below the save code pointer, as this value is not
restored, (LDMEA is a pre-decrement multiple load).
(26-bit compatibility demands LDMEA fp, {regs}^ , to reinstate the caller’s PSR flags, but this
must not be used in 32-bit modes.)

The saving and restoring of floating point registers is discussed in ➲19.5.3 Saving and restoring
floating point registers on page 19-18.

19.5.9 Some examples

This section is not intended to be a general guide to the writing of code generators, but highlights
some of the optimisations that are particularly relevant to the ARM and to this standard.

In order to make effective use of the APCS, compilers must compile code a procedure at a time:
line at a time compilation is insufficient.

In the case of leaf functions, much of the standard entry sequence can be omitted. In very small
functions, such as those that frequently occur implementing data abstractions, the function-call
overhead can be tiny. Consider:

typedef struct {...; int a; ...} foo;
int foo_get_a(foo* f) {return(f-a);}

The function foo_get_a can compile to just:

LDR a1, [a1, #aOffset]
MOV pc, lr ; MOVS in 26-bit modes

ARM Procedure Call Standard

19-23Reference Manual
ARM DUI 0020D

In functions with a conditional as the top level statement, in which one or other arm of the
conditional is leaf (calls no functions), the formation of a stack frame can be delayed.

For example, the C function:

int get(Stream *s)
{
 if (s->cnt > 0)
 { --5->cnt;
 return *(5->p++);
 }
 else
 {
 ...
 }
}

could be compiled (non-re-entrantly) into:

get MOV a3, a1
; if (s->cnt > 0)
 LDR a2, [a3, #cntOffset]
 CMPS a2, #0
; try the fast case,frameless and heavily conditionalized
 SUBGT a2, a2, #1
 STRGT a2, [a3, #cntOffset]
 LDRGT a2, [a3, #pOffset]
 LDRBGT a1, [a2], #1
 STRGT a2, [a3, #pOffset]
 MOVGT pc, lr
; else, form a stack frame and handle the rest as normal code.
 MOV ip, sp
 STMDB sp!, {v1-v3, fp, ip, lr, pc}
 CMP sp, sl
 BLLT |__rt_stkovf_split_small|
 ...
 LDMEA fp, {v1-v3, fp, sp, pc}

This is only worthwhile if the test can be compiled using any spare of a1-a4 and ip as scratch
registers. This technique can significantly accelerate certain speed-critical functions, such as
read and write character.

ARM Procedure Call Standard

19-24 Reference Manual
ARM DUI 0020D

Finally, it is often worth applying the tail call optimisation, especially to procedures which need to
save no registers.

For example:

extern void *malloc(size_t n)
{
 return primitive_alloc(NOTGCABLEBIT, BYTESTOWORDS(n));
}

is compiled (non-re-entrantly) by the C compiler into:

malloc
 ADD a1, a1, #3 ; 1S
 MOV a2, a1, LSR #2 ; 1S - BITESTOWORDS(n)
 MOV a1, #1073741824 ; 1S - NOTGCABLEBIT
 B primitive_alloc ; 1N+2S = 4S

In this case, the optimisation avoids saving and restoring the call-frame registers and saves 5
instructions (and many cycles-17 S cycles on an uncached ARM with N=2S).

ARM Procedure Call Standard

19-25Reference Manual
ARM DUI 0020D

19.6 The APCS in Non-User ARM Modes
There are some consequences of the ARM’s architecture which need to be understood by
implementors of code intended to run in the ARM’s SVC and IRQ modes.

• An IRQ corrupts r14_irq, so IRQ-mode code must run with IRQs off until r14_irq has
been saved.
A general solution to this problem is to enter and exit IRQ handlers written in high-level
languages via hand-crafted wrappers, which:

on entry save r14_irq, change mode to SVC, and enable IRQs

on exit restore the saved r14_irq, IRQ mode and the IRQ-enable state.

Thus the handlers themselves run in SVC mode, avoiding the problem in compiled
code.

• SWIs corrupt r14_svc, so care has to be taken when calling SWIs in SVC mode.
In high-level languages, SWIs are usually called out of line, so it you only need to save
and restore r14 in the calling veneer around the SWI. If a compiler can generate in-line
SWIs, then it should also generate code to save and restore r14 in-line around the SWI,
unless you know that the code will not be executed in SVC mode.

19.6.1 Aborts and pre-ARM6-based ARMs

With pre-ARM6-based ARMs (ARM2, ARM3), aborts corrupt r14_svc. This means that care has
to be taken when causing aborts in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error, or it may be caused by page faulting
in SVC mode. Page faulting can occur because an instruction needs to be fetched from a
missing page (causing a prefetch abort), or because of an attempted data access to a missing
page. The latter may occur even if the SVC-mode code is not itself paged, (consider an unpaged
kernel accessing a paged user-space).

Data aborts

A data abort is recoverable provided r14 contains nothing of value at the instant of the abort.
This can be ensured by:

• saving R14 on entry to every function and restoring it on exit

• not using R14 as a temporary register in any function

• avoiding page faults (stack faults) in function entry sequences

You can use a software stack-limit check to avoid data-aborts early in function entry sequences.

ARM Procedure Call Standard

19-26 Reference Manual
ARM DUI 0020D

Prefetch aborts

A prefetch abort is harder to recover from, and an aborting BL instruction cannot be recovered,
so special action has to be taken to protect page faulting function calls.

In code compiled from C, r14 is saved in the 2nd or 3rd instruction of an entry sequence. Aligning
all functions at addresses which are 0 or 4 modulo 16 ensures the critical part of the entry
sequence cannot prefetch-abort. A compiler can do this by padding code sections to a multiple
of 16 bytes, and being careful about the alignment of functions within code sections.

A possible way to protect BL instructions from prefetch-aborts is to precede each BL by:

MOV ip, pc

If the BL faults, the prefetch abort handler can safely overwrite r14 with ip before resuming
execution at the target of the BL. If the prefetch abort is not caused by a BL then this action is
harmless, as r14 has been corrupted anyway, (and, by design, contained nothing of value when
a prefetch abort could occur).

20-1Reference Manual
ARM DUI 0020D

Thumb Procedure Call
Standard

This chapter describes the Thumb procedure call standard.

20.1 Introduction 20-2

20.2 Register Names 20-3

20.3 The Stack 20-4

20.4 Control Arrival and Return 20-6

20.5 C Language Calling Conventions 20-8

20.6 Function Entry 20-9

20.7 Function Exit 20-12

20

Thumb Procedure Call Standard

20-2 Reference Manual
ARM DUI 0020D

20.1 Introduction
The Thumb Procedure Call Standard (TPCS) is a set of rules that govern inter-calling between
functions written in the Thumb subset of ARM.

The TPCS is based strongly on the APCS. If you are unfamiliar with the APCS and its
terminology, you will find it helpful to read ➲Chapter 19, ARM Procedure Call Standard before
continuing with this chapter.

In essence, the TPCS is a cut down version of the APCS. This reduction in versatility reflects the
different ways in which ARM and Thumb code is used, and also the reduced nature of the Thumb
instruction set, which makes implementing the full versatility of the APCS difficult.

Specifically, the TPCS does not allow:

• Disjoint stack extension (stack chunks).
Under TPCS, the stack must be contiguous. However, this does not necessarily prohibit
the use of co-routines. There are various methods for implementing co-routines on a
contiguous stack—for example, many C++ run-time library co-routines are implemented
in this way.

• Multiple instantiation (calling the same entry point with different sets of static data).
Multiple instantiation can still be implemented at a user level, by placing all the variables
that need to be multiply instantiated in a struct and passing each function a pointer to
the struct.

• Direct floating point support.
Thumb cannot access to floating point (FP) instructions without switching to ARM mode.
Floating point is supported indirectly by defining how FP values are passed to and
returned from Thumb functions in the Thumb registers.

Thumb Procedure Call Standard

20-3Reference Manual
ARM DUI 0020D

20.2 Register Names
The Thumb subset has eight visible general purpose registers (R0-R7) plus a stack pointer (SP),
link register (LR) and program counter (PC). In addition, the Thumb subset can access all of the
ARM registers singly via a set of special instructions: see ➲Chapter 5, Thumb Instruction Set
for details.

In the context of the TPCS, each of the Thumb registers has a special name and function: these
are summarized in ➲Table 20-1: TPCS registers, below.

Register
Number

TPCS
Name

TPCS Role

0 a1 argument 1 / scratch register / FP result / integer result

1 a2 argument 2 / scratch register / FP result

2 a3 argument 3 / scratch register / FP result

3 a4 argument 4 / scratch register

4 v1 register variable

5 v2 register variable

6 v3 register variable

7 v4/wr register variable/work register in function entry/exit

8 (v5) (ARM v5 register - no defined role in Thumb)

9 (v6) (ARM v6 register - no defined role in Thumb)

10 sl stack limit

11 fp frame pointer

12 (ip) (ARM ip register - no defined role in Thumb)

13 sp stack pointer (full descending)

14 lr link address

15 pc program counter

 Table 20-1: TPCS registers

Thumb Procedure Call Standard

20-4 Reference Manual
ARM DUI 0020D

20.3 The Stack
The stack contains a series of activation records allocated in descending order. These activation
records may be linked through a stack backtrace data structure.

Note: There is no obligation for code under TPCS to create a stack backtrace data structure. This
facility is principally included for use by code compiled for debugging purposes.

A stack limit is said to be implicit if stack overflow is detected and handled by the execution
environment: otherwise it is explicit. Associated with sp is a possibly implicit stack limit, below
which sp must not be decremented unless a suitable trapping mechanism is in place to detect
below-limit reads or writes.

At all instants of execution, the memory between sp and the stack limit must contain nothing of
value to the executing program: it may be modified unpredictably by the execution environment.

If the stack limit is explicit, sl must point at least 256 bytes above it. The values of sl, fp and sp
are multiples of 4.

20.3.1 The stack backtrace data structure

The value in fp is zero, or points to a list of stack backtrace data structures which partially
describe the sequence of outstanding function calls.

The stack backtrace data structure has the following format:

save code pointer [fp] <-fp points to here

return link value [fp, #-4]

return sp value [fp, #-8]

return fp value [fp, #-12]

[saved v4 value]

[saved v3 value]

[saved v2 value]

[saved v1 value]

[saved a4 value]

[saved a3 value}

[saved a2 value]

[saved a1 value]

Thumb Procedure Call Standard

20-5Reference Manual
ARM DUI 0020D

20.3.2 Function invocations and backtrace structures

The return fp value is either 0 or a pointer to a stack backtrace data structure created by
an ancestor of the function invocation that created the backtrace structure pointed to by fp. No
more recent ancestor will have created a backtrace structure.

Note: This is not necessarily the most recent ancestor—not all functions need to create backtrace
structures.

The return link value , return sp value and return fp value are, respectively, the
values to restore to pc, sp and fp at function exit.

The save code pointer must point 12 bytes beyond the start of the sequence of instructions
that created the stack backtrace data structure.

20.3.3 Implicit vs explicit stack-limit checking

Stack limit checking may be implicit or explicit. This is fixed by a combination of memory-
management hardware and system software.

Safe programming practices demand the detection of stack overflow. Although the majority of
Thumb-based systems are expected to have hardware stack limit checking, the TPCS defines
conventions for software stack-limit checking sufficient to support most requirements.

Thumb Procedure Call Standard

20-6 Reference Manual
ARM DUI 0020D

20.4 Control Arrival and Return

20.4.1 Control arrival

At the instant when control arrives at the target function:

• pc contains the address of an entry point to the target function

• lr contains the value to restore to pc on exit from the function (the return link
value —see ➲20.3.1 The stack backtrace data structure on page 20-4)

• sp points at or above the current stack limit. If the limit is explicit, sp will point at least
256 bytes above it (see ➲20.3 The Stack on page 20-4)

• fp contains 0 or points to the most recently created stack backtrace structure (see
➲20.3.1 The stack backtrace data structure on page 20-4)

• the space between sp and the stack limit must be readable and writable memory which
the called function can use as temporary workspace, and overwrite with any values
before the function returns (see➲20.3 The Stack on page 20-4)

• arguments are marshalled as described below

20.4.2 Data representation and argument passing

Argument passing in the TPCS is defined in terms of an ordered list of machine-level values
passed from the caller to the callee, and a single word or floating point result passed back from
the callee to the caller. Each value in the argument list must be:

• a word-sized, integer value, or

• a floating point value (of size 1, 2 or 3 words)

A callee may corrupt any of its arguments, howsoever passed.

At the instant control arrives at the target function, the argument list is allocated as follows:

• the first 4 argument words (or fewer if there are fewer than 4 argument words remaining
in the argument list) are in machine registers a1-a4

• the remainder of the argument list (if any) are in memory, at the location addressed by
sp and higher-addressed words thereafter

A floating-point value is treated as 1, 2 or 3 integer values, as appropriate to its precision. (The
TPCS does not support the passing or returning of floating point values in ARM floating point
registers.)

Thumb Procedure Call Standard

20-7Reference Manual
ARM DUI 0020D

20.4.3 Control return

When the return link value for a function call is placed in the pc:

• sp, fp, sl and v1-v4 contain the same values as they did at the instant of control arrival.
If the function returns a simple value of size one word or less, the value is contained in
a1.

• If the function returns a simple value of size one word or less, then the value must be
in a1 (a language implementation is not obliged to consider all single-word values
simple. See ➲20.5 C Language Calling Conventions on page 20-8).

• If the function returns a simple floating point value, the value is encoded in a1, a2 and
a3.

Thumb Procedure Call Standard

20-8 Reference Manual
ARM DUI 0020D

20.5 C Language Calling Conventions

20.5.1 Argument representation

A floating point value occupies 1, 2, or 3 words, as appropriate to its type. Floating point values
are encoded in IEEE 754 format, with the most significant word of a double having the lowest
address.

The C compiler widens arguments of type float to type double to support inter-working between
ANSI C and classic C.

Char, short, pointer and other integral values occupy one word in an argument list. Char and short
values are widened by the C compiler during argument marshalling.

Characters are naturally unsigned: ANSI C has signed, unsigned and plain chars.

20.5.2 Argument list marshalling

Argument values are marshalled in the order written in the source program.

The first 4 argument words are loaded into a1-a4, and the remainder are pushed onto the stack
in reverse order (so that arguments later in the argument list have higher addresses than those
earlier in the argument list). As a consequence, a floating point value can be passed in integer
registers, or even split between an integer register and the stack.

20.5.3 Non-simple value return

A non-simple type is any non-floating-point type of size greater than one word (including
structures containing only floating-point fields), and certain single word structured types.

A structure is considered integer-like if its size is less than or equal to one word, and the offset of
each of its addressable sub-fields is zero. An integer-like structured result is considered simple
and is returned in register a1.

struct {int a:8, b:8, c:8, d:8;} and union {int i; char *p;} are both integer-
like; struct {char a; char b; char c; char d;} is not.

A multi-word or non-integer-like result is returned to an address passed as an additional first
argument to the function call. At the machine level:

TT tt = f(x, ...);

is implemented as:

TT tt; f(&tt, x, ...);

Thumb Procedure Call Standard

20-9Reference Manual
ARM DUI 0020D

20.6 Function Entry

20.6.1 Introduction

A complete discussion of function entry is complex; here we discuss a few of the most important
issues and special cases.

The important issues for function entry are:

• creating the stack backtrace data structure (if needed)

• checking for stack overflow (if the stack limit is explicit)

If function F calls function G immediately before an exit from F, the call- exit sequence can often
be replaced instead by a return to G. After this transformation, the return to G is called a tail call
or tail continuation.

Note: In general, tail continuation is difficult with the Thumb instruction set because of the limited range
of the B instruction (+/-2048 bytes).

20.6.2 Simple function entry - no stack backtrace structure

The entry sequence for functions that do not create a stack backtrace structure is simply:

PUSH { save-registers , lr} ; Save registers as needed.

Function exit is accomplished by the corresponding:

POP { save-registers , pc}

It may be necessary in some circumstances to save {a1-a4} before {v1-v4}. This may be
necessary if the arguments may be addressed as a single array of arguments which is accessed
from the 'address' of one of the saved argument registers.

In this case the function entry sequence becomes:

PUSH {a1-a4}; as necessary

PUSH { save-registers , lr}

and the function exit sequence becomes:

POP { save-registers }

POP {a3}

ADD sp, sp, #16

MOV pc, a3

Thumb Procedure Call Standard

20-10 Reference Manual
ARM DUI 0020D

20.6.3 Function entry - creating the stack backtrace structure

For non-variadic functions the stack backtrace structure can be created as follows:

SUB sp, sp, #16 ; create space for {fp, sp, lr, pc}
PUSH { save-registers } ; save registers as necessary
MOV wr, pc
ADD wr, wr, #6 ; set up save code pointer from pc
STR wr, [sp, # pc-offset] ; save into stack frame MOV wr, lr
STR wr, [sp, # lr-offset] ; save lr into stack frame
ADD wr, sp, #<frame-size> ; get original value of sp
STR wr, [sp, #<sp-offset>] ; and save into stack frame
MOV wr, fp
STR wr, [sp, #<fp-offset>] ; save fp into stack frame
ADD r7, sp, #<pc-offset> ; set up new fp to point to save code
MOV fp, r7 ; pointer

pc-offset , lr-offset , sp-offset andfp-offset are the offsets respectively of the saved
pc, lr, sp and fp in the stack frame. These are defined as follows:

• pc-offset = No of saved regs * 4 + 12

• lr-offset = No of saved regs * 4 + 8

• sp-offset = No of saved regs * 4 + 4

• fp-offset = No of saved regs * 4 + 0

frame-size is the total size of the stack frame = No of saved regs * 4 + 16

There is no requirement to save argument registers a1-a4. These need only be saved by the
called function where required.

Each of the registers v1-v4 only need be saved if it is going to be used by the called function. The
minimum set of registers to be saved is {fp, old-sp, lr, pc}.

For variadic functions, a contiguous argument list can be made on the stack as follows:

PUSH {a1-a4} ; as necessary
SUB sp, sp, #16
...
ADD wr, sp, # frame-size +pushed-args ; add in length of pushed
STR wr, [sp, # sp-offset] ; args to get old sp
...
MOV fp, r7

It is not necessary to push arguments corresponding to fixed parameters.

Thumb Procedure Call Standard

20-11Reference Manual
ARM DUI 0020D

20.6.4 Function entry - checking for stack limit violations

In some environments, stack overflow detection is implicit: an off-stack reference causes an
address error or memory fault which may, in turn, cause stack extension or program termination.

In other environments, the validity of the stack must be checked on function entry (and perhaps
at other times as well). There are two specific cases when this must be done:

• when the function uses 256 bytes or less of stack space

• when the function uses more than 256 bytes of stack space, but the amount is known
and bounded at compile time

The TPCS does not support languages in which the amount of stack required for a function is
only known at run-time. This is not a requirement for languages that support open array
arguments (such as Modula-2 and Pascal), since the arguments can be placed in the callee
stack frame where the size is known.

The check for stack limit violation is made at the end of the function entry sequence. IP is
available as a work register. If the check fails, a standard run-time support function
(__rt_stkovf_split_small or __rt_stkovf_split_big) is called. Each
environment that supports explicit stack limit checking must provide these functions, which can
do one of the following:

• terminate execution

• extend the existing stack, decrementing sl

20.6.5 Stack limit checking - small, fixed frames

For frames of 256 bytes or less, the limit check may be implemented as follows:

CMP sp, sl
BGE no_ovf
BL |__16__rt_stkovf_split_small|

no_ovf

Thumb Procedure Call Standard

20-12 Reference Manual
ARM DUI 0020D

20.6.6 Stack limit checking—large, fixed frames

For frames larger than 256 bytes, the limit check may be implemented as follows:

LDR wr, framesize
ADD ip, wr
CMP ip, sl
BGE no_ovf
BL |__16__rt_stkovf_split_big|

no_ovf
...
ALIGN

framesize
DCD -Framesize

Note: Functions containing nested blocks may use different amounts of stack at different instants
during their execution. If this is the case, subsequent stack adjustments require no limit check
provided the initial stack check checks the maximum stack depth.

20.7 Function Exit
Exit from functions is by means of the equivalent of a MOV pc, lr instruction, where lr has the
same value as it had on entry to the function. lr does not need to be preserved.

Exit from functions which create a stack backtrace structure may be coded as follows:

LDR wr, [sp, # fp-offset] ; Restore fp
MOV fp, wr
LDR a4, [sp, # lr_offset] ; Get lr in a4
POP { saved-regs }
ADD sp, sp, #16+ pushed-args *4 ; push-args only valid if

; variadic
MOV pc, a4 ; Return

21-1Reference Manual
ARM DUI 0020D

File Formats

This section describes the file formats used by the ARM Software Toolkit.

21.1 ARM Image Format 21-2

21.2 ARM Object Format 21-10

21.3 ARM Object Library Format 21-26

21.4 ARM Symbolic Debug Table Format 21-32

21

File Formats

21-2 Reference Manual
ARM DUI 0020D

21.1 ARM Image Format

21.1.1 Properties of ARM image format

ARM Image Format (AIF) is a simple format for ARM executable images, consisting of:

• a 128-byte header

• the image's code

• the image's initialised static data

Two variants of AIF exist:

Executable AIF The header is part of the image itself.
This variant can be executed by entering the header at its first word.
Code in the header ensures the image is properly prepared for
execution before being entered at its entry address.
The fourth word of an executable AIF header is BL entrypoint . The
most significant byte of this word (in the target byte order) is 0xEB.
The base address of an executable AIF image is the address at which
its header should be loaded; its code starts at base + 0x80.

Non-executable AIF The header is not part of the image, but merely describes it.
This variant is intended to be loaded by a program which interprets
the header, and prepares the image following it for execution.
The fourth word of a non-executable AIF image is the offset of its
entry point from its base address. The most significant nibble of this
word (in the target byte order) is 0x0.
The base address of a non-executable AIF image is the address at
which its code should be loaded.

The remarks in the following subsection about executable AIF apply also to non-executable AIF,
except that loader code must interpret the AIF header and perform any required decompression,
relocation, and creation of zero-initialised data. Compression and relocation are, of course,
optional: AIF is often used to describe very simple absolute images.

Executable AIF

It is assumed that on entry to a program in ARM Image Format (AIF), the general registers
contain nothing of value to the program (the program is expected to communicate with its
operating environment using SWI instructions or by calling functions at known, fixed addresses).

A program image in ARM Image Format is loaded into memory at its load address, and entered
at its first word. The load address may be:

• an implicit property of the type of the file containing the image (as is usual with Unix
executable file types, Acorn Absolute file types, etc.)

• read by the program loader from offset 0x28 in the file containing the AIF image

• given by some other means, eg. by instructing an operating system or debugger to load
the image at a specified address in memory

File Formats

21-3Reference Manual
ARM DUI 0020D

Compressed images

An AIF image may be compressed and can be self-decompressing (to support faster loading
from slow peripherals, and better use of space in ROMs and delivery media such as floppy
discs). An AIF image is compressed by a separate utility which adds self-decompression code
and data tables to it.

Relocation

If created with appropriate linker options, an AIF image may relocate itself at load time. Two
kinds of self-relocation are supported:

• relocate to load address (the image can be loaded anywhere and will execute where
loaded)

• self-move up memory, leaving a fixed amount of workspace above, and relocate to this
address (the image is loaded at a low address and will move to the highest address
which leaves the required workspace free before executing there)

The second kind of self-relocation can only be used if the target system supports an operating
system or monitor call which returns the address of the top of available memory.

The ARM linker provides a simple mechanism for using a modified version of the self-move code
illustrated in ➲21.1.3 Zero-initialisation code on page 21-7, allowing AIF to be easily tailored to
new environments.

Debugging

AIF images support being debugged by the ARM Symbolic Debugger. Low-level and
source-level support are orthogonal, and both, either, or neither kind of debugging support need
be present in an AIF image. For details of the format of the debugging tables see ➲21.4 ARM
Symbolic Debug Table Format on page 21-32.

References from debugging tables to code and data are in the form of relocatable addresses.
After loading an image at its load address these values are effectively absolute. References
between debugger table entries are in the form of offsets from the beginning of the debugging
data area. Thus, following relocation of a whole image, the debugging data area itself is position
independent and may be copied or moved by the debugger.

File Formats

21-4 Reference Manual
ARM DUI 0020D

21.1.2 The Layout of AIF

Compressed AIF image

The layout of a compressed AIF image is as follows:

1 Header

2 Compressed image

3 Decompression data (position-independent)

4 Decompression code (position-independent)

The header described below is small and fixed in size. In a compressed AIF image, the header
is not compressed.

Uncompressed AIF image

An uncompressed image has the following layout:

1 Header

2 Read-Only area

3 Read-Write area

4 Debugging data (optional)

5 Self-relocation code (position-independent)

6 Relocation list. This is a list of byte offsets from the beginning of the AIF header, of
words to be relocated, followed by a word containing -1. The relocation of non-word
values is not supported.

Debugging

Debugging data is absent unless the image has been linked using the linker's -d option and, in
the case of source-level debugging, unless the components of the image have been compiled
using the compiler's -g option.

After the execution of the self-relocation code (or if the image is not self-relocating) the image has
the following layout:

1 Header

2 Read-Only area

3 Read-Write area

4 Debugging data (optional)

File Formats

21-5Reference Manual
ARM DUI 0020D

At this stage, a debugger is expected to copy any debugging data to somewhere safe, otherwise
it will be overwritten by the zero-initialised data and/or the heap/stack data of the program.
A debugger can take control at the appropriate moment by copying, then modifying, the third
word of the AIF header (see ➲Figure 21-1: AIF header layout below).

 Figure 21-1: AIF header layout

00: BL DecompressCode NOP if the image is not compressed. Note 1

04: BL SelfRelocCode NOP if the image is not self-relocating.

08: BL DBGInit/ZeroInit NOP if the image has none.

0C:
BL ImageEntryPoint
 or
EntryPoint offset

BL to make the header addressable via r14
...but the application shall not return...
Non-executable AIF uses an offset, not BL

Note 2

10: Program Exit Instr ...last ditch in case of return. Note 3

14: Image ReadOnly size Includes header size if executable AIF;
excludes header size if non-executable AIF.

Note 4

18: Image ReadWrite size Exact size - a multiple of 4 bytes

1C: Image Debug size Exact size - a multiple of 4 bytes

20: Image zero-init size Exact size - a multiple of 4 bytes

24: Image debug type 0, 1, 2, or 3 (see note below). Note 6

28: Image base Address the image (code) was linked at.

2C: Work space Min work space - in bytes - to be reserved by a
self-moving relocatable image.

30: Address mode: 26/32
+ 3 flag bytes

LS byte contains 26 or 32;
bit 8 set when using a separate data base.

Note 7

34: Data base Address the image data was linked at.

38: Two reserved words
(initially 0)

Note 8

40: Debug Init Instr NOP if unused. Note 9

44: Zero-init code
(15 words as below)

Header is 32 words long.

File Formats

21-6 Reference Manual
ARM DUI 0020D

Notes

1 NOP is encoded as MOV r0, r0 .

2 BL is used to make the header addressable via r14 in a position-independent manner,
and to ensure that the header will be position-independent. Care is taken to ensure that
the instruction sequences which compute addresses from these r14 values work in both
26-bit and 32-bit ARM modes.

3 Program Exit Instruction will usually be a SWI causing program termination. On
systems which lack this, a branch-to-self is recommended. Applications are expected to
exit directly and not to return to the AIF header, so this instruction should never be
executed. The ARM linker sets this field to SWI 0x11 by default, but it may be set to any
desired value by providing a template for the AIF header in an area called AIF_HDR in
the first object file in the input list to armlink.

4 Image ReadOnly Size includes the size of the AIF header only if the AIF type is
executable (that is, if the header itself is part of the image).

5 An AIF image is re-startable if, and only if, the program it contains is re-startable (an AIF
image is not reentrant). If an AIF image is to be re-started then, following its
decompression, the first word of the header must be set to NOP. Similarly, following
self-relocation, the second word of the header must be reset to NOP. This causes no
additional problems with the read-only nature of the code segment: both decompression
and relocation code must write to it. On systems with memory protection, both the
decompression code and the self-relocation code must be bracketed by system calls to
change the access status of the read-only section (first to writeable, then back to
read-only).

6 image debug type has the following meaning:

0: No debugging data are present.
1: Low-level debugging data are present.
2: Source level (ASD) debugging data are present.
3: 1 and 2 are present together.

All other values of image debug type are reserved to ARM Ltd.

7 Address mode word (at offset 0x30) is 0, or contains in its least significant byte (using
the byte order appropriate to the target). (0 indicates an old-style 26-bit AIF header):

• the value 26, indicating the image was linked for a 26-bit ARM mode, and may
not execute correctly in a 32-bit mode

• the value 32, indicating the image was linked for a 32-bit ARM mode, and may
not execute correctly in a 26-bit mode

If the Address mode word has bit 8 set ((address_mode & 0x100) != 0), the image was
linked with separate code and data bases (usually the data is placed immediately after
the code). Here, the word at offset 0x34 contains the base address of the image's data.

8 FAT AIF images. In these images, the word at 0x38 is non zero. It contains the byte
offset within the file of the header for the first non-root load region. This header has a

File Formats

21-7Reference Manual
ARM DUI 0020D

size of 44 bytes, and the following format:

word 0 file offset of header of next region (0 is none)

word 1 load address

word 2 size in bytes—a multiple of 4

char[32] the region name padded out with zeros

The initialising data for the region follows the header.

9 Debug Initialisation Instruction (if used) is expected to be a SWI instruction which alerts
a resident debugger that a debuggable image is starting to execute. The ARM
cross-linker sets this field to NOP by default, but you can customise it by providing your
own template for the AIF header in an area called AIF_HDR in the first object file in the
input list to armlink.

21.1.3 Zero-initialisation code

The Zero-initialisation code is as follows:

NOP ; or Debug Init Instruction
SUB r12,r14,pc ;

base+12+[PSR]-(ZeroInit+12+[PSR])
; = base-ZeroInit

ADD r12,pc,r12 ; base-ZeroInit+ZeroInit+16
; = base+16

LDMIB r12,{r0-r3} ; various sizes
SUB r12,r12,#0x10 ; image base
LDR r2,[r12,#0x30]
TST r2,#0x100
LDRNE r12,[r12,#0x34]
ADDEQ r12,r12,r0 ; + rO size
ADD r12,r12,r1 ; + RW size

; = base of 0-init area
MOV r0,#0
CMP r3,#0

00 MOVLE pc,r14 ; nothing left to do
STR r0,[r12],#4
SUBS r3,r3,#4
B %B00

Self-move and self-relocation code

This code is added to the end of an AIF image by the linker, immediately before the list of
relocations (which is terminated by –1).

Note: The code is entered via a BL from the second word of the AIF header so, on entry, r14 ->
AIFHeader + 8. In 26-bit ARM modes, r14 also contains a copy of the PSR flags.

File Formats

21-8 Reference Manual
ARM DUI 0020D

On entry, the relocation code calculates the address of the AIF header (in a CPU-independent
fashion) and decides whether the image needs to be moved. If the image doesn't need to be
moved, the code branches to RelocateOnly .

RelocCode
 NOP ; required by ensure_byte_order()

 ; and used below.
 SUB ip, lr, pc ; base+8+[PSR]-(RelocCode+12+[PSR])

 ; = base-4-RelocCode
 ADD ip, pc, ip ; base-4-RelocCode+RelocCode+16 = base+12
 SUB ip, ip, #12 ; -> header address
 LDR r0, RelocCode ; NOP
 STR r0, [ip, #4] ; won't be called again on image re-entry
 LDR r9, [ip, #&2C] ; min free space requirement
 CMPS r9, #0 ; 0 => no move, just relocate
 BEQ RelocateOnly

If the image needs to be moved up memory, the top of memory has to be found. Here, a system
service (SWI 0x10) is called to return the address of the top of memory in r1.

Note: This is system specific and should be replaced by whatever code sequence is appropriate to the
environment.

 LDR r0, [ip, #&20] ; image zero-init size
 ADD r9, r9, r0 ; space to leave =

; min free + zero init
 SWI #&10 ; return top of memory in r1.

The following code calculates the length of the image inclusive of its relocation data, and decides
whether a move up store is possible.

 ADR r2, End ; -> End
01 LDR r0, [r2], #4 ; load relocation offset,

; increment r2
 CMNS r0, #1 ; terminator?
 BNE %B01 ; No, so loop again
 SUB r3, r1, r9 ; MemLimit - freeSpace
 SUBS r0, r3, r2 ; amount to move by
 BLE RelocateOnly ; not enough space to move...
 BIC r0, r0, #15 ; a multiple of 16...
 ADD r3, r2, r0 ; End + shift
 ADR r8, %F02 ; intermediate limit for

; copy-up

Finally, the image copies itself four words at a time, being careful about the direction of copy, and
jumping to the copied copy code as soon as it has copied itself.

02 LDMDB r2!, {r4-r7}
 STMDB r3!, {r4-r7}
 CMPS r2, r8 ; copied the copy loop?

File Formats

21-9Reference Manual
ARM DUI 0020D

 BGT %B02 ; not yet
 ADD r4, pc, r0
 MOV pc, r4 ; jump to copied copy code
03 LDMDB r2!, {r4-r7}
 STMDB r3!, {r4-r7}
 CMPS r2, ip ; copied everything?
 BGT %B03 ; not yet
 ADD ip, ip, r0 ; load address of code
 ADD lr, lr, r0 ; relocated return address

Whether the image has moved itself or not, control eventually arrives here, where the list of
locations to be relocated is processed. Each location is word sized and is relocated by the
difference between the address the image was loaded at (the address of the AIF header) and
the address the image was linked at (stored at offset 0x28 in the AIF header).

RelocateOnly
 LDR r1, [ip, #&28] ; header + 0x28 = code base

; set by Link
 SUBS r1, ip, r1 ; relocation offset
 MOVEQ pc, lr ; relocate by 0 so nothing

; to do
 STR ip, [ip, #&28] ; new image base =

; actual load address
 ADR r2, End ; start of reloc list
04 LDR r0, [r2], #4 ; offset of word to relocate
 CMNS r0, #1 ; terminator?
 MOVEQ pc, lr ; yes => return
 LDR r3, [ip, r0] ; word to relocate
 ADD r3, r3, r1 ; relocate it
 STR r3, [ip, r0] ; store it back
 B %B04 ; and do the next one
End ; The list of offsets of

; locations to
; relocate starts here,
; terminated by -1.

You can customise the self-relocation and self-moving code generated by the linker by providing
your version of it in an area called AIF_RELOC in the first object file in the linker’s input list.

File Formats

21-10 Reference Manual
ARM DUI 0020D

21.2 ARM Object Format

21.2.1 Introduction

This chapter defines a file format called ARM Object Format (AOF) which is used by language
processors for ARM-based systems.

The ARM linker accepts input files in this format and can generate output in the same format, as
well as in a variety of image formats. The ARM linker is described in ➲Chapter 6, Linker.

ARM Object Format directly supports the ARM Procedure Call standard (APCS), which is
described in ➲Chapter 19, ARM Procedure Call Standard.

21.2.2 About AOF

AOF is a simple object format, similar in complexity and expressive power to Unix’s a.out
format. It provides a generalised superset of a.out ’s descriptive facilities. AOF was designed to
be simple to generate and to process, rather than to be maximally expressive or maximally
compact.

21.2.3 Terminology

In this chapter:

object file refers to a file in ARM Object Format

linker refers to the ARM linker

byte 8 bits; considered unsigned unless otherwise stated; usually used to store flag
bits or characters

half word 16 bits, or 2 bytes; usually considered unsigned

word 32 bits, or 4 bytes; usually considered unsigned

string a sequence of bytes terminated by a NUL (0x00) byte. The NUL byte is part of
the string but is not counted in the string's length

address For data in a file, this means offset from the start of the file

21.2.4 Byte sex or endianness

There are two sorts of AOF:

Little-endian AOF The least significant byte of a word or half-word has the lowest
address of any byte in the (half-)word. This byte sex is used by DEC,
Intel and Acorn, amongst others.

Big-endian AOF The most significant byte of a (half-)word has the lowest address.
This byte sex is used by IBM, Motorola and Apple, amongst others.

File Formats

21-11Reference Manual
ARM DUI 0020D

There is no guarantee that the endianness of an AOF file will be the same as the endian-ness
of the system used to process it (the endianness of the file is always the same as the endianness
of the target ARM system).

The two sorts of AOF cannot be mixed (the target system cannot have mixed endianness: it
must have one or the other). Thus the ARM linker will accept inputs of either sex and produce
an output of the same sex, but will reject inputs of mixed endianness.

21.2.5 Alignment

Strings and bytes may be aligned on any byte boundary.

AOF fields defined in this document make no use of halfwords and align words on 4-byte
boundaries.

Within the contents of an AOF file the alignment of words and half-words is defined by the use
to which AOF is being put. For all current ARM-based systems, words are aligned on 4-byte
boundaries and halfwords on 2-byte boundaries.

21.2.6 The overall structure of an AOF file

An AOF file contains a number of separate but related pieces of data. To simplify access to these
data, and to give a degree of extensibility to tools which process AOF, the object file format is
itself layered on another format called Chunk File Format, which provides a simple and efficient
means of accessing and updating distinct chunks of data within a single file. The object file
format defines five chunks:

• AOF header

• AOF areas

• producer's identification

• symbol table

• string table

These are described ➲21.2.8 ARM object format on page 21-13.

21.2.7 Chunk file format

A chunk is accessed via a header at the start of the file. The header contains the number, size,
location and identity of each chunk in the file.

The size of the header may vary between different chunk files, but is fixed for each file. Not all
entries in a header need be used, thus limited expansion of the number of chunks is permitted
without a wholesale copy.

A chunk file can be copied without knowledge of the contents of its chunks.

Pictorially, the layout of a chunk file is as follows:

File Formats

21-12 Reference Manual
ARM DUI 0020D

 Figure 21-2: Chunk file layout

ChunkFileId marks the file as a chunk file. Its value is 0xC3CBC6C5. The
endianness of the chunk file can be deduced from this value (if, when
read as a word, it appears to be 0xC5C6CBC3 then each word value
must be byte- reversed before use).

maxChunks defines the number of the entries in the header, fixed when the file is
created. The numChunks field defines how many chunks are
currently used in the file, which can vary from 0 to maxChunks.

numChunks is redundant in that it can be found by scanning the entries.

Each entry in the chunk file header consists of four words in order:

chunkId is an 8-byte field identifying what data the chunk contains; (note that this is an
8-byte field, not a 2-word field, so it has the same byte order independent of
endianness);

fileOffset is a one word field defining the byte offset within the file of the start of the
chunk. All chunks are word-aligned, so it must be divisible by four. A value of
zero indicates that the chunk entry is unused;

size is a one word field defining the exact byte size of the chunk's contents (which
need not be a multiple of four).

ChunkFileId Fixed part of header occupies 3
words and describes what fol-
lowsmaxChunks

numchunks

entry_1 4 words per entry

entry_2

. . .

File Formats

21-13Reference Manual
ARM DUI 0020D

Identifying data types

The chunkId field provides a conventional way of identifying what type of data a chunk contains.
It has eight characters, and is split into two parts:

• The first four characters contain a unique name allocated by a central authority.

• The remaining four characters can be used to identify component chunks within this
domain.

The 8 characters are stored in ascending address order, as if they formed part of a
NUL-terminated string, independently of endianness.

For AOF files, the first part of each chunk’s name is “OBJ_”; the second components are defined
in ➲21.2.8 ARM object format below.

21.2.8 ARM object format

Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines five chunks
as follows:

Chunk Chunk name

AOF Header OBJ_HEAD

Areas OBJ_AREA

Identification OBJ_IDFN

Symbol Table OBJ_SYMT

String Table OBJ_STRT

Only the header and areas chunks must be present, but a typical object file contains all five of
the above chunks.

Each name in an object file is encoded as an offset into the string table, stored in the OBJ_STRT
chunk (see ➲21.2.18 The string table chunk (OBJ_STRT) on page 21-25). This allows the
variable-length nature of names to be factored out from primary data formats.

A feature of ARM Object Format is that chunks may appear in any order in the file (indeed, the
ARM C Compiler and the ARM Assembler produce their AOF chunks in different orders).

A language translator or other utility may add additional chunks to an object file, for example a
language-specific symbol table or language-specific debugging data. Therefore it is
conventional to allow space in the chunk header for additional chunks; space for eight chunks
is conventional when the AOF file is produced by a language processor which generates all 5
chunks described here.

Note: The AOF header chunk should not be confused with the chunk file's header.

File Formats

21-14 Reference Manual
ARM DUI 0020D

21.2.9 Format of the AOF header chunk

The AOF header consists of two parts, which appear contiguously in the header chunk.

First part is of fixed size and describes the contents and nature of the object
file.

Second part has a variable length (specified in the fixed part of the header), and
consists of a sequence of area declarations describing the code and
data areas within the OBJ_AREA chunk.

Pictorially, the AOF header chunk has the following format:

 Figure 21-3: AOF header chunks

An Object File Type of 0xC5E2D080 marks the file as being in relocatable object format (the
usual output of compilers and assemblers and the usual input to the linker).

The endianness of the object code can be deduced from this value and shall be identical to the
endianness of the containing chunk file.

Version Id encodes the version of AOF to which the object file complies: version 1.50 is
denoted by decimal 150; version 2.00 by 200; and this version by decimal 310 (0x136).

The code and data of an object file are encapsulated in a number of separate areas in the
OBJ_AREA chunk, each with a name and some attributes (see below). Each area is described
in the variable-length part of the AOF header which immediately follows the fixed part.
Number_of_Areas gives the number of areas in the file and, equivalently, the number of area
declarations which follow the fixed part of the AOF header.

Object File Type

Version Id

Number of Areas

Number of Symbols

Entry Area Index

Entry Offset 6 words in the fixed part

1st Area Header 5 words per area header

2nd Area Header

. . .

nth Area Header (6 + (5*Number_of_Areas))
words in the AOF header

File Formats

21-15Reference Manual
ARM DUI 0020D

If the object file contains a symbol table chunk (named OBJ_SYMT), then Number of
Symbols records the number of symbols in the symbol table.

One of the areas in an object file may be designated as containing the start address of any
program which is linked to include the file. If this is the case, the entry address is specified as
an Entry Area Index , Entry Offset pair. Entry Area Index , in the range 1 to Number
of Areas, gives the 1-origin index in the following array of area headers of the area containing
the entry point. The entry address is defined to be the base address of this area plus Entry
Offset .

A value of 0 for Entry Area Index signifies that no program entry address is defined by this
AOF file.

21.2.10 Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the following
format:

Area name (offset into string table)

Attributes + Alignment

Area Size

Number of Relocations

Base Address or 0 5 words in total

Each area within an object file must be given a unique name.

Area Name gives the offset of that name in the string table (stored in the
OBJ_STRT chunk—see ➲21.2.18 The string table chunk
(OBJ_STRT) on page 21-25).

Area Size gives the size of the area in bytes, which must be a multiple of
4. Unless the Not Initialised bit (bit 4) is set in the area
attributes (see ➲21.2.11 Attributes + alignment on page 21-16),
there must be this number of bytes for this area in the
OBJ_AREA chunk. If the Not Initialised bit is set, then
there shall be no initialising bytes for this area in the OBJ_AREA
chunk.

Number of Relocations specifies the number of relocation directives which apply to
this area, (equivalently: the number of relocation records
following the area's contents in the OBJ_AREA chunk - see
➲21.2.13 Format of the areas chunk on page 21-19).

Base Address is unused unless the area has the absolute attribute. In this
case, the field records the base address of the area. In general,
giving an area a base address prior to linking, will cause
problems for the linker and may prevent linking altogether,
unless only a single object file is involved.

File Formats

21-16 Reference Manual
ARM DUI 0020D

21.2.11 Attributes + alignment

Each area has a set of attributes encoded in the most-significant 24 bits of the
Attributes + Alignment word. The least-significant 8 bits of this word encode the
alignment of the start of the area as a power of 2 and shall have a value between 2 and 32 (this
value denotes that the area should start at an address divisible by 2alignment).

The linker orders areas in a generated image in the following order:

• by attributes

• by the (case-significant) lexicographic order of area names

• by position of the containing object module in the link list.

The position in the link list of an object module loaded from a library is not predictable.

The precise significance to the linker of area attributes depends on the output being generated.
For details see ➲6.4 Area Placement and Sorting Rules on page 6-11.

Bit 8 encodes the absolute attribute and denotes that the area must be placed at its
Base Address. This bit is not usually set by language processors.

Bit 9 encodes the code attribute: set indicates code in the area, unset indicates
data.

Bit 10 specifies that the area is a common definition.

Bit 11 defines the area to be a reference to a common block, and precludes the area
having initialising data (see Bit 12, below). In effect, bit 11 implies bit 12.
If both bits 10 and 11 are set, bit 11 is ignored.

Common areas with the same name are overlaid on each other by the linker. The Area Size
field of a common definition area defines the size of a common block. All other references to this
common block must specify a size which is smaller or equal to the definition size. If, in a link step,
there is more than one definition of an area with the common definition attribute (area of the given
name with bit 10 set), each of these areas must have exactly the same contents. If there is no
definition of a common area, its size will be the size of the largest common reference to it.

Although common areas conventionally hold data, you can use bit 10 in conjunction with bit 9 to
define a common block containing code. This is useful for defining a code area which must be
generated in several compilation units, but which should be included in the final image only once.

Bit 12 encodes the zero-initialised attribute, specifying that the area has no initialising
data in this object file, and that the area contents are missing from the
OBJ_AREA chunk. Typically, this attribute is given to large uninitialised data
areas. When an uninitialised area is included in an image, the linker either
includes a read-write area of binary zeroes of appropriate size, or maps a
read-write area of appropriate size that will be zeroed at image start-up time.
This attribute is incompatible with the read-only attribute (see Bit 13, below).
Whether or not a zero-initialised area is re-zeroed if the image is re-entered is
a property of the relevant image format and/or the system on which it will be
executed. The definition of AOF neither requires nor precludes re-zeroing.

File Formats

21-17Reference Manual
ARM DUI 0020D

A combination of bit 10 (common definition) and bit 12 (zero initialised) has exactly the same
meaning as bit 11 (reference to common).

Bit 13 encodes the read only attribute and denotes that the area will not be modified
following relocation by the linker. The linker groups read-only areas together
so that they may be write protected at run-time, hardware permitting. Code
areas and debugging tables should have this bit set. The setting of this bit is
incompatible with the setting of bit 12.

Bit 14 encodes the position independent (PI) attribute, usually only of significance
for code areas. Any reference to a memory address from a PI area must be
in the form of a link-time-fixed offset from a base register (eg. a PC-relative
branch offset).

Bit 15 encodes the debugging table attribute and denotes that the area contains
symbolic debugging tables. The linker groups these areas together so they
can be accessed as a single continuous chunk at or before run-time (usually,
a debugger will extract its debugging tables from the image file prior to
starting the debuggee). Usually, debugging tables are read-only and,
therefore, have bit 13 set also. In debugging table areas, bit 9 (the code
attribute) is ignored.

Bits 16-22 encode additional attributes of code areas and must be non-0 only if the area has the
code attribute (bit 9 set). Bits 20-22 can be non-0 for data areas.

Bit 16 encodes the 32-bit PC attribute, and denotes that code in this area complies
with a 32-bit variant of the ARM Procedure Call Standard (APCS). For details,
refer to ➲19.3.1 32-bit PC vs 26-bit PC on page 19-12. Such code may be
incompatible with code which complies with a 26-bit variant of the APCS.

Bit 17 encodes the reentrant attribute, and denotes that code in this area complies
with a reentrant variant of the ARM Procedure Call Standard.

Bit 18 when set, denotes that code in this area uses the ARM's extended
floating-point instruction set. Specifically, function entry and exit use the LFM
and SFM floating-point save and restore instructions rather than multiple
LDFEs and STFEs. Code with this attribute may not execute on older
ARM-based systems.

Bit 19 encodes the No Software Stack Check attribute, denoting that code in this
area complies with a variant of the ARM Procedure Call Standard without
software stack-limit checking. Such code may be incompatible with code
which complies with a limit-checked variant of the APCS.

Bit 20 indicates that this Area is a Thumb Code Area.

Bit 21 indicates that this Area may contain ARM halfword instructions. This bit is set
by armcc when compiling code for a processor with halfword instructions such
as the ARM7TDMI.

Bit 22 indicates that this Area has been compiled to be suitable for ARM/Thumb
interworking. See ➲2.15 ARM/Thumb interworking on page 2-57.

File Formats

21-18 Reference Manual
ARM DUI 0020D

Bits 20-27 encode additional attributes of data areas, and must be non-0 only if the area does not
have the code attribute (bit 9) unset. Bits 20-22 can be non-) for code areas.

Bit 20 encodes the based attribute, denoting that the area is addressed via
link-time-fixed offsets from a base register (encoded in bits 24-27). Based
areas have a special role in the construction of shared libraries and ROM-able
code, and are treated specially by the linker (refer to ➲6.6.6 Based area
relocation on page 6-14).

Bit 21 encodes the Shared Library Stub Data attribute. In a link step involving layered
shared libraries, there may be several copies of the stub data for any library
not at the top level. In other respects, areas with this attribute are treated like
data areas with the common definition (bit 10) attribute. Areas which also have
the zero initialised attribute (bite 12) are treated much the same as areas with
the common reference (bit 11) attribute.

This attribute is not usually set by language processors, but is set only by the
linker (refer to ➲6.11 ARM Shared Library Format on page 6-18).

Bits 22-23 are reserved and must be set to 0.

Bits 24-27 encode the base register used to address a based area. If the area does not
have the based attribute then these bits shall be set to 0.

Bits 28-31 are reserved and must be set to 0.

21.2.12 Area attributes summary

Bit Mask Attribute Description

8
9
10
11
12
13
14
15

0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000

Absolute attribute
Code attribute
Common block definition
Common block reference
Uninitialised(0-initialised)
Read only
Position independent
Debugging tables

16
17
18
19
20
21
22

0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000

(Code areas only)
Complies with the 32-bit APCS
Reentrant code
Uses extended FP inst set
No software stack checking
Thumb Code area
Area may contain ARM halfword instructions
Area suitable for ARM/Thumb interworking

 Table 21-1: Area Attributes

File Formats

21-19Reference Manual
ARM DUI 0020D

21.2.13 Format of the areas chunk

The areas chunk (OBJ_AREA) contains the actual area contents (code, data, debugging data,
etc.) together with their associated relocation data. Its chunkId is “OBJ_AREA”. Pictorially, an
area’s layout is:

Area 1

Area 1 Relocation

...

Area n

Area n Relocation

An area is simply a sequence of byte values. The endianness of the words and half-words within
it must agree with that of the containing AOF file.

An area is followed by its associated table of relocation directives (if any). An area is either
completely initialised by the values from the file or is initialised to zero, as specified by bit 12 of
its area attributes.

Both the area contents and the table of relocation directives are aligned to 4-byte boundaries.

21.2.14 Relocation directives

A relocation directive describes a value which is computed at link time or load time, but which
cannot be fixed when the object module is created.

In the absence of applicable relocation directives, the value of a byte, halfword, word or
instruction from the preceding area is exactly the value that will appear in the final image.

A field may be subject to more than one relocation.

Pictorially, a relocation directive looks like:

20
21
24-27

0x00100000
0x00200000
0x0F000000

(Data areas only)
Based area
Shared library stub data
Base register for based area

offset

1 II B A R FT 24-bit SID

Bit Mask Attribute Description

 Table 21-1: Area Attributes

File Formats

21-20 Reference Manual
ARM DUI 0020D

Offset is the byte offset in the preceding area of the subject field to be relocated by a value
calculated as described below.

The interpretation of the 24-bit SID field depends on the value of the A bit (bit 27):

Value Description

1 the subject field is relocated (as further described below) by the value of the
symbol of which SID is the 0-origin index in the symbol table chunk.

0 the subject field is relocated (as further described below) by the base of the
area of which SID is the 0-origin index in the array of areas, (or, equivalently,
in the array of area headers).

The 2-bit field type FT (bits 25, 24) describes the subject field:

Value Description

00 the field to be relocated is a byte

01 the field to be relocated is a half-word (2 bytes)

10 the field to be relocated is a word (4 bytes)

11 the field to be relocated is an instruction or instruction sequence

Bytes, halfwords and instructions may only be relocated by values of suitably small size.
Overflow is faulted by the linker.

An ARM branch or branch-with-link instruction is always a suitable subject for a relocation
directive of field type instruction. For details of other relocatable instruction sequences, refer to
➲6.6 The Handling of Relocation Directives on page 6-13.

If the subject field is an instruction sequence, the address in Offset points to the first instruction
of the sequence and the II field (bits 29 and 30) constrains how many instructions may be
modified by this directive:

Value Description

00 no constraint (the linker may modify as many contiguous instructions as it
needs to)

01 the linker will modify at most 1 instruction

10 the linker will modify at most 2 instructions

11 the linker will modify at most 3 instructions

The way the relocation value is used to modify the subject field is determined by the R
(PC-relative) bit, modified by the B (based) bit.

Thumb: (if bit 0 of the relocation offset is set, this identifies a Thumb instruction sequence otherwise it
is taken to be an ARM instruction sequence)

File Formats

21-21Reference Manual
ARM DUI 0020D

R (bit 26) = 0 and B (bit 28) = 0

This specifies plain additive relocation: the relocation value is added to the subject field. In
pseudo C:

subject_field = subject_field + relocation_value

R (bit 26) = 1 and B (bit 28) = 0

This specifies PC-relative relocation: to the subject field is added the difference between the
relocation value and the base of the area containing the subject field. In pseudo C:

subject_field = subject_field + (relocation_value -
base_of_area_containing(subject_field))

As a special case, if A is 0, and the relocation value is specified as the base of the area
containing the subject field, it is not added and:

subject_field = subject_field -
base_of_area_containing(subject_field)

This caters for relocatable PC-relative branches to fixed target addresses.

If R is 1, B is usually 0. A B value of 1 is used to denote that the inter-link-unit value of a branch
destination is to be used, rather than the more usual intra-link-unit value.

Note: This allows compilers to perform the tail-call optimisation on reentrant code—for details, refer to
➲6.6.4 Forcing use of an inter-link-unit entry point on page 6-13.

R (bit 26) = 0 and B (bit 28) = 1

This specifies based area relocation. The relocation value must be an address within a based
data area. The subject field is incremented by the difference between this value and the base
address of the consolidated based area group (the linker consolidates all areas based on the
same base register into a single, contiguous region of the output image). In pseudo C:

subject_field = subject_field + (relocation_value -
base_of_area_group_containing(relocation_value))

For example, when generating reentrant code, the C compiler will place address constants in an
adcon area based on register sb, and load them using sb relative LDRs. At link time, separate
adcon areas will be merged and sb will no longer point where presumed at compile time. B type
relocation of the LDR instructions corrects for this. For further details, refer to ➲6.6.6 Based area
relocation on page 6-14.

Bits 29 and 30 of the relocation flags word must be 0; bit 31 must be 1.

File Formats

21-22 Reference Manual
ARM DUI 0020D

21.2.15 The format of the symbol table chunk (OBJ_SYMT)

The NumberofSymbols field in the fixed part of the AOF header (OBJ_HEAD chunk) defines
how many entries there are in the symbol table. Each symbol table entry has this format:

Name

Attributes

Value

Area Name 4 words per entry

where:

Area Name is meaningful only if the symbol is a non-absolute defining occurrence (bit 0 of
Attributes set, bit 2 unset). In this case it gives the index into the string table
for the name of the area in which the symbol is defined (which must be an area
in this object file).

Name is the offset in the string table (in chunk OBJ_STRT) of the character string
name of the symbol.

Value is only meaningful if the symbol is a defining occurrence (bit 0 of Attributes
set), or a common symbol (bit 6 of Attributes set):

• if the symbol is absolute (bits 0,2 of Attributes set), this field
contains the value of the symbol

• if the symbol is a common symbol (bit 6 of Attributes set), this
field contains the byte-length of the referenced common area

• otherwise, Value is interpreted as an offset from the base address
of the area named by Area Name , which must be an area defined in
this object file.

File Formats

21-23Reference Manual
ARM DUI 0020D

21.2.16 Symbol attributes

The Symbol Attributes word is interpreted as follows:

Bit 0 denotes that the symbol is defined in this object file.

Bit 1 denotes that the symbol has global scope and can be matched by the linker
to a similarly named symbol from another object file. Specifically:

01 (bit 1 unset, bit 0 set) denotes that the symbol is defined in this object
file and has scope limited to this object file, (when resolving symbol
references, the linker will only match this symbol to references from
within the same object file).

10 (bit 1 set, bit 0 unset) denotes that the symbol is a reference to a
symbol defined in another object file. If no defining instance of the
symbol is found, the linker attempts to match the name of the symbol
to the names of common blocks. If a match is found, it is as if there
were defined an identically-named symbol of global scope, having
as its value the base address of the common area.

11 denotes that the symbol is defined in this object file with global scope
(when attempting to resolve unresolved references, the linker will
match this definition to a reference from another object file).

00 is reserved.

Bit 2 encodes the absolute attribute which is meaningful only if the symbol is a
defining occurrence (bit 0 set). If set, it denotes that the symbol has an
absolute value—for example, a constant. If unset, the symbol’s value is
relative to the base address of the area defined by the Area Name field of the
symbol.

Bit 3 encodes the case insensitive reference attribute which is meaningful only if
the symbol is an external reference (ie. bits 1,0 = 10). If set, the linker will
ignore the case of the symbol names it tries to match when attempting to
resolve this reference.

Bit 4 encodes the weak attribute which is meaningful only if the symbol is an
external reference, (bits 1,0 = 10). It denotes that it is acceptable for the
reference to remain unsatisfied and for any fields relocated via it to remain
unrelocated. The linker ignores weak references when deciding which
members to load from an object library.

Bit 5 encodes the strong attribute which is meaningful only if the symbol is an
external defining occurrence (if bits 1,0 = 11). In turn, this attribute only has
meaning if there is a non-strong, external definition of the same symbol in
another object file. In this case, references to the symbol from outside of the
file containing the strong definition, resolve to the strong definition, while
those within the file containing the strong definition resolve to the non-strong
definition.

File Formats

21-24 Reference Manual
ARM DUI 0020D

This attribute allows a kind of link-time indirection to be enforced. Usually, a
strong definition will be absolute, and will be used to implement an operating
system's entry vector having the forever binary property.

Bit 6 encodes the common attribute, which is meaningful only if the symbol is an
external reference (bits 1,0 = 10). If set, the symbol is a reference to a common
area with the symbol's name. The length of the common area is given by the
symbol's Value field (see above). The linker treats common symbols much as
it treats areas having the Common Reference attribute—all symbols with the
same name are assigned the same base address, and the length allocated is
the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area, then
these are merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference
or definition) are collected into an anonymous, linker-created, pseudo-area.

Bit 7 is reserved and must be set to 0.

Bits 8-11 encode additional attributes of symbols defined in code areas.

Bit 8 encodes the code datum attribute which is meaningful only if this symbol
defines a location within an area having the Code attribute. It denotes that the
symbol identifies a (usually read-only) datum, rather than an executable
instruction.

Bit 9 encodes the floating-point arguments in floating-point registers attribute. This
is meaningful only if the symbol identifies a function entry point. A symbolic
reference with this attribute cannot be matched by the linker to a symbol
definition which lacks the attribute.

Bit 10 is reserved and must be set to 0.

Bit 11 is the simple leaf function attribute which is meaningful only if this symbol
defines the entry point of a sufficiently simple leaf function (a leaf function is
one which calls no other function). For a reentrant leaf function it denotes that
the function's inter-link-unit entry point is the same as its intra-link-unit entry
point. For details of the significance of this attribute to the linker refer to ➲6.6.4
Forcing use of an inter-link-unit entry point on page 6-13.

Thumb: Bit 12 is the Thumb attribute, which is set if the symbol is a
Thumb symbol.

File Formats

21-25Reference Manual
ARM DUI 0020D

21.2.17 Symbol attribute summary

21.2.18 The string table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and symbol table
chunks. This separation is made to factor out the variable length characteristic of print names
from the key data structures.

A print name is stored in the string table as a sequence of non-control characters (codes 32-126
and 160-255) terminated by a NUL (0) byte, and is identified by an offset from the start of the
table. The first 4 bytes of the string table contain its length (including the length of its length
word), so no valid offset into the table is less than 4, and no table has length less than 4.

The endianness of the length word must be identical to the endianness of the AOF and chunk
files containing it.

21.2.19 The identification chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126) terminated
by a NUL (0) byte, which gives information about the name and version of the tool which
generated the object file. Use of codes in the range 128-255 is discouraged, as the interpretation
of these values is host-dependent.

Bit Mask Attribute description

0
1
2
3
4
5
6

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040

Symbol is defined in this file
Symbol has a global scope
Absolute attribute
Case-insensitive attribute
Weak attribute
Strong attribute
Common attribute

8
9
11
12

0x00000100
0x00000200
0x00000800
0x00001000

Code symbols only:
Code area datum attribute
FP args in FP regs attribute
Simple leaf function attribute
Thumb symbol

 Table 21-2: Symbol attributes

File Formats

21-26 Reference Manual
ARM DUI 0020D

21.3 ARM Object Library Format

21.3.1 Introduction

This section defines a file format called ARM Object Library Format, or ALF, which is used by the
ARM linker and the ARM object librarian.

A library file contains a number of separate but related pieces of data. In order to simplify access
to these data, and to provide for a degree of extensibility, the library file format is itself layered on
another format called Chunk File Format. This provides a simple and efficient means of
accessing and updating distinct chunks of data within a single file. For a description of the Chunk
File Format, see ➲21.2.7 Chunk file format on page 21-11.

The Library format defines four chunk classes:

• Directory

• Time stamp

• Version

• Data

There may be many Data chunks in a library.

The Object Library Format defines two additional chunks:

• Symbol table

• Symbol table time stamp

These chunks are described in detail later in this document.

21.3.2 Terminology

The terms byte, halfword, word, and string are used to mean:

byte 8 bits, considered unsigned unless otherwise stated, usually used to store flag
bits or characters

halfword 16 bits, or 2 bytes, usually considered unsigned

word 32 bits, or 4 bytes, usually considered unsigned

string a sequence of bytes terminated by a NUL (0x00) byte

The NUL byte is part of the string but is not counted in the string's length.

File Formats

21-27Reference Manual
ARM DUI 0020D

21.3.3 Byte sex or endianness

There are two sorts of ALF: little-endian and big-endian:

Little-endian ALF The least significant byte of a word or half-word has the lowest
address of any byte in the (half-)word. This byte sex is used by DEC,
Intel and Acorn, amongst others.

Big-endian ALF The most significant byte of a (half)word has the lowest address.
This byte sex is used by IBM, Motorola and Apple, amongst others.

For data in a file, address means offset from the start of the file.

There is no guarantee that the endianness of an ALF file will be the same as the endianness of
the system used to process it, (the endianness of the file is always the same as the endianness
of the target ARM system).

The two sorts of ALF cannot, meaningfully, be mixed (the target system cannot have mixed
endianness: it must have one or the other). Thus the ARM linker will accept inputs of either sex
and produce an output of the same sex, but will reject inputs of mixed endianness.

21.3.4 Alignment

Strings and bytes may be aligned on any byte boundary.

ALF fields defined in this document do not use half-words, and align words on 4-byte
boundaries.

Within the contents of an ALF file (within the data contained in OBJ_AREA chunks—see below),
the alignment of words and half-words is defined by the use to which ALF is being put. For all
current ARM-based systems, alignment is strict, as described immediately above.

File Formats

21-28 Reference Manual
ARM DUI 0020D

21.3.5 Library file format

For library files, the first part of each chunk’s name is “LIB_”; for object libraries, the names of the
additional two chunks begin with “OFL_”.

Each piece of a library file is stored in a separate, identifiable chunk, named as follows:

Chunk Chunk name

Directory LIB_DIRY

Time stamp LIB_TIME

Version LIB_VSRN

Data LIB_DATA

Symbol table OFL_SYMT object code libraries only

Time stamp OFL_TIME object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member. In all chunks,
word values are stored with the same byte order as the target system; strings are stored in
ascending address order, which is independent of target byte order.

21.3.6 LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of which is stored in
a LIB_DATA chunk. The directory size is fixed when the library is created. The directory consists
of a sequence of variable length entries, each an integral number of words long. The number of
directory entries is determined by the size of the LIB_DIRY chunk. Pictorially:

 Figure 21-4: The LIB_DIRY chunk

ChunkIndex

EntryLength the size of this LIB_DIRY chunk (an integral
number of
words)

DataLength the size of the Data (an integral number of
words)

Data

File Formats

21-29Reference Manual
ARM DUI 0020D

where:

ChunkIndex is a word containing the 0-origin index within the chunk file header
of the corresponding LIB_DATA chunk. Conventionally, the first 3
chunks of an OFL file are LIB_DIRY, LIB_TIME and LIB_VSRN, so
ChunkIndex is at least 3. A ChunkIndex of 0 means the directory
entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and size
of the library module in the library file.

EntryLength is a word containing the number of bytes in this LIB_DIRY entry,
always a multiple of 4.

DataLength is a word containing the number of bytes used in the data section of
this LIB_DIRY entry, also a multiple of 4.

Data consists of, in order:

• a 0-terminated string (the name of the library member).
Strings should contain only ISO-8859 non-control
characters (codes [0-31], 127 and 128+[0-31] are
excluded). The string field is the name used to identify this
library module. Typically it is the name of the file from which
the library member was created.

• any other information relevant to the library module (often
empty);

• a 2-word, word-aligned time stamp. The format of the time
stamp is described in ➲21.3.7 Time stamps on page 21-30.
Its value is an encoded version of the last-modified time of
the file from which the library member was created.

Earlier versions of ARM object library format

To ensure maximum robustness with respect to earlier, now obsolete, versions of the ARM
object library format:

• Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time stamps.

• Applications which read LIB_DIRY entries should not rely on any data beyond the end
of the name string being present, unless the difference between the DataLength field
and the name-string length allows for it. Even then, the contents of a time stamp should
be treated cautiously and not assumed to be sensible.

• Applications which write LIB_DIRY or OFL_SYMT entries should ensure that padding
is done with NUL (0) bytes; applications which read LIB_DIRY or OFL_SYMT entries
should make no assumptions about the values of padding bytes beyond the first,
string-terminating NUL byte.

File Formats

21-30 Reference Manual
ARM DUI 0020D

21.3.7 Time stamps

A library time stamp is a pair of words encoding the following:

• a 6-byte count of centi-seconds since the start of the 20th century

• a 2-byte count of microseconds since the last centi-second (usually 0).

The first word stores the most significant 4 bytes of the 6-byte count; the least significant 2 bytes
of the count are in the most significant half of the second word.

The least significant half of the second word contains the microsecond count and is usually 0.

Time stamp words are stored in target system byte order: they must have the same endianness
as the containing chunk file.

21.3.8 LIB_TIME

The LIB_TIME chunk contains a 2-word (8-byte) time stamp recording when the library was last
modified.

21.3.9 LIB_VSRN

The version chunk contains a single word whose value is 1.

21.3.10 LIB_DATA

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY chunk. The
endianness or byte order of this data is, by assumption, the same as the byte order of the
containing library/chunk file.

No other interpretation is placed on the contents of a member by the library management tools.
A member could itself be a file in chunk file format or even another library.

21.3.11 Object code libraries

An object code library is a library file whose members are files in ARM Object Format (see ➲21.2
ARM Object Format on page 21-10 for details).

An object code library contains two additional chunks: an external symbol table chunk named
OFL_SYMT, and a time stamp chunk named OFL_TIME.

centi-seconds since
00:00:00 1st January
1900

first (most significant) word

second (least significant) wordu-seconds

File Formats

21-31Reference Manual
ARM DUI 0020D

21.3.12 OFL_SYMT

The external symbol table contains an entry for each external symbol defined by members of
the library, together with the index of the chunk containing the member defining that symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except that the
Data section of each entry contains only a string, the name of an external symbol, and between
1 and 4 bytes of NUL padding, as follows:

ChunkIndex

EntryLength the size of this OFL_SYMT chunk (an integral
number of words)

DataLength the size of the External Symbol Name and Padding
(an integral number of words)

External Symbol Name

Padding

OFL_SYMT entries do not contain time stamps.

21.3.13 OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has the same
format as the LIB_TIME chunk (see ➲21.3.7 Time stamps on page 21-30).

File Formats

21-32 Reference Manual
ARM DUI 0020D

21.4 ARM Symbolic Debug Table Format

21.4.1 Introduction

This section specifies the format of symbolic debugging data generated by ARM compilers, which
is used by the ARM Symbolic Debugger to support high level language oriented, interactive
debugging.

For each separate compilation unit (called a section) the compiler produces debugging data, and
a special area in the object code (see ➲21.2 ARM Object Format on page 21-10 for an
explanation of ARM Object Format, including areas and their attributes). Debugging data are
position-independent, containing only relative references to other debugging data within the
same section, and relocatable references to other compiler-generated areas.

Debugging data areas are combined by the ARM linker into a single contiguous section of a
program image. For details of the ARM linker's capabilities see ➲Chapter 6, Linker. For a
description of the linker's principal output format see ➲21.1 ARM Image Format on page 21-2.

The format of debugging data allows for a variable amount of detail. This potentially allows the
user to trade off among memory used, disc space used, execution time, and debugging detail.

Assembly-language level debugging is also supported, though in this case the debugging tables
are generated by the linker. If required, the assembler can generate debugging table entries
relating code addresses to source lines. Low-level debugging tables appear in an extra section
item, as if generated by an independent compilation (see ➲21.4.7 Debugging data items in detail
on page 21-35). Low-level and high-level debugging are orthogonal facilities, though the
debugger allows the user to move smoothly between levels if both sets of debugging data are
present in an image.

21.4.2 Terminology

The terms byte, word, and halfword are used to mean:

byte 8 bits, usually considered unsigned

word 32 bits (4 bytes), often considered signed

halfword (also called a short) 16 bits (2 bytes)

Halfwords are unused, except in the long form of LineInfo items.

File Formats

21-33Reference Manual
ARM DUI 0020D

21.4.3 Order of debugging data

A debug data area consists of a series of items. The arrangement of these items mimics the
structure of the high-level language program itself.

For each debug area, the first item is a section item, giving global information about the
compilation, including a code identifying the language, and flags indicating the amount of detail
included in the debugging tables.

Each definition datum, function, procedure, etc., in the source program has a corresponding
debug data item; these items appear in an order corresponding to the order of definitions in the
source. This means that any nested structure in the source program is preserved in the
debugging data, and the debugger can use this structure to make deductions about the scope
of various source-level objects. Of course, for procedure definitions, two debug items are
needed:

procedure item to mark the definition itself

endproc item to mark the end of the procedure's body and the end of any nested
definitions

If procedure definitions are nested, so are the procedure endproc brackets. Variable and type
definitions made at the outermost level, appear outside of all procedure/endproc items.

Information about the relationship between the executable code and source files is collected
together and appears as a fileinfo item, which is always the final item in a debugging area.
Because of the C language's #include facility, the executable code produced from an outer-level
source file may be separated into disjoint pieces interspersed with that produced from the
included files. Therefore, source files are considered to be collections of fragments, each
corresponding to a contiguous area of executable code, and the fileinfo item is a list with an entry
for each file, each in turn containing a list with an entry for each fragment. The fileinfo field in the
section item addresses the fileinfo item itself. In each procedure item there is a fileentry field,
which refers to the file-list entry for the source file containing the procedure's start; there is a
separate one in the endproc item because it may possibly not be in the same source file.

21.4.4 Endianness and the encoding of debugging data

The ARM can be configured to use either a little-endian memory system (in which the least
significant byte of each 4-byte word has the lowest address), or a big-endian memory system
(in which the most significant byte of each 4-byte word has the lowest address).

In general, the code to be generated varies according to the bytesex (or endianness) of the
target, and the linker has insufficient information to change the byte sex of an object file.
Therefore, object files are encoded using the byte order of the intended target, independently of
the byte order of the host system on which the compiler or assembler runs. The ARM linker
accepts inputs having either byte order, but rejects mixed sex inputs, and generates its output
using the same byte order.

File Formats

21-34 Reference Manual
ARM DUI 0020D

This means that producers of debugging tables must be prepared to generate them in either byte
order, as required. In turn, this requires definitions to be very clear about when a 4-byte word is
being used (which will require reversal on output or input when cross-sex compiling or
debugging), and when a sequence of bytes is being used (which requires no special treatment
provided it is written and read as a sequence of bytes in address order).

21.4.5 Representation of data types

Several of the debugging data items (eg. procedure and variable) have a type word field to
identify their data type. This field contains:

• in the most significant 24 bits, a code to identify a base type

• in the least significant 8 bits, a pointer count:

0 denotes the type itself
1 denotes a pointer to the type
2 denotes a pointer to a pointer to...; etc

For simple types the code is a positive integer as follows (all codes are decimal):

void 0.
signed integers

single byte 10
half-word 11
word 12

unsigned integers
single byte 20
half-word 21
word 22

floating point
float 30
double 31
long double 32

complex
single complex 41
double complex 42

functions
function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data item (array,
struct, etc.) to give details such as array bounds and field types. The type code for compound
types is negative—the negation of the (byte) offset of the debug item from the start of the
debugging area.

Set types in Pascal are not treated in detail: the only information recorded for them is the total
size occupied by the object in bytes. Neither are Pascal file variables supported by the debugger,
since their behaviour under debugger control is unlikely to be helpful to the user.

File Formats

21-35Reference Manual
ARM DUI 0020D

Fortran character types are supported by special kinds of debugging data item, the format of
which is specific to each Fortran compiler.

21.4.6 Representation of source file positions

Several of the debugging data items have a sourcepos field to identify a position in the source
file. This field contains a line number and character position within the line packed into a single
word. The most significant 10 bits encode the character offset (0-based) from the start of the line
and the least-significant 22 bits give the line number.

21.4.7 Debugging data items in detail

The code and length field

The first word of each debugging data item contains the byte length of the item (encoded in the
most significant 16 bits), and a code identifying the kind of item (in the least significant 16 bits).
The defined codes are:

1 section
2 procedure/function definition
3 endproc
4 variable
5 type
6 struct
7 array
8 subrange
9 set
10 fileinfo
11 contiguous enumeration
12 discontiguous enumeration
13 procedure/function declaration
14 begin naming scope
15 end naming scope
16 bitfield
17 macro definition
18 macro undefinition
19 class
20 union
32 FP map fragment

The meaning of the second and subsequent words of each item is defined in the following
sections.

If a debugger encounters a code it does not recognise, it should use the length field to skip the
item entirely. This discipline allows the debugging tables to be extended without invalidating
existing debuggers.

File Formats

21-36 Reference Manual
ARM DUI 0020D

Text names in items

Where items include a string field, the string is packed into successive bytes beginning with a
length byte, and padded at the end to a word boundary with 0 bytes. The length of a string is in
the range [0..255] bytes.

Offsets in file and addresses in memory

Where an item contains a field giving an offset in the debugging data area (usually to address
another item), this means a byte offset from the start of the debugging data for the whole section
(in other words, from the start of the section item).

Section items

A section item is the first item of each section of the debugging data. After its code and length
word it contains the fields listed below. First there are 4 flag bytes:

lang a byte identifying the source language

flags a byte describing the level of detail

unused

asdversion a byte version number of the debugging data

Lang byte

The language byte codes are defined in ➲Table 21-3: Language byte codes below:

All other codes are reserved to ARM.

flags byte

The flags byte uses the following mask values:

1 Debugging data contains line-number information

2 Debugging data contains information about top-level variables

3 Both of the above

Language Code Description

LANG_NONE 0 Low-level debugging data only

LANG_C 1 C source level debugging data

LANG_PASCAL 2 Pascal source level debugging data

LANG_FORTRAN 3 Fortran-77 source level debugging data

LANG_ASM 4 ARM Assembler line number data

 Table 21-3: Language byte codes

File Formats

21-37Reference Manual
ARM DUI 0020D

asdversion byte

The asdversion byte should be set to 2, the version of this definition.

The flag bytes are followed by the following word-sized fields:

codestart address of first instruction in this section, relocated by the linker

datastart address of start of static data for this section, relocated by the linker

codesize byte size of executable code in this section

datasize byte size of the static data in this section

fileinfo offset in the debugging area of the fileinfo item for this section (0 if
no fileinfo item present). The fileinfo field is 0 if no source file
information is present.

debugsize total byte length of debug data for this section

name or nsyms string or integer. The name field contains the program name for
Pascal and Fortran programs. For C programs it contains a name
derived by the compiler from the root file name (notionally a module
name). In each case, the name is similar to a variable name in the
source language. For a low-level debugging section (language = 0),
the field is treated as a 4 byte integer giving the number of symbols
following.

Linker-generated debugging data: the fields have these values:

language 0

codestart Image$$RO$$Base

datastart Image$$RW$$Base

codesize Image$$RO$$Limit - Image$$RO$$Base

datasize Image$$RW$$Limit - Image$$RW$$Base

fileinfo 0

nsyms number of symbols in the next debugging data

debugsize total size of the low-level debugging data
including the size of this section item

File Formats

21-38 Reference Manual
ARM DUI 0020D

Linker-generated debugging data: the section item is followed by
nsyms symbol items, each consisting of 2 words:

sym flags + byte offset in string table of symbol name.
sym encodes an index into the string table in the 24
least significant bits, and the following flag values
in the 8 most significant bits, as shown in ➲Table
21-4: Linker-generated debugging data.

value the symbol’s value

Note: The linker reduces all symbol values to absolute values, so that the flag values record the history,
or origin, of the symbol in the image.

Immediately following the symbol table is the string table, in standard AOF format. It consists of:

• a length word

• the strings themselves, each terminated by a NUL (0)

The length word includes the size of the length word, so no offset into the string table is less
than 4. The end of the string table is padded with NULs to the next word boundary (so the length
is a multiple of 4).

Symbol Offset Description

ASD_ABSSYM 0 if the symbol is absolute

ASD_GLOBSYM 0x01000000L if the symbol is global

ASD_TEXTSYM 0x02000000L if the symbol names code

ASD_DATASYM 0x04000000L if the symbol names data

ASD_ZINITSYM 0x06000000L if the symbol names 0-initialised data

ASD_16BITSYM 0x10000000L bit set if the symbol is a Thumb symbol

 Table 21-4: Linker-generated debugging data

File Formats

21-39Reference Manual
ARM DUI 0020D

Procedure items

A procedure item appears once for each procedure or function definition in the source program.
Any definitions within the procedure have their related debugging data items between the
procedure item and its matching endproc item. After its code and length field, a procedure items
contains the following word-sized fields:

type the return type if this is a function, else 0 (see ➲21.4.5 Representation of data
types on page 21-34)

args the number of arguments

sourcepos the source position of the procedure's start (see
➲21.4.6 Representation of source file positions on page 21-35)

startaddr address of the first instruction of the procedure prologue

The startaddr field addresses the start of the prologue. That is, the
iinstruction at which control arrives when the procedure is called.

entry address of the first instruction of the procedure body

The entry field addresses the first instruction following the procedure
prologue, that is, the first address at which a high-level breakpoint could
sensibly be set.

endproc offset of the related endproc item

fileentry offset of the file list entry for the source file

name string

Endproc items

An endproc item marks the end of the debugging data items belonging to a particular procedure.
It also contains information relating to the procedure's return. After its code and length field, an
endproc item contains the following word-sized fields:

sourcepos position in the source file of the procedure's end (see ➲21.4.6 Representation
of source file positions on page 21-35)

endpoint address of the code byte after the compiled code for the procedure

fileentry offset of the file-list entry for the procedure's end

nreturns number of procedure return points (may be 0)

retaddrs array of addresses of procedure return code

If the procedure body is an infinite loop, there will be no return point, so nreturns will be 0.
Otherwise each member of retaddrs should point to a suitable location at which a breakpoint
may be set “at the exit of the procedure”. When execution reaches this point, the current stack
frame should still be for this procedure.

File Formats

21-40 Reference Manual
ARM DUI 0020D

Label items

A label in a source program is represented by a special procedure item with no matching
endproc, (the endproc field is 0 to denote this). Pascal and Fortran numerical labels are
converted by their respective compilers into strings prefixed by “$n”. For Fortran77, multiple entry
points to the same procedure each give rise to a separate procedure item, all of which have the
same endproc offset referring to the unique, matching endproc item.

Variable items

A variable item contains debugging data relating to a source program variable, or a formal
argument to a procedure (the first variable items in a procedure always describe its arguments).
After its code and length field, a variable item contains the following word-sized fields:

type type of this variable (see ➲21.4.5 Representation of data types on
page 21-34)

sourcepos the source position of the variable (see ➲21.4.6 Representation of
source file positions on page 21-35)

storageclass a word encoding the variable's storage class

location see explanation below

name string

The following codes define the storage classes of variables:

1 external variables (or Fortran common)

2 Static variables private to one section

3 automatic variables

4 register variables

5 Pascal 'var' arguments

6 Fortran arguments

7 Fortran character arguments

The meaning of the location field of a variable item depends on the storage class, which contains:

• an absolute address for static and external variables (relocated by the linker)

• a stack offset (an offset from the frame pointer) for automatic and var-type arguments

• an offset into the argument list for Fortran argument

• a register number for register variables (the 8 floating point registers are 16..23).

The sourcepos field is used by the debugger to distinguish between different definitions that
have the same name (eg. identically named variables in disjoint source-level naming scopes
such as nested blocks in C).

File Formats

21-41Reference Manual
ARM DUI 0020D

Type items

A type item is used to describe a named type in the source language (eg. a typedef in C). After
its code and length field, a type item contains two word-sized fields:

type a type word (described in ➲21.4.5 Representation of data types on
page 21-34)

name string

Struct, union, and class items

A struct item is used to describe a structured data type (eg. a struct in C or a record in Pascal).
A class item is used to describe a C++ class type. A union item is used to describe a union type.
All have the same format. Note that the C or C++ tag for a struct, union, or class is not
represented in the debug table.

After its code and length field, a struct item contains the following word-sized fields:

fields the number of fields in the structure

size total byte size of the structure

fieldtable ... an array of fields struct field items

Each struct field item has the following word-sized fields:

offset byte offset of this field within the structure

type a type word (described in ➲21.4.5 Representation of data types on
page 21-34)

name string

Earlier versions of the ARM tools described union types by struct items in which all fields have
0 offsets.

For C and C++ bit fields, the type part of the type word identifies a bitfield item.

Array items

An array item is used to describe a one-dimensional array. Multi-dimensional arrays are
described as “arrays of arrays”. Which dimension comes first is dependent on the source
language (which is different for C and Fortran). After its code and length field, an array item
contains the following word-sized fields:

size total byte size of the array

flags (see below)

basetype a type word (described in ➲21.4.5 Representation of data types on
page 21-34)

lowerbound constant value or location of variable

upperbound constant value or location of variable

File Formats

21-42 Reference Manual
ARM DUI 0020D

If the size field is zero, debugger operations affecting the whole array, rather than individual
elements of it, are forbidden.

The following mask values are defined for the flags field:

ARRAY_UNDEF_LBOUND 1 lower bound is undefined

ARRAY_CONST_LBOUND 2 lower bound is a constant

ARRAY_UNDEF_UBOUND 4 upper bound is undefined

ARRAY_CONST_UBOUND 8 upper bound is a constant

ARRAY_VAR_LBOUND 16 lower bound is a variable

ARRAY_VAR_UBOUND 32 upper bound is a variable

Bounds

undefined no information about it is available.

constant its value is known at compile time. In this case, the corresponding bound field
gives its value.

variable the offset field identifies a variable debug item describing the location
containing the bound. In a debug area in an object file, the offset field contains
the offset from the start of the debug area to the variable item.

Note: A variable item may be used to describe a location known to the compiler, which need not
correspond to a source language variable.

Subrange items

A subrange item is used to describe a subrange typed in Pascal. It also serves to describe
enumerated types in C, and scalars in Pascal (in which case the base type is understood to be
an unsigned integer of appropriate size). After its code and length field, a subrange item contains
the following word-sized fields:

sizeandtype see below

lb low bound of subrange

hb high bound of subrange

The sizeandtype field encodes the byte size of container for the subrange (1, 2 or 4) in its least
significant 16 bits, and a simple type code (see ➲21.4.5 Representation of data types on page
21-34) in its most significant 16 bits. The type code refers to the base type of the subrange. (For
example, a subrange 256..511 of unsigned short might be held in 1 byte.)

File Formats

21-43Reference Manual
ARM DUI 0020D

Set items

A set item is used to describe a Pascal set type. Currently, the description is only partial. After
its code and length field, a set item consists of a single word:

size byte size of the object

Enumeration items

An enumeration item describes a Pascal or C enumerated type. After its code and length word,
the description of a contiguous enumeration contains the following word-sized fields:

type a type word describing the type of the container for the enumeration (see
➲21.4.5 Representation of data types on page 21-34)

count the cardinality of the enumeration

base the first (lowest) value (may be negative)

nametable a character array containing count name strings

The description of a discontiguous enumeration (such as the C enumeration enum bits {bit0=1,
bit1=2, bit2=4, bit3=8, bit4=16}) contains the following fields after its code and length word:

type as above

count as above

nametable a table of count (value, name) pairs

Each nametable entry has the following format (which is variable in length):

val the enumerated value (1/2/4/8/16 in the example)

name string (may be several words long)

Function declaration items

After its code and length word, a function declaration item contains the following fields:

type a type word (see ➲21.4.5 Representation of data types on page 21-34)
describing the return type of the function or procedure

argcount the number of arguments to the function

args a sequence of argcount argument description items

Each argument description item contains the following:

type a type word (see ➲21.4.5 Representation of data types on page 21-34)
describing the type of the argument

name string (may be several words)

An argument descriptor need not be named; in this case the length of the name is zero, and the
name field is a single zero word.

File Formats

21-44 Reference Manual
ARM DUI 0020D

Begin and end naming scope items

These debug items are used to mark the beginning and end of a naming scope. They must be
properly nested in the debug area. In each case, after the code and length word, there is one
word-sized field:

codeaddress address of the start/end of scope (which is determined by the code
word)

Bitfield item

A bitfield item describes a bitfield member of a C or C++ struct, union, or class. After the code
and length field, a bitfield item contains the following fields:

type a type word describing the type of the field

container a type word describing the type of the field’s container

size a byte containing the size ofthe field in bits

offset a byte containing the offset from bit 0 of the containing value of bit 0
of the field

followed by two zero bytes to pad to a word boundary.

Macro definition item

A macro definition item describes a C or C++ preprocessor macro definition (#define). After the
code and length field, a macro definition item contains the following fields:

fileentry offset of the file list entry for the source file containing the macro
definition

sourcepos the source position of the macro definition

body the offset of the replacement for the macro (not a string, but the
characters of the replacement, terminated by a zero byte)

argcount a word containing the number of arguments for the macro. For
object-type macros, this field has the value -1.

argtable offset of a description of the macro’s argument names. This contains
argcount strings. The field is zero if the macro has no arguments.

name string

Note that the body and argtable offsets are contained within the macro definition item, but the
offset is, as normal, an offset within the containing section.

File Formats

21-45Reference Manual
ARM DUI 0020D

Macro undefinition item

A macro undefinition item describes a C or C++ preprocessor macro undefinition (#undef). After
the code and length field, a macro undefinition item contains the following fields:

fileentry offset of the file list entry for the source file containing the macro undefinition

sourcepos the source position of the macro undefinition

name string

Fileinfo items

A fileinfo item appears once per section, after all other debugging data items. If the fileinfo item
is too large for its length to be encoded in 16 bits, its length field must be written as 0 (since this
is the last item in a section and the section header contains the length of the whole section, the
length field is strictly redundant).

Each source file is described by a sequence of fragments. Each fragment describes a
contiguous region of the file, within which the addresses of compiled code increase
monotonically with source file position. The order in which fragments appear in the sequence is
not necessarily related to the source file positions to which they refer.

Note: For compilations which make no use of the #include facility, the list of fragments may have only
one entry, and all line-number information can be contiguous.

After its code and length word, the fileinfo item is a sequence of file entry items of this format:

len length of this entry in bytes (including the length of the following
fragments)

date date and time when the file was last modified (may be 0, indicating
not available, or unused)

filename string (or "" if the name is not known)

fragment data see below

If present, the date field contains the number of seconds since the beginning of 1970 (the Unix
date origin).

Following the final file entry item, is a single 0 word marking the end of the sequence.

The fragment data is a word giving the number of following fragments followed by a sequence
of fragment items:

n number of fragments following

fragments... n fragment items

File Formats

21-46 Reference Manual
ARM DUI 0020D

Each fragment item consists of 5 words, followed by a sequence of byte pairs and half word pairs,
formatted as follows:

size length of this fragment in bytes (including length of following lineinfo
items)

firstline linenumber

lastline linenumber

codestart pointer to the start of the fragment's executable
code

codesize byte size of the code in the fragment

lineinfo... a variable number of bytes matching line numbers to code addresses

Each lineinfo item describes a source statement and consists of a pair of (unsigned) bytes,
possibly followed by a two or three (unsigned) half words, (each half word has the byte ordering
appropriate to the target memory system's endianness or byte sex).

The short form (pair of bytes) lineinfo item is as follows:

codeinc # bytes of code generated by this statement. If codeinc is greater than 255,
or lineinc is required to describe a line number change greater than 63 or a
column change greater than 191, then both bytes are written to describe 0
increments, and the real values are given in the following two or three
(unsigned) half words.

lineinc # source space occupied by this statement. lineinc describes how to
calculate the source position (line, column) of the next statement from the
source position of this one. If lineinc is in the range 0 <= lineinc < 64,
the new position is (line+lineinc ,1). If lineinc >= 64, the new position is
(line,column+lineinc -64).

The number of bytes of code generated for a statement may be zero, provided the line increment
is non-zero (such an item may describe a block end or block start, for example).

It is not possible to describe a statement which generates no code and no line number increment,
as encoding is used as an escape to the long form lineinfo items described below.

Note: There are two ways to describe 0 increments: 0 lines and 0 columns, which serves to discriminate
between the two halfword and three halfword forms.

If the starting column for the next statement is 1, the two half word form is used, which in effect
is a triple of half words as follows:

zero 2 zero bytes

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

Note: The order of the lineinc and codeinc halfwords is the reverse of the corresponding bytes.

File Formats

21-47Reference Manual
ARM DUI 0020D

If the starting column for the next statement is not 1, the three halfword form is used, which in
effect is a quadruple of halfwords, as follows:

codeinc = 0, lineinc = 64

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

newcol starting column for the next statement

Note: Again, the order of the lineinc and codeinc halfwords is the reverse of the corresponding
bytes. In addition, the column item here is the absolute column number for the next statement,
and not an increment as in the two byte form.

(This encoding of lineinfo items is an incompatible change from the previous format (version
2): in that format, lineinc in a two byte lineinfo item always describes a line increment, and
accordingly, there is no four halfword form. Programs interpreting asd tables should interpret
lineinfo items differently according to the table format in the section item.)

Map fragment items

An FP map fragment item describes the offsets from the stack pointer of the “virtual frame
pointer” in functions without a frame pointer. The stack offsets in variable items are offsets from
its virtual frame pointer. Functions may have no frame pointer because a nofp APCS variant has
been selected, or because they are sufficicently simple leaf functions with an fp APCS variant.
In the latter case, FP map fragments will be generated only for those functions which actually
use the stack.

FP map fragments are generated regardless of whether other debug tables are being
generated, in a separate debug area (whether or not the e -g complier option is used).

After the code and length field, an FP map fragment item contains the following fields:

bytes exact size of the item in bytes (the length part of the code and length field is
rounded up to a word boundary)

codestart address of the first word of code described

saveaddr address of the instruction saving callee-save registers. (0 if there is none
within the area of code described)

codesize size of the area of code described

initoffset offset of the virtual FP from the SP at the start of the code area
describedThese items are followed by a variable number of FPInfo fields.,
which take one of these forms:

(unsigned) byte codeinc size of code area described by this item
(signed) byte offsetinc change in the virtual FP offset for the next item

or, two zero bytes

(unsigned) short codeinc
(signed) short offsetinc

File Formats

21-48 Reference Manual
ARM DUI 0020D

22-1Reference Manual
ARM DUI 0020D

Remote Debugging

This chapter describes the Remote Debug Interface and the Remote Debug Protocol.

22.1 ARM Remote Debug Interface 22-2

22.2 ARM Remote Debug Protocol 22-21

22

Remote Debugging

22-2 Reference Manual
ARM DUI 0020D

22.1 ARM Remote Debug Interface

22.1.1 Introduction

The Remote Debug Interface (RDI) is a concrete procedural interface between a debugger and
a debuggee via a debug monitor or controlling debug agent. The interface can be ‘pulled apart’
to yield a pair of stub interfaces communicating via the Remote Debug Protocol (for details see
➲22.2 ARM Remote Debug Protocol on page 22-21).

The RDI gives the ARM symbolic debugger core a uniform way to communicate with:

• a controlling debug agent or debug monitor linked with the debugger

• a debug agent executing in a separate operating system process

• a debug monitor running on ARM-based hardware accessed via a communication link

• a debug agent controlling an ARM processor via hardware debug support

Structure 1 This arises in the variant of armsd which is linked with ARM’s
standard ARM emulation environment (for the PC- and Sun-hosted
cross-development variants of armsd), and in the self-hosted, single
address-space variant of armsd (for Acorn’s RISC OS operating
system).

Structure 2 This would arise in an ARM-UNIX-hosted variant of armsd , if armsd
and the ARM emulator (the ARMulator) were run in separate UNIX
processes (perhaps on separate machines). In this case, the RDI
would consist of two stubs using UNIX’s remote procedure calls to
effect the inter-process message passing.

Structures 3 and 4 These arise when armsd is used to control a debuggee, executing on
ARM-based hardware (for instance on the Platform Independent
Evaluation (PIE) card) connected to armsd ’s host via a hardware
debugging channel, (for instance via RS232 as used on the PIE
card).

This chapter describes a C interface to the Remote Debug Protocol (RDP), designed to make
using the RDP from a C program easier, and more efficient when the debugger and debug agent
are linked as one program.

Every function returns an error status. Zero indicates no error, otherwise the value returned is the
error number (see ➲22.1.26 Error codes on page 22-18).

It is the caller’s responsibility to ensure that memory pointers do indeed point to valid memory
locations in the debugger’s address space.

The RDI is not an entity fixed for all time. As it evolves, new levels of specification are added and
within any level of specification there are implementation options. This approach is taken so that
a variety of minimal debug monitors and controlling debug agents can be accommodated without
excessive overhead and so there can be good compatibility between debuggers and debug

Remote Debugging

22-3Reference Manual
ARM DUI 0020D

monitors released at different times. As a result, a debugger using the RDI must negotiate to
establish its debuggee’s capabilities and must not use capabilities its debuggee does not have.
These issues are highlighted in the following sections.

22.1.2 RDI functions

Purpose Function name

Open and/or Initialise Debuggee RDI_open(type,config,hostos_if,
dbg_state)

Close and Finalise Debuggee RDI_close()

Read Memory Address RDI_read(source,dest,nbytes)

Write Memory Address RDI_write(source,dest,nbytes)

Read CPU State RDI_CPUread(mode,mask,state)

Write CPU State RDI_CPUwrite(mode,mask,state)

Read Co-Processor State RDI_CPread(CPnum,mask,state)

Write Co-Processor State RDI_CPwrite(CPnum,mask,state)

Set Breakpoint RDI_setbreak(address,type,
bound,point*)

Clear Breakpoint RDI_clearbreak(point)

Set Watchpoint RDI_setwatch(address,type,
datatype,bound,point*)

Clear Watchpoint RDI_clearwatch(point)

Execute RDI_execute(point*)

Multiple Step RDI_step(ninstr,point*)

Break/watch inquiry RDI_pointinquiry(address*,type,
datatype,bound*)

Add Config Block RDI_addconfig(bytes)

Load Config Block RDI_loadconfig(nbytes,data)

Select Config Block RDI_selectconfig(aspect, name, type,
version, req, versiongot)

Get Driver Names RDI_drivernames()

Get CPU Names RDI_cpunames()

Get Error messages RDI_errmess(buf,len,errno)

Remote Debugging

22-4 Reference Manual
ARM DUI 0020D

Load Debug Agent RDI_loadagent(dest,size,getf,
getfarg)

Miscellaneous Info RDI_info(type,arg1,arg2)

22.1.3 Open and/or initialise debuggee

int RDI_open(unsigned type, struct Dbg_ConfigBlock const *config,
struct Dbg_HostasInterface const *i, struct Dbg_MCState *dbg_state)

type distinguishes between types of initialisation:

Bit 0 = 0 cold start (execute bootstrap, initialise MMU etc.).

Bit 0 = 1 warm start (terminate execution, reset processor
state etc.).

Bit 1 = 1 reset the communication link.

config This structure holds information such as the memory size, byte sex,
serial port, processor, etc. See dbg_config.h for full details.

i This structure provides various functions which can be called to
interact with the host’s operating system, eg. print character to
screen, read character from keyboard. See dbg_hif.h for full details.

dbg_state This structure is internal to the debugger toolbox.

22.1.4 Close and finalise debuggee

int RDI_close() terminate the current debugging session. Only a call to RDI_open
may follow this call.

22.1.5 Read memory address

int RDI_read(unsigned long source, void *dest, unsigned *nbytes)

This function transfers data from the debuggee’s memory to the debugger. Bytes are read from
the debuggee at address source , and stored at location dest in the caller’s address space.
nbytes points to the number of bytes to transfer. On return, the location pointed to by nbytes
contains the number of bytes that were successfully transferred. If an error occurs, the state of
the memory at dest is undefined.

22.1.6 Write memory address

int RDI_write(void *source, unsigned long dest, unsigned *nbytes)

This function transfers data from address source in the debugger to address dest in the
debuggee. nbytes points to the number of bytes to transfer. On return, the location pointed to
by nbytes contains the number of bytes that were successfully transferred. If an error occurs,
the state of the memory at dest is undefined.

Remote Debugging

22-5Reference Manual
ARM DUI 0020D

22.1.7 Read CPU state

int RDI_CPUread(unsigned mode, unsigned long mask, unsigned long
state[])

This function allows the debugger to read the values of the debuggee’s CPU registers.

mode defines the ARM processor mode from which the transfer should be made. A
value of RDIMode_Curr indicates that the prevailing processor mode should
be used. Other values correspond to the mode the target ARM would be in if
the mode bits of the PSR were set to this value.

mask indicates which registers should be transferred. Bit 0 of this word corresponds
to register 0, bit 14 corresponds to the link register, and bit 15 the Program
Counter, (including the mode and flag bits in 26-bit modes). Other values can
be ORed into the mask to retrieve other registers:

• RDIReg_PCto get just the Program Counter value

• RDIReg_CPSR to get the value of the CPSR

• RDIReg_SPSR to get the value of the SPSR in non user modes

Notice that the value of Program Counter that is returned (via either bit 15 or
RDIReg_PC) has already had the effect of pipelining removed, thus it is 8 less
than the actual value in the Program Counter.

state is a pointer to enough words of memory in which to save the CPU state (4
bytes per register). The requested registers are saved contiguously into this
memory.

22.1.8 Write CPU state

int RDI_CPUwrite(unsigned mode, unsigned long mask, unsigned long
state[])

This function allows the debugger to set the values of the debuggee’s CPU registers.
The arguments are as for RDI_CPUread , except that register values are read from state and
written to the debuggee’s register set.

22.1.9 Read co-processor state

int RDI_CPread(unsigned CPnum, unsigned long mask, unsigned long
state[])

This function allows the debugger to read the debuggee’s co-processor registers; (it has a
similar function to RDI_CPUread , except that the register values are taken from the co-
processor whose number is specified by the CPnumargument). The actual registers transferred,
and their size is dependent on the co-processor specified. The transferred values are written to
state .

Remote Debugging

22-6 Reference Manual
ARM DUI 0020D

By convention, the following co-processors are understood:

• Co-processor 1 (and 2 in the case of FPA) is a floating point unit.

Bits 0 to 7 of mask request the transfer co-processor registers 0 to 7
Bit 8 designates the floating point status register (FPSR)
Bit 9 the floating point command register (FPCR)

• Co-processor 15 is a memory management unit (eg. ARM3’s or ARM600’s).

Bits 0 to 7 of mask request transfer of MMU registers 0 to 7

22.1.10 Write co-processor state

int RDI_CPwrite(unsigned CPnum, unsigned long mask, unsigned long
state[])

This function allows the debugger to write the values of the debuggee’s co-processor registers;
(it has a similar function to RDI_CPUwrite , except that the register values are written to the co-
processor whose number is given by CPnum). The actual registers transferred, and their size is
dependent on the co-processor specified. The transferred values are read from state .

Currently the following co-processors are understood:

• Co-processor 1 (and 2 in the case of FPA) is a floating point unit.

Bits 0 to 7 of mask request transfer of data to co-processor registers 0 to 7
Bit 8 designates the floating point status register (FPSR)
Bit 9 the floating point command register (FPCR)

• Co-processor 15 is a memory management unit (eg. ARM3’s or ARM600’s).

Bits 0 to 7 of mask request transfer to MMU registers 0 to 7

22.1.11 Set breakpoint

int RDI_setbreak(unsigned long address, unsigned type,
unsigned long bound, PointHandle *point)

This function requests the debuggee to set an execution breakpoint at address . The type
argument defines the sort of breakpoint to set:

RDIPoint_EQ halt execution if the pc is equal to address .

RDIPoint_GT halt execution if the pc is greater than address .

RDIPoint_GE halt execution if the pc is greater than or equal to address .

RDIPoint_LT halt execution if the pc is less than address .

RDIPoint_LE halt execution if the pc is less than or equal to address .

RDIPoint_IN halt execution if the pc is in the address range from address . to
bound , inclusive.

Remote Debugging

22-7Reference Manual
ARM DUI 0020D

RDIPoint_OUT halt execution if the pc is not in the address range address to
bound , inclusive.

RDIPoint_MASK halt execution if (pc & bound) = address .

Bit 4 of type if set indicates that the breakpoint is on a 16 bit (Thumb) instruction rather than a
32 bit (ARM) instruction.

In addition, bit 5 of type indicates whether the breakpoint should be conditional. If it is set,
execution halts only when the breakpointed instruction is executed, not when the condition code
causes it to be skipped. Otherwise, breakpoints are unconditional: execution halts when the
breakpoint is reached, no matter what the condition field of the breakpointed instruction.

Note that bits 6 and 7 are not used in the RDI, although they are used in the RDP—this is
because the RDI supports these facilities directly.

If the call succeeds, point is set to a value which identifies the breakpoint. At RDI specification
level 0, a breakpoint is identified by its address (the value of address); at levels 1 and above,
it is identified by a handle returned by the debuggee (see ➲22.1.25 Miscellaneous info on page
22-11).

A special return value, RDIError_NoMorePoints , indicates that the call to RDI_setbreak
was successful but that there are no more breakpoint resources of this type available.

The return value RDIError_CantSetPoint indicates that the call failed because the debugee
currently has insufficient breakpoint resources available to honour this request.

If a breakpoint is set on a location which already has a breakpoint, the first breakpoint will be
removed before the new breakpoint is set.

22.1.12 Clear breakpoint

int RDI_clearbreak(PointHandle point)

This function clears the execution breakpoint identified by point which was set by a previous
call to RDI_setbreak .

22.1.13 Set watchpoint

int RDI_setwatch(unsigned long address, unsigned type, unsigned
datatype, unsigned long bound, PointHandle *point)

This function gets a data access watchpoint at address in the debuggee. type defines the sort
of watchpoint to set:

Type Halts on a data access to the address...

RDIPoint_EQ equal to address .

RDIPoint_GT greater than address .

RDIPoint_GE greater than or equal to address .

RDIPoint_LT less than address .

Remote Debugging

22-8 Reference Manual
ARM DUI 0020D

RDIPoint_LE less than or equal to address .

RDIPoint_IN in the range from address to bound , inclusive.

RDIPoint_OUT not in the range from address to bound , inclusive.

RDIPoint_MASK halt execution if (data-access-address & bound) = address .

datatype defines the sort of data access to watch for:

RDIWatch_ByteRead watch for byte reads

RDIWatch_HalfRead watch for half-word reads

RDIWatch_WordRead watch for word reads

RDIWatch_ByteWrite watch for byte writes

RDIWatch_HalfWrite watch for half-word writes

RDIWatch_WordWrite watch for word writes

Values may be summed or ORed together in order to halt on any of a set of sorts of memory
access. For example, to watch for any write access to the specified location(s):

RDIWatch_ByteWrite + RDIWatch_HalfWrite + RDIWatch_WordWrite

If the call succeeds, *point is set to a value which identifies the watchpoint to the debugee. At
RDI specification level 0, a watchpoint is identified by its address (the value of address); at
levels 1 and above it is identified by a handle returned by the debuggee (see ➲22.1.25
Miscellaneous info on page 22-11).

A special return value, RDIError_NoMorePoints , indicates that the call to RDI_setwatch
was successful, but that there are no more watchpoint resources of this type available. The return
value RDIError_CantSetPoint indicates that the call failed because the debugee currently
has insufficient watchpoint resources to honour this request.

If a watchpoint is set on a location which already has one, the first watchpoint is removed before
the new watchpoint is set.

22.1.14 Clear watchpoint

int RDI_clearwatch(PointHandle point)

This function clears the data access watchpoint identified by point which was set by a previous
call to RDI_setwatch .

Remote Debugging

22-9Reference Manual
ARM DUI 0020D

22.1.15 Execute

int RDI_execute(PointHandle *point)

This function initiates execution in the debuggee, at the address currently loaded into the CPU
Program Counter.

If a breakpoint is reached, or a watched address is accessed, or an exception occurs, or the user
presses Escape, RDI_execute returns an error code (see ➲22.1.26 Error codes on page 22-
18).

If a breakpoint or watchpoint caused the return, *point will be set to the handle identifying the
break/watchpoint. At RDI specification level 0, a break/watch-point is identified by its address;
at levels 1 and above it is identified by a handle returned by the debuggee when the point was
set.

22.1.16 Multiple step

int RDI_step(unsigned ninstr, PointHandle *point)

This function initiates execution in the debuggee at the address currently loaded into the CPU
Program Counter, but only executes the number of instructions specified by ninstr .

If ninstr is zero, the debuggee executes instructions up to the next instruction that explicitly
alters the program counter, (ie. a branch or ALU operation with the program counter as
destination).

If a breakpoint is reached, or a watched address is accessed, or an exception occurs, or the user
presses Escape, or the end of the program is reached before instr instructions have been
executed, then RDI_step returns an error code indicating why execution was suspended (see
➲22.1.26 Error codes on page 22-18).

If a breakpoint or watchpoint caused the return, *point will be set to the handle identifying the
break/watchpoint. At RDI specification level 0, a break/watch-point is identified by its address;
at levels 1 and above it is identified by a handle returned by the debuggee when the breakpoint/
watchpoint was set.

22.1.17 Break/watch-point inquiry

int RDI_pointinquiry(unsigned long *address, unsigned type,
unsigned datatype, unsigned long *bound)

For inquiries about breakpoints, datatype must be 0. Otherwise, type and datatype are
precisely as in corresponding calls to setbreak and setwatch .

RDI_pointinquiry returns information about what will happen if a corresponding call is made
to setbreak or setwatch . (for range and comparison point types, the debuggee is permitted
to do its best to honour the request and is not required to use precisely the address and bound
requested).

Remote Debugging

22-10 Reference Manual
ARM DUI 0020D

If the break/watch type is supported then address and, if applicable, bound are updated to the
values that will be used if a breakpoint or watchpoint is set. If it will be impossible to honour the
corresponding break/watch-point request for lack of break/watch-point resources, the value
RDIError_NoMorePoints is returned.

Note: The absence of a return value of RDIError_NoMorePoints from setbreak or setwatch
does not mean that the next request can be honoured, but merely that there is some value of
type and datatype for which a following request can be honoured. To be sure that a request
will be honoured, it is necessary to call RDI_pointinquiry .

22.1.18 Add config block

int RDI_addconfig(unsigned long bytes)

This function declares the size of a config block about to be loaded.

22.1.19 Load config block

int RDI_loadconfig(unsigned long nbytes,char const *data)

This function loads the config block of size nbytes , pointed to by data . This config block
specifies target-dependent information to the Debug Agent. See the documentation on the
Debug Agent concerned for more detail (eg ICEman).

22.1.20 Select config block

int RDI_selectconfig(RDI_ConfigAspect aspect, char *const name,
RDI_ConfigMatchType matchtype, unsigned versionreq,
unsigned *versionp)

This function selects which of the loaded config blocks should be used, and then reinitializes the
Debug Agent to use the selected Config data.

aspect one of RDI_ConfigCPU or RDI_ConfigSystem

name the name of the configuration to be selected

matchtype this specifies how exactly the version number must match that
requested:

RDI_MatchAny

RDI_MatchExactly

RDI_MatchNoEarlier

versionreq the version number requested

versionp the version actually selected

Remote Debugging

22-11Reference Manual
ARM DUI 0020D

22.1.21 Get driver names

RDI_NameList const *RDI_drivernames(void)

where RDI_NameList is typedef ’d to be a struct containing the number of names and an
array of these names.

The returned names are used to recognise whether a particular driver has been selected on the
command line.

22.1.22 Get CPU names

RDI_NameList const *RDI_cpunames(void)

This works in a similar way to RDI_DriverNames .

22.1.23 Get error messages

int RDI_ErrMess(char *buf,int buflen,int errno)

This requests that an error message (up to buflen characters) corresponding to errno is
placed in buffer buf .

22.1.24 Load debug agent

int RDI_loadagent(ARMword dest, unsigned long size,
getbuffer proc *getb, void *getbarg)

This function downloads a new version of the Debug Agent. It can be used only if
RDIInfo_Target returns a value with RDITarget_LoadAgent set.

dest This is the address in the Debug Agent’s memory where the new
version will be put.

size This is the size of the new version, in bytes.

getb This is a function which can be called (with getbarg as the first
argument) and the number of bytes to download this call as the
second argument.

22.1.25 Miscellaneous info

int RDI_info
int RDI_info(unsigned type, unsigned long *arg1, unsigned long *arg2)

This function is used to transfer miscellaneous information between the debugger and the
debuggee. Not all types make use of all three arguments.

The information transferred is dependent on the value of the first argument.

A status value is returned to indicate success or failure of the call.

Remote Debugging

22-12 Reference Manual
ARM DUI 0020D

RDIInfo_Target

After a call of type RDIInfo_Target , the value addressed by arg1 should be interpreted as:

Bit 16 1 => the debuggee has a communications channel

Bit 15 1 => can cope with 16 bit (Thumb) code

Bit 14 1 => the Debug Agent can do profiling

Bit 13 1 => understands RDPInterrupt (a single byte version of RDI_SignalStop)

Bit 12 1 => inquires about the maximum size download chunk the agent can accept

Bit 11 1 => the Debug Agent can be reloaded

Bits 8,9,10 the minimum RDI specification level (0-7) required of the debugger by the
debuggee

Bits 5,6,7 the maximum RDI specification level (0-7) implemented by the debuggee

Bit 4 = 0 debuggee is running under a software emulator

Bit 4 = 1 debuggee is running on ARM hardware

Bits 0:3 host speed as 10**(bits 0:3) instruction per second (IPS) (0 => 1IPS, 1 =>
10IPS, 2 => 100IPS, 3 = 1000IPS, ..., 6 => 1MIPS, ...).

The value addressed by arg2 is a unique identifier, which identifiers the ARM processor or ARM
emulator that the debuggee is running under.

Bits 5..10 allow a debugger to negotiate a suitable RDI specification level with a debuggee or to
report gracefully that it is incompatible with the debuggee.

RDIInfo_Points

After a call of type RDIInfo_Points , the word addressed by arg1 should be interpreted as a
set of bits as follows:

Bit 0: comparison break/watch-points are supported

Bit 1: range break/watch-points are supported

Bit 2: watchpoints for byte reads are supported

Bit 3: watchpoints for half-word reads are supported

Bit 4: watchpoints for word reads are supported

Bit 5: watchpoints for byte writes are supported

Bit 6: watchpoints for half-word writes are supported

Bit 7: watchpoints for word writes are supported

Bit 8: mask break/watch-points are supported

Bit 9: thread-specific breakpoints are supported

Remote Debugging

22-13Reference Manual
ARM DUI 0020D

Bit 10: thread-specific watchpoints are supported

Bit 11: conditional breakpoints are supported

Bit 12: status enquiries about the capabilities of (H/W) breakpoints and watchpoints
are allowed

If none of bits 2-7 are set, bits 0, 1, 8 apply only to breakpoints. Otherwise bits 0, 1, 8 apply to
both breakpoints and watchpoints

All debuggees support breakpoints of sort RDIPoint_EQ , (break at specified address), so there
is no bit denoting this in the value returned by RDIInfo_Points .

RDIInfo_Step

After a call of type RDIInfo_Step , the location addressed by arg1 should be interpreted as
follows:

Bit 0: single stepping of more than one instruction is supported

Bit 1: single stepping to the next direct PC alteration is supported

Bit 2: single stepping of a single instruction is supported.

RDIVector_Catch

A set bit in the location addressed by arg1 indicates to the debuggee that the corresponding
exception should be reported to the debugger, as follows:

Bit 0: Branch through 0

Bit 1: Undefined instruction

Bit 2: Software interrupt (SWI)

Bit 3: Prefetch abort

Bit 4: Data abort

Bit 5: Address exception

Bit 6: Interrupt (IRQ)

Bit 7: Fast interrupt (FIQ)

Bit 8: Error

Bits which are 0 indicate that the corresponding exception vector should be taken by the
debuggee.

RDISet_RDILevel

Set the RDI level to the value of arg1 . The level set must lie between the limits returned by
RDIInfo_Target .

Remote Debugging

22-14 Reference Manual
ARM DUI 0020D

RDISet_Thread

Set the thread context (for the interpretation of breakpoint and watchpoint requests) to the thread
whose handle is given by arg1 . The special value RDINoHandle resets the context to no thread,
that is to the underlying hardware processor.

RDIInfo_MMU

This enquires about type and status of any MMU present. On return, arg1 contains a work which
identifies the types of the MMU. arg2 addresses a word describing the status of the MMU.

RDIInfo_DownLoad

This enquires whether configuration download and selection is available. The status returned is
OK if these features are available.

RDIInfo_SemiHosting

This enquires whether RDISemiHosting_* RDIInfo calls are available. The status returned
is OK if these features are available.

RDIInfo_CoPro

This enquires whether the CoPro RDI Info calls are available. The status returned is OK if
these features are available.

RDIInfo_Icebreaker

This enquires whether the debuggee is controlled by ICEBreaker. The status returned is OK if the
debuggee is controlled by ICEBreaker.

RDIMemory_Access

This asks for the memory access statistics for a block of memory indicated by the handle
addressed by arg1 . On return arg1 points to the memory access statistics. For more details,
see RDI_MemAccessStats in dbg_stat.h .

RDIMemoryMap

This call sets the characteristics for an area of memory. On entry arg1 points to an array of <n>
memory descriptions, arg2 points to a word holding <n>. For full details of memory descriptions,
see RDI_MemDesc in dbg_stat.h .

RDISet_CPUSpeed

This call sets the simulated CPU speed to be arg1 (in nanoseconds).

RDIRead_Clock

This call reads the simulated CPU time. On return, arg1 addresses the time in nanoseconds,
and arg2 the time in seconds.

RDIConfig_Count

This requests that the number of configuration blocks known to the debug agent should be
returned to the word address by arg1 . This option should only be used if RDIInfo_Download
returned no errors.

Remote Debugging

22-15Reference Manual
ARM DUI 0020D

RDIConfig_Ntl

This requests that details of the configuration block whose index (zero-based) is the word
addressed byarg1 should be returned to the RDI_ConfigDesc block addressed by arg2 .
This option should only be used if RDIInfo_Download and RDIConfig_Count returned no
errors.

RDIInfo_MemoryStats

This call enquires whether the last four calls are available (Memory_Access->Read_Clock). The
status returned is OK is they are available.

RDIPointStatus_Watch

This can be used only if RDIInfo_Points sets bit 12 of arg1 . When called with the handle of
a watchpoint pointed to by arg1 , this function returns the hardware resource number in the word
pointed to by arg1 , and the type of watchpoint in the word pointed to by arg2 .

RDIPointStatus_Break

This is identical to RDIPointStatus_Watch , except that it is used for breakpoints.

RDISignal_Stop

This call requests that the debuggee stop execution.

RDISemiHosting_SetState

This should be used only if RDIInfo_SemiHosting did not return an error. arg1 should point
to 0 or 1 to disable/enable semihosting.

RDISemiHosting_GetState

This should be used only if RDIInfo_SemiHosting did not return an error. On return arg1
points to the current state of semihosting (0=off, 1= on).

RDISemiHosting_SetVector

This should be used only if RDIInfo_SemiHosting did not return an error. This sets the
semihosting vector to be the value pointed to by arg1 .

RDISemiHosting_GetVector

This should be used only if RDIInfo_SemiHosting did not return an error. On return, arg1
points to the current value of the semihosting vector.

RDIICEBreaker_GetLocks

This should be used only if RDIInfo_ICEBreaker did not return an error. A value indicating
which ICEBreaker break points are locked is placed in the word pointed to by arg1 .

RDIICEBreaker_SetLocks

This should be used only if RDIInfo_ICEBreaker did not return an error. The value pointed
to by arg1 indicates which ICEBreaker break points are locked.

RDIICEBreaker_GetLoadSize

This should be used only if RDIInfo_Target returned bit12 set (Can Inquire Load Size). The
maximum block size the Debug Agent can support is stored in the word pointed to by arg1.

Remote Debugging

22-16 Reference Manual
ARM DUI 0020D

RDICommsChannel_ToHost

This should be used only if the value returned by RDIInfo_Target had bit 16 (Debug Channel
Exists) set. On entry arg1 points to a function RDICCProc_ToHost , and arg2 contains <arg>.
The type of RDICCProc_ToHost is:

void RDICCProc_ToHost(void *arg, ARMword data)

This should be called back to pass data from the target (via the Debug Comms Channel) to the
host. <arg> is the value passed in arg2 by RDICommsChannel_ToHost .

RDICommsChannel_FromHost

This should be used only if the value returned by RDIInfo_Target had bit 16 (Debug Channel
Exists) set. On entry arg1 points to a function RDICCProc_FromHost , and arg2 contains
<arg>.

The type of RDICCProc_FromHost is:

void RDICCProc_FromHost(void *arg, ARMword *data, int *valid)

This should be called back to request data from thehost to be sent to the debuggee (via the
Debug Comms Channel). <arg> is the value passed in arg2 by
RDICommsChannel_FromHost . <valid> indicates whether any data is available to be sent—if it
is, it is stored at the word pointed to by <data>.

RDICycles

The debuggee returns, in the buffer addressed by arg1 , the number of instructions and the
number of S, N, I, C, and F cycles executed since it was initialised.

RDIErrorP

The debuggee returns, in the memory location addressed by arg1 , the error pointer associated
with the last return from RDI_Execute with status RDIError_Error .

RDISet_CmdLine

Set the debuggee’s command line arguments before commencing execution. arg1 is a pointer
to a NULL-terminated argument string, which must be no longer then 256 bytes including the
NULL.

RDISet_RDILevel

Set the RDI/RDP protocol level to be used between the debugger and the debuggee. The level
must be between the limits indicated by RDIInfo_Target .

RDISet_Thread

Set the thread context for thread-sensitive functions such as breakpoint and watchpoint setting.
The thread’s handle must be passed in arg1 .

RDI_DescribeCoPro

This describes the registers of a coprocessor. arg1 points to the coprocessor number. arg2
points to a Dbg_CoProDesc block which the debuggee will fill in. For full details of this structure
see Dbg_CoProDesc in dbg_cp.h .

Remote Debugging

22-17Reference Manual
ARM DUI 0020D

RDI_RequestCoProDesc

THis function requests the description of the coprocessor the number of which is pointed to by
arg1 . arg2 points to a Dbg_CoProDesc block which the debuggee will fill in. For full details of
this structure see Dbg_CoProDesc in dbg_cp.h .

RDIInfo_Log

Return the RDI’s logging state in the integer variable addressed by arg1 .Bit 0 is set to log calls
to RDI interfaces, and bit 1 to log RDP transactions.

RDIInfo_SetLog

Return the RDI’s logging state to the integer value addressed by arg1 .Bit 0 is set to log calls to
RDI interfaces, and bit 1 to log RDP transactions.

RDIProfile_Stop

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 (to indicate that profiling is supported). This function specifies that profiling data should
stop being collected.

RDIProfile_Start

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 (to indicate that profiling is supported). arg1 points to the interval in microseconds which
should be used to start profiling. This call starts profiling.

RDI_Profile_WriteMap

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 . arg1 points to an array of debuggee addresses. These addresses should be in
increasing order, and are used to decide which count element in a corresponding array should
be incremented when a value of the PC has been sampled. This works as follows:

arg1[0] = length of array
if

PC lies between arg1[i] and arg1[i+1]
then

count[i] should be incremented

RDIProfile_ReadMap

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 (indicates that profiling is supported). On entry arg1 points to the length of counts array
to be read. arg2 points to memory where the array of counts will be placed on exit. For more
information, see RDIProfile_WriteMap .

RDIProfile_ClearCounts

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 (indicating that profiling is supported). All counts are reset to zero.

Remote Debugging

22-18 Reference Manual
ARM DUI 0020D

22.1.26 Error codes

The symbolic values named here are defined in the file rdi.h . In each case, "RDIError_ " must
be prepended to the name shown below.

Error name Possible cause

NoError Everything worked

Reset Debuggee reset

UndefinedInstruction Tried to execute an undefined instruction

SoftwareInterrupt A SWI happened

PrefetchAbort Execution ran into unmapped memory

DataAbort No memory at the specified address

AddressException Accessed > 26 bit address in 26 bit mode

IRQ An interrupt occurred

FIQ A fast interrupt occurred

Error A software error occurred

BranchThrough0 Branch through location 0

NoMorePoints That’s the last of the break/watchpoints

CantSetPoint Break/watch-point resources exhausted

BreakpointReached Returned by RDI_execute and RDI_step

WatchpointAccessed Returned by RDI_execute and RDI_step

ProgramFinishedInStep End of the program reached while stepping

UserInterrupt User pressed Escape

NoSuchPoint Tried to clear a break/watch point that did not exist

CantLoadConfig configuration data could not be loaded

BadConfigData configuration data was corrupted

NoSuchConfig the requested configuration has not been loaded

BufferFull buffer became full during operation

OutOfStore Debug Agent ran out of memory

NotInDownLoad illegal request made during DownLoad

PointInUse ICEBreaker Breakpoint is already in use

Remote Debugging

22-19Reference Manual
ARM DUI 0020D

BadImageFormat Debug Agent could not make sense of AIF image
supplied

TargetRunning Target Processor did not stop (probably with
BlackICE system)

DeviceWouldNotOpen failed to open serial/parallel port

NoSuchHandle no such memory description handle exists

ConflictingPoint incompatible breakpoint already exists

SoftInitialiseError recoverable error in RDI initialisation (You might
need to use a different configuration.)

Information messages

The following are not really errors, but are just a means of passing information:

LittleEndian The debuggee is little endian

BigEndian The debuggee is big endian

Internal fault or limitation

The following errors indicate an internal fault or limitation:

InsufficientPrivilege Supervisor state was not accessible to this debug
monitor

UnimplementedMessage Debuggee can’t honour this RDP request

UndefinedMessage Garbled RDP request

IncompatibleRDILevel There is no common RDI level at which the
debugger and debuggee can operate.

RDI errors

The following errors indicate misuse of the RDI or similar problem:

NotInitialised RDI_open must be the first call

UnableToInitialise The target world is broken

WrongByteSex The debuggee can’t operate with the requested
byte sex.

UnableToTerminate Target world was smashed by the debuggee.

BadInstruction It is illegal to execute this instruction.

IllegalInstruction The effect of executing this is undefined.

BadCPUStateSetting Tried to set the SPSR of user mode.

UnknownCoPro This co-processor is not connected.

UnknownCoProState Don’t know what to do with this co-pro request

Remote Debugging

22-20 Reference Manual
ARM DUI 0020D

BadCoProState Recognisably broken co-pro request.

BadPointType Misuse of the RDI.

UnimplementedType Misuse of the RDI.

BadPointSize Misuse of the RDI.

UnimplementedSize Halfwords not yet implemented

Remote Debugging

22-21Reference Manual
ARM DUI 0020D

22.2 ARM Remote Debug Protocol

22.2.1 Introduction

The Remote Debug Protocol (RDP) is the communication protocol used between the ARM
Symbolic Debugger and a remote debugee, via a debug monitor or controlling debug agent.
Usually, the RDP is used via stub functions implementing the Remote Debug Interface (RDI):
for details see ➲22.1 ARM Remote Debug Interface on page 22-2.

The RDI gives the ARM symbolic debugger core a uniform way to communicate with:

• a controlling debug agent or debug monitor linked with the debugger

• a debug agent executing in a separate operating system process

• a debug monitor running on ARM-based hardware accessed via a communication link

• a debug agent controlling an ARM processor via hardware debug support

Structure 1 This arises in the variant of the symbolic debugger which is linked
with ARM’s standard ARM emulation environment (for the PC- and
Sun-hosted cross-development variants of the debugger, and in the
self-hosted, single address-space variant of armsd (for Acorn’s
RISC OS operating system). No direct use of the RDP is involved.

Structure 2 This would arise in an ARM-UNIX-hosted variant of the symbolic
debugger, if the debugger and the ARM emulator (the ARMulator)
were run in separate UNIX processes (perhaps on separate
machines). In the second case, the RDI would consist of two stubs
using UNIX’s remote procedure calls to effect the inter-process
message passing. Again, no direct use of the RDP is involved.

Structures 3 and 4 These arise when armsd is used to control a debuggee, executing
on ARM-based hardware (for instance on the Platform Independent
Evaluation (PIE) card) connected to the debugger’s host via a
hardware debugging channel, (for instance via RS232 as used on
the PIE card).

Remote Debugging

22-22 Reference Manual
ARM DUI 0020D

22.2.2 Terminology

PC and pc mean program counter. The address of the currently executing instruction in the
debuggee.

An ARM processor can be configured to operate with either little endian memory (in which the
least significant byte of a word has the lowest address of any byte in the word), or big endian
memory (in which the most significant byte of a word has the lowest address of any byte in the
word). The endian-ness of a memory system and processor configuration is also called its byte
sex.

In the following sections, pseudo-C declarations are used to specify the content of messages and
the types of arguments to message functions. In these declarations:

• byte means an 8 bit unsigned value

• word means an unsigned 4-byte value, transmitted least significant byte first (little
endian)

The types bytes and words (plural) mean, respectively, a sequence of bytes and a sequence of
words.

Values enclosed in { and } are present only in some contexts, as clarified by the explanatory text.

Each message of the RDP is encoded as a single function byte, followed immediately by its
arguments, if any.

The return message acts as an acknowledgement as well as returning values. If the request is
meaningful and successful, a zero status byte is returned, possibly preceded by requested data.

The reply to an unsatisfied request (failed request) is always padded to the same length that it
would have had, had it been successful. Then follows a non-zero error code byte (see ➲22.2.7
Error codes on page 22-42).

The RDP is not an entity fixed for all time. As it evolves, new levels of specification are added
and within any level of specification there are implementation options. This approach is taken so
that a variety of minimal debug monitors and controlling debug agents can be accommodated
without excessive overhead and so there can be good compatibility between debuggers and
debug monitors released at different times. As a result, a debugger using the RDP must negotiate
to establish its debuggee’s capabilities and must not use capabilities its debuggee does not have.
These issues are highlighted in the following sections.

Remote Debugging

22-23Reference Manual
ARM DUI 0020D

22.2.3 Message summary

Debugger to debuggee message name Hexadecimal Function Code
Open and/or Initialise 00

Close and Finalise 01

Read Memory Address 02

Write Memory Address 03

Read CPU State 04

Write CPU State 05

Read Co-Processor State 06

Write Co-Processor State 07

Set Breakpoint 0A

Clear Breakpoint 0B

Set Watchpoint 0C

Clear Watchpoint 0D

Execute 10

Step 11

Info 12

OS Operation Reply 13

Add Configuration 14
Load Configuration 15
Select Configuration 16

Load Debug Agent 17

Interrupt Request 18

Comms Channel To Host (Reply) 19

Comms Channel From Host (Reply) 1A

Reset 7F

 Table 22-1: Debugger to debuggee messages

Debuggee to debugger message name Hexadecimal Function Code
Stopped notification message 20

OS Operation Request 21

Comms Channel To Host 22
Comms Channel From Host 23
Fatal protocol error 5E

Return value/status message 5F

Reset 7F

 Table 22-2: Debuggee to debugger messages

Remote Debugging

22-24 Reference Manual
ARM DUI 0020D

22.2.4 Debugger to debuggee messages

Open and/or initialise message (0)
Open(byte type, word memorysize {,byte speed})
return(byte status)

Upon receipt of this message a debuggee should prepare itself for an imminent debugging
session, bootstrapping and/or initialising itself. This message will always be the first sent. If for
some reason initialisation is impossible, a non zero status value should be returned. The type
argument may be used to distinguish between sorts of initialisation:

Bit 0 = 0: cold start (bootstrap, initialise MMU, etc.)

Bit 0 = 1: warm start (terminate current execution, clear all breakpoints and watchpoints,
etc.)

Bit 1 = 1: reset the communication link

Bit 2 = 0: debugger requires little endian debuggee

Bit 2 = 1: debugger requires big endian debuggee

Bit 3 = 1: debuggee should return its sex

The memorysize argument is used to specify the minimum number of bytes of memory that the
debuggee’s environment must have. A value of zero can be used if the debugger is not
concerned with the memory size, (when the debuggee is running under an ARM emulator which
allocates memory dynamically, as needed).

If bit 1 of the type argument is set, a single byte specifying the debug channel speed must follow
the memorysize argument. A value of zero sets the default speed. Other values are target
dependent. See ➲Chapter 17, Demon for possible return values.

The return value RDIError_WrongByteSex indicates that the debuggee has the opposite byte
order to that requested in bit 2 of the type argument, and therefore the request has failed. If bit 3
of the type argument is set, the debuggee should ignore bit 2 and return a status of either
RDIError_LittleEndian or RDIError_BigEndian .

Close and finalise message (1)
Close()
return(byte status)

Receipt of this message indicates the termination of the current debugging session. If for some
reason the current debugging session cannot be terminated, a non-zero status value is returned.
Only the Initialisation message may follow the Close message.

Read memory address message (2)
Read(word address, word nbytes)
return(bytes data, byte status {, word nbytes})

This message requests transfer of memory contents from the debuggee to the debugger.
The transfer begins at address , and transfers nbytes of data in increasing address order.

On successful completion, the bytes requested are returned, followed by a zero status value.

Remote Debugging

22-25Reference Manual
ARM DUI 0020D

On unsuccessful completion, the number of bytes requested are returned (some are garbage
padding), followed by a non-zero error code byte, followed by the number of bytes successfully
transferred. This number can be added to the base address to calculate the address where the
transfer failed.

Write memory address message (3)
Write(word address, word nbytes, bytes data)
return(byte status {, word nbytes})

This message transfers data from the debugger to the debuggee’s memory. The address
argument specifies the location where the first byte of data is to be stored, and the nbytes
argument gives the number of bytes to be transferred, followed by the bytes sequence to
transfer.

A zero status value is returned on successful completion.

On failure, a non-zero error code byte is returned, followed by the number of bytes successfully
transferred, just as with the Read Memory Address message.

Read CPU state message (4)
ReadCPU(byte mode, word mask)
return(words data, byte status)

This message is a request to read the values of registers in the CPU.

The mode argument defines the processor mode from which the transfer should be made. The
mode number is the same as the mode number used by ARM6; a value of 255 indicates the
current mode.

The mask argument indicates which registers should be transferred. Setting a bit to 1 will cause
the designated register to be transferred.

Bit 0-14 request register R0-R14

Bit 15 requests the Program Counter (including the mode and flag bits in 26-bit
modes)

Bit 16 requests transfer of the value of the Program Counter (without the mode and
flag bits in a 26-bit mode)

Bit 17 requests the address of the currently executing instruction (often, 8 bytes less
than the PC, because of instruction prefetching).

Bit 18 (in 32-bit modes) requests transfer of the CPSR; in 32-bit processor modes
with an SPSR (non-user modes), bit 19 requests its transfer.

Bit 20 requests the transfer of the value of the flag and mode bits in a 26-bit mode
(in the same bit positions as in register 15).

Upon successful completion, the values of the registers will be returned (the number depending
on the number of bits set in the mask argument), followed by a zero status value. The lowest
numbered register is transferred first.

Remote Debugging

22-26 Reference Manual
ARM DUI 0020D

On unsuccessful completion, the number of words specified in the mask is returned, followed by
a non-zero error code byte.

Write CPU state message (5)
WriteCPU(byte mode, word mask, words data)
return(byte status)

This message is a request to set values of registers in the debuggee’s CPU.

The mode argument defines the processor mode to which the transfer should be made.

The mask argument is as for the ReadCPU message, and is followed by the sequence of word
values to be written to the registers specified in mask. The first value is written to the
lowest-numbered register mentioned in mask.

The status value returned will be zero if the request was successful, otherwise, the error will be
specified, (see ➲22.2.7 Error codes on page 22-42).

Read co-processor state message (6)
ReadCoPro(byte CPnum, word mask)
return(words data, byte status)

This message is a request to read a co-processor’s internal state. Its operation is similar to
ReadCPU, except that register values are transferred from the co-processor numbered CPnum.

The registers to be transferred are specified by the mask argument.

The registers transferred, and their sizes, is co-processor-specific; currently the following
co-processors are understood:

• Co-processor 1 (and 2 in the case of FPA) is a floating point unit.

Bits 0 to 7 of mask request the transfer of floating point registers 0 to 7.
Bit 8 requests the FPSR.
Bit 9 requests the FPCR.

• Co-processor 15 is an MMU, for example ARM600’s.

Bits 0 to 7 of mask request the transfer of internal registers 0 to 7.
On successful completion, the values of the requested registers are returned followed by a zero
status value. The lowest numbered register is transferred first.

On unsuccessful completion, the number of words implied by mask are transferred, followed by
a non-zero error code byte.

For more details on the structure of a Coprocessor Description, including the format of
coprocessor registers, see dbg_cp.h .

Write co-processor state message (7)
WriteCoPro(byte CPnum, word mask, words data)
return(byte status)

This message is a request to write a co-processor’s internal state. This operation is similar to that
of WriteCPU , except that register values are transferred to the co-processor numbered CPnum.
The registers to be written are specified by the mask argument.

Remote Debugging

22-27Reference Manual
ARM DUI 0020D

The registers transferred, and their sizes, depends on the co-processor; currently the following
co-processors are understood:

• Co-processor 1 (and 2 in the case of FPA) is a floating point unit.

Bits 0 to 7 of mask request the setting of floating point registers 0 to 7.
Bit 8 requests a write to the FPSR.
Bit 9 requests a write to the FPCR.

• Co-processor 15 is an MMU, for example ARM600’s.

Bits 0 to 7 of mask request the setting of internal registers 0 to 7.
The status value returned will be zero if the request was successful, otherwise the error is
specified, (see ➲22.2.7 Error codes on page 22-42).

For more details on the structure of a Coprocessor Description, including the format of
coprocessor registers, see dbg_cp.h .

Set breakpoint message (0x0A)
SetBreak(word address, byte type {, word bound})
return({word pointhandle} byte status)
 or ({word address{word bound}} byte status)

This message requests the debuggee to set an execution breakpoint at address . The least
significant 4 bits of type define the sort of breakpoint to set:

0 halt if the pc is equal to address .

1 halt if the pc is greater than address .

2 halt if the pc is greater than or equal to address .

3 halt if the pc is less than address .

4 halt if the pc is less than or equal to address .

5 halt if the pc is in the address range from address to bound , inclusive.

6 halt execution if the pc is not in the address range address to bound , inclusive.

7 halt execution if (pc & bound) = address .

At RDI/RDP specification levels 1 and above, bits 5, 6 and 7 of type have further significance.

Bit 4 of type set If set, this indicates that the breakpoint is on a 16 bit (Thumb)
instruction, rather than a 32 bit (ARM) instruction.

Bit 5 of type set Requests that the breakpoint should be conditional (execution halts
only if the breakpointed instruction is executed, not if it is
conditionally skipped). If bit 5 is not set, execution halts whenever
the breakpointed instruction is reached (whether executed or
skipped).

Bit 6 of type set Requests a dry run: the breakpoint is not set and the address , and
if appropriate the bound , that would be used, are returned (for

Remote Debugging

22-28 Reference Manual
ARM DUI 0020D

comparision and range breakpoints the address and bound used
need not be exactly as requested). A zero status byte indicates that
resources are currently available to set the breakpoint;
RDIError_NoMorePoints indicates that the required breakpoint
resources are not currently available.

Bit 7 of type set Requests that a handle pointhandle should be returned for the
breakpoint by which it will be identified subsequently. If bit 7 is set, a
handle will be returned, whether the request succeeds or fails (but,
obviously, it will only be meaningful if the request succeeds).

Note: Bits 6 and 7 must not be simultaneously set.

Upon successful completion a zero status byte is returned.

On unsuccessful completion, a non-zero error code byte is returned.

If the request is successful, but there are now no more breakpoint registers (of the requested
type), then the value RDIError_NoMorePoints is returned.

If a breakpoint is set on a location which already has a breakpoint, the first breakpoint will be
removed before the new breakpoint is set.

Clear breakpoint message (0x0B)
ClearBreak(word pointhandle)
return(byte status)

This message requests the clearing of the execution breakpoint identified by pointhandle
which was set by an earlier SetBreak request (at level 0 of the RDI/RDP specification,
pointhandle is the address at which the breakpoint was set).

Upon successful completion a zero status byte is returned.

On unsuccessful completion, a non-zero error code byte is returned.

Set watchpoint message (0x0C)
SetWatch(word address, byte type, byte datatype {, word bound})
return({word pointhandle} byte status)
 or ({word address {,word bound}} byte status)

This message requests the debuggee to set a data access watchpoint at address . The least
significant 4 bits of type define the sort of watchpoint to set:

0 halt on a data access to the address equal to address .

1 halt on a data access to an address greater than address .

2 halt on a data access to an address greater than or equal to address .

3 halt on a data access to an address less than address

4 halt on a data access to an address less than or equal to address .

5 halt on a data access to an address in the range from address to bound , inclusive.

6 halt on a data access to an address not in the range from address to bound , inclusive.

Remote Debugging

22-29Reference Manual
ARM DUI 0020D

7 halt if (data-acess-address & bound) = address .

At RDI/RDP specification levels 1 and above, bits 6 and 7 of type have further significance.

Bit 6 of type set Requests a dry run: the watchpoint is not set and the address and,
if appropriate, the bound , that would be used, are returned (for
range and comparison watchpoints, the address and bound used
need not be exactly as requested). A zero status byte indicates that
resources are currently available to set the watchpoint;
RDIError_NoMorePoints indicates that the required watchpoint
resources are not currently available.

Bit 7 of type set Requests that a handle should be returned for the watchpoint by
which it will be identified subsequently. If bit 7 is set, a handle will be
returned, whether the request succeeds or fails (but, obviously, it will
only be meaningful if the request succeeds).

Note: Bits 6 and 7 must not be simultaneously set.

The datatype argument defines the sort of data access to watch for:

1 watch for byte reads

2 watch for half-word reads

4 watch for word reads

8 watch for byte writes

16 watch for half-word writes

32 watch for word writes

Values may be summed or ORed together in order to halt on any of a set of sorts of memory
access. For example:

8 + 16 + 32
to watch for any write access to the specified location(s).

Upon successful completion a zero status byte is returned.On unsuccessful completion, a non-
zero error code byte is returned. If the request is successful, but there are now no more
watchpoint registers (of the requested type), then the value RDIError_NoMorePoints is
returned.

If a watchpoint is set on a location which already has a watchpoint, the first watchpoint will be
removed before the new watchpoint is set.

Clear watchpoint message (0x0D)
ClearWatch(word pointhandle)
return(byte status)

This message requests the clearing of the data access watchpoint identified by pointhandle ,
which was set by an earlier SetWatch request (at level 0 of the RDI/RDP specification,
pointhandle is the address at which the watchpoint was set).

Remote Debugging

22-30 Reference Manual
ARM DUI 0020D

Upon successful completion a zero status byte is returned. On unsuccessful completion, a
non-zero error code byte is returned.

Execute message (0x10)
Execute(byte return)
return({word pointhandle} byte status)

This message requests that the debuggee commence execution at the address currently loaded
into the CPU Program Counter.

If the least significant bit of return is 1, and commencing execution is viable, a return message
is sent immediately and execution commences asynchronously. If the least significant bit of
return is 0, then execution commences synchronously, and the return message is not sent until
execution suspends:

• because the end of the program is reached

• because a break/watchpoint is reached

• because an exception occurs

• because the user interrupts the program

At RDI/RDP specification levels 1 and above, bit 7 of return has further significance: if it is set,
an extra word will be returned which, if execution suspends because of a breakpoint or
watchpoint, is the identifying handle of the breakpiont or watchpoint suspending execution.

On successful completion of the request, a zero status byte is returned. On completion of a
synchronous request, a non-zero status byte may indicate the reason the debuggee
suspended. Examples of possible return codes are:

2 Undefined Instruction

3 A SWI happened (only if watching for SWIs—see ➲Info message (0x12) on page
22-31)

4 Prefetch Abort—instruction fetch from unmapped memory

5 Data Abort—no memory at the accessed address

6 Address Exception—26-bit mode access to address >= 2**26

7 IRQ

8 FIQ

9 Error

10 Branch through location 0

143 Breakpoint Reached
It is the responsibility of RDP’s caller to remove the breakpoint before continuing
execution, or the debuggee will stop immediately at the same breakpoint.

144 Watchpoint Accessed
It is not defined whether the PC addresses the accessing instruction or a

Remote Debugging

22-31Reference Manual
ARM DUI 0020D

subsequent instruction, nor whether the accress has been performed.

147 User pressed Escape

Step message (0x11)
Step(byte return, word ninstr)
return({word pointhandle} byte status)

This message requests the debuggee to execute ninstr instructions, starting at the address
currently loaded into the CPU Program Counter.

If ninstr is zero, the debuggee executes instructions up to the next instruction that explicitly
alters the program counter, (ie. a branch or ALU operation with the program counter as
destination).

If the least significant bit of return is 1, and starting execution is viable, then a return message
is sent immediately and execution commences asynchronously.

If the least significant bit of return is 0, then execution start synchronously, and the return
message is not sent until execution suspends, because:

• the requested number of instructions have been executed

• a break/watchpoint is reached

• an exception occurs

• the user interrupts the program

At RDI/RDP specification levels 1 and above, bit 7 of return has further significance: if it is set
then an extra word will be returned which, if execution suspends because of a breakpoint or
watchpoint, is the identifying handle of the breakpoint or watchpoint suspending execution.

On successful completion of the request, a zero status byte is returned.

On completion of a synchronous request, a non-zero status byte indicates the reason the
debuggee suspended, exactly as for the Execute message, (see ➲Execute message (0x10) on
page 22-30).

Info message (0x12)
Info(word info {, argument})
return({words returninfo,} byte status)

This message requests the transfer of information between the debugger and the debuggee.
The information transferred, and the direction of transfer depends on the value of info . In each
case, a non-zero status byte indicates an unsuccessful request (see ➲22.2.7 Error codes on
page 22-42 for details).

info = 0: Returns information about the debuggee in the same way as:

return(word data, word model, byte status)

The value of data should be interpreted as follows:

Bit 16 1 => the debuggee has a communications channel
Bit 15 1 => the debuggee can cope with 16-bit (Thumb) code

Remote Debugging

22-32 Reference Manual
ARM DUI 0020D

Bit 14 1 => the Debug Agent can do profiling
Bit 13 1 => the Debug Agent supports RDP_Interrupt
Bit 12 1 => the Debug Agent supports enquiries about the download block size it

supports
Bit 11 1 => the Debug Agent can be reloaded
Bits 8, 9, 10 the minimum RDI specification level (0-7) required of the debugger
Bits 5, 6, 7 the maximum RDI specification level (0-7) implemented by the debuggee
Bit 4 0=> debuggee is running under a software emulator

1=>debuggee is running on ARM hardware
Bits 0:3 host speed as 10**(bits 0:3) instruction per second (IPS) (0 => 1IPS, 1 =>

10IPS, 2 => 100IPS, 3 = 1000IPS, ..., 6 => 1MIPS, ...)
The value of model is a unique identifier for the ARM processor or the emulator model that the
debuggee is running under.

info = 1: Returns information about the debuggee’s breakpointing and watchpointing capabilities,
in the same way as:

return(word breakinfo, byte status)

The value of breakinfo should be interpreted as a set of bits, as follows:

Bit 0: comparison breakpoints are supported
Bit 1: range breakpoints are supported
Bit 2: watchpoints for byte reads are supported
Bit 3: watchpoints for half-word reads are supported
Bit 4: watchpoints for word reads are supported
Bit 5: watchpoints for byte writes are supported
Bit 6: watchpoints for half-word writes are supported
Bit 7: watchpoints for word writes are supported
Bit 8: mask break/watch-points are supported
Bit 9: thread-specific breakpoints are supported
Bit 10: thread-specific watchpoints are supported
Bit 11: conditional breakpoints are supported
Bit 12: status enquiries about the capabilities of (H/W) breakpoints and watchpoints

are allowed.
All debuggees must support breakpoints of sort RDIPoint_EQ (break at specified address).

Info = 2: Returns information about the debuggee’s single-stepping capabilities, in the same way
as:

return(word stepinfo, byte status)

The value of stepinfo should be interpreted as follows:

Bit 0: single stepping of more than one instruction is supported;
Bit 1: single stepping to the next direct PC alteration is supported;

Remote Debugging

22-33Reference Manual
ARM DUI 0020D

Bit 2: single stepping of a single instruction is supported.
info = 3: Returns information about the debuggee’s memory management system (if any), in the
same way as:

return(word meminfo, byte status)

The value of meminfo is a unique identifier for the type of memory manager used by the
debuggee.

info = 4: enquires whether configuration download and selection are supported:

return (byte status)

A status return of 0 indicates that these facilities are supported.

info = 5: enquires whether info calls 0x181 to 0x184 (semi hosting Get/Set State/Vector) are
supported:

return (byte status)

A status return of 0 indicates that these facilities are supported

info = 6: enquires whether info calls 0x400 and 0x401 (Describe Coprocessor and Request
Coprocessor Description) are supported:

return (byte status)

A status return of 0 indicates that these facilities are supported.

info = 7: enquires whether the debuggee is controlled by ICEBreaker.

return (byte status)

A status return of 0 indicates that the debuggee is controlled by ICEBreaker.

info = 8: asks for the memory access statistics for the block of memory indicated by handle. For
full details, see RDI_MemAccessStats in dbg_stat.h.

arguments(word handle)

return (word nreads, word nwrites, word sreads, word swrites, word
ns, word s, byte status)

info = 9: sets the characteristics for n regions of memory.

arguments(word n, {word handle, word start, word limit, byte width,
byte access, word Nread_ns, word Nwrite_ns, word Sread_ns, word
Swrite_ns}...)

return (byte status)

For further details, see dbg_stat.h.

info = 10: sets the simulated CPU speed in nanosecond

arguments(word speed)

return (byte status)

Remote Debugging

22-34 Reference Manual
ARM DUI 0020D

info = 12: reads the simulated CPU time

return (word ns, word s, byte status)

info = 13: enquires whether the Debug Agent supports info calls 8-12 (Memory Statistics)

return (byte status)

A status return of 0 indicates that these facilities are supported.

info = 14: enquires about the number of configuration blocks known to the Debug Agent:

return (byte_status, word_count)

The count is present only if the status indicates an error.

info = 0x80: returns the hardware resource number, and type of that resource when given a
watchpoint handle. This can be used only if Info Call 1 (Info_Points) returns bit 12
(RDIPointCapability_Status) set.

arguments(word handle)

return (word hwresource, word type, byte status)

info = 0x81: is identical to info call 0x80, except that it works for a breakpoint handle.

info = 0x100: requests that the debuggee should immediately halt execution. If the debuggee is
not executing or is running synchronously (see ➲Execute message (0x10) on page 22-30), a
Return message and the status RDIError_UserInterrupt will be returned. If the debuggee
is running asynchronously, then a Stopped message is returned, with status
RDIError_UserInterrupt .

info = 0x180: informs the debuggee which hardware exceptions should be reported to the
debugger; argument is a bit-mask of exceptions to be reported, as follows:

Bit 0: Reset (branch through 0)
Bit 1: Undefined Instruction
Bit 2: Software Interrupt (SWI)
Bit 3: Prefetch Abort
Bit 4: Data Abort
Bit 5: Address Exception
Bit 6: Interrupt (IRQ)
Bit 7: Fast Interrupt (FIQ)
Bit 8: Error

A set bit in argument indicates that the exception should be reported to the debugger; a clear
bit indicates the corresponding exception vector should be taken. When an exception is reported
to the debugger, the state of the debuggee is rewound to the state pertaining just before
executing the instruction which caused the exception.

info = 0x181: sets whether or not semihosting is enabled. It may be used only if Info call 5
(Info_SemiHosting) returned 0.

arguments (word semihostingstate)

Remote Debugging

22-35Reference Manual
ARM DUI 0020D

result (byte status)

info = 0x182: reads whether or not semihosting is enabled. It may be used only if Info call 5
(Info_SemiHosting) returned 0.

result (word semihostingstate, byte status)

info = 0x183: sets the semihosting vector. It may be used only if Info call 5 (Info_SemiHosting)
returned 0.

arguments (word semihostingvector)

result (byte status)

info = 0x184: reads the semihosting vector. It may be used only if Info call 5 (Info_SemiHosting)
returned 0.

result (word semihostingvector, byte status)

info = 0x185: reads a bitmap which indicates which of ICEBreaker’s breakpoints have been
locked. This may be used only if Info Call 7 (Info_ICEBreaker) returned 0.

result (word lockedstate, byte status)

info = 0x186: writes a bitmap which indicates which of ICEBreaker’s breakpoints are locked.
This may be used only if Info Call 7 (Info_ICEBreaker) returned 0.

arguments(word lockedstate)

info = 0x187: requests the maximum length of data the Debug Agent can receive in one block.
This may be used only if Info Call 0 (Info_Target) returned bit 12 set.

result (word maxloadsize, byte status)

info = 0x188: indicates whether data should be transferred from the debuggee to the debugger
via the Debug Comms Channel. This may be used only if Info Call 0 (Info_Target) returned bit
16 set.

arguments(byte connect)

result (byte status)

info = 0x189: is the same as Info Call 0x188 except that it refers to data transfer from the
debugger to the debuggee.

info = 0x200: Requests the debuggee to return the number of instructions and cycles executed
since initialisation, in the same way as:

return (word ninstr, word S-cycles, word N-cycles, word I-cycles,
word C-cycles, word F-cycles, byte status)

info = 0x201: Requests the debuggee to return the error pointer associated with the last return
to an Execute or Step request with status Error.Note that the error is returned as a word, rather
than a byte.

info = 0x300: Requests that the debuggee’s command line be set to argument . argument
must be 0-terminated string of bytes and no longer than 256 bytes, including the terminating 0

Remote Debugging

22-36 Reference Manual
ARM DUI 0020D

info = 0x301: Requests that the RDI specification level be set to argument , a byte value lying
between the limits returned by a call with info = 0. From receipt of an open request with bit 0 of
type = 0 (a cold start open request) until receipt of this request, the debuggee operates with the
RDI level set to its lower limit.

info = 0x302: Requests that the thread context (SetBreak and SetWatch messages) be set to
argument , a 32 bit handle identifying a thread of execution. The distinguished handle
RDINoHandle requests resetting the thread context to be the underlying hardware processor.

info = 0x400: Describes the registers of a coprocessor. argument has the form:

byte cpnum {byte rmin, byte rmax, byte nbytes, byte access,
 byte r0, byte r1, byte w0, byte w1}*
byte = 0xff

where:

nbytes is the size in bytes of the register(s)

access is a bitmask:

bit 0 register(s) readable with this bit set
bit 1 register(s) writeable with this bit set
bit 2 register(s) read or written via CPDT instructions (else CPRT) with this

bit set. If bit2 is set, the registers provide bits as follows:

r0 bits 0 to 7

r1 bits16 to 23 of a CPRT instruction to read the register

w0 bits 0 to 7

w1 bits 16 to 23 of a CPRT instruction to write the register

Otherwise, r0 provides bits 12 to 15 and r1 bit 22 of CPDT instructions to read
and write the register (and w0 and w1 are junk).

info = 0x401: Has argument as a byte coprocessor number. It requests that the debugee
describe the registers of the coprocessor if it is known. The description is as by:

return({byte rmin, byte rmax, byte nbytes, byte access}*, byte = 0xff)

where rmin, rmax, nbytes and access are as above.

info = 0x500: requests that profiling data should stop being collected. This should be used only
if Info Call 0 (Info_Target) returned bit 14 set.

return (byte status)

info = 0x501: requests that profiling data should start being collected. This should be used only
if Info Call 0 (Info_Target) returned bit 14 set.

arguments (word interval)

PC samples will be taken every interval microseconds.

Remote Debugging

22-37Reference Manual
ARM DUI 0020D

info = 0x502: should be used only if Info Call 0 (Info_Target) returned bit 14 set.

arguments (word len, word size, word offset, words mapdata)

result (byte status)

This downloads a map array (described under RDI_Profile_WriteMap, ➲RDI_Profile_WriteMap
on page 22-17) which describes the PC ranges for profiling.

This is downloaded over the RDP in a series of messages:

len the number of elements in the entire map array being downloaded

size the number of map array elements being downloaded in this message

offset the offset into the entire map array which this message starts from

mapdata consists of size words of mapdata

info = 0x503: should be used only if Info Call 0 (Info_Target) returned bit 14 set.

arguments (word offset, word size)

result (words counts, byte status)

This uploads a a set of profile counts which correspond to the current profile map. See
RDI_Profile_WriteMap, ➲RDI_Profile_WriteMap on page 22-17) for more details.

This is uploaded over the RDP in a series of messages:

offset the offset in the entire array of counts that this message starts from

size the number of counts being uploaded in this message

counts consists of size words of profiling counts data

info = 0x504: requests that profiling counts should all be reset to zero. This should be used only
if Info Call 0 (Info_Target) returned bit 14 set.

result (byte status)

OS operation reply message (0x13)
OSOpReply(byte info, {data})
no reply

This message signals completion of the last requested OS Operation request.

info describes the type of the value returned by the operation:

0 return value

1 data comprises a single byte, to be placed in the debuggee’s r0.

2 data comprises a word, to be placed in the debuggee’s r0.

OS operations which return more complicated values must do so by using the appropriate
combination of Write Memory and Write CPU state operations.

Remote Debugging

22-38 Reference Manual
ARM DUI 0020D

Add configuration message (0x14)
AddConfig(word nbytes)
return (byte status)

On receiving this message, the Debug Agent should prepare to receive a configuration data block
of size n bytes. If the Debug Agent cannot accept a configuration data block of this size, it will
return a non-zero status.

Load configuration message (0x15)
LoadConfigData(word nbytes, words data)
return (status)

On receiving this message, the Debug Agent should store away the configuration data ready for
it to be selected. If there is an error during download, then a non-zero status will be returned. See
the documentation of the Debug Agent concerned for more information about the content of the
configuration data.

Select configuration message (0x16)
SelectConfig(byte aspect, byte namelen, byte matchtype, word vsn_req,
bytes name)
return (word vsn_sel, byte status)

On receiving this message, the Debug Agent should select one of the sets of configuration data
blocks and reinitialise the Debug Agent to use that configuration:

aspect one of RDI_ConfigCPU or RDI_ConfigSystem

namelen the number of bytes in name

name namelen bytes which comprise the name of the configuration

vsn_req the requested version of the named configuration

matchtype specifies how the selected version must match that specified, and
should be one of RDI_MatchAny, RDIMatchExactly, or
RDI_MatchNoEarlier

The Debug Agent returns the version number of the configuration selected and a byte of status.

Load debug agent (0x17)
LoadAgent(word loadaddress, word size)
return (byte status)

On receiving this message, the Debug Agent should prepare to receive configuration data which
it should interpret as a new version of the Debug Agent code. The new Debug Agent code will be
size bytes long, and should be loaded at loadaddress . The data will be downloaded using
LoadConfigurationData (0x15).

Interrupt execution (0x18)
Interrupt()
no return

On receiving this message, the Debug Agent should attempt to stop execution of the debuggee.
No return value should be sent.

Remote Debugging

22-39Reference Manual
ARM DUI 0020D

CCToHostReply (0x19)
CCToHostReply()
return (byte status)

On receiving this message, the Debug Agent knows whether or not the host successfully
received the data it was sent to CCToHost (0x22).

CCFromHostReply (0x20)
CCFromHostReply(byte valid, word data)
return (byte status)

This message returns data to be sent to the debuggee using the Debug Comms channel. If
valid is 0, there is no data, otherwise data is the word to be transferred.

Reset message (0x7F)
RequestReset()
no reply

Requests that the debuggee reset itself.

22.2.5 Debuggee to debugger messages

The debugger does not acknowledge debuggee-to-debugger messages, as there is no point in
trying to handle errors in the debuggee.

All responses to debugger-to-debuggee requests are of the Return message type, described
in ➲Return message (0x5F) on page 22-41.

Stopped message (0x20)
Stopped({word pointhandle} byte status)

This message is sent to a debugger by an asynchronously executing debuggee, to indicate that
execution of the debuggee has suspended. Execution of the debuggee was previously started
by an Execute(X) or Step(X, n) message bith bit 1 of X = 1.

The status value indicates the type of suspension; for details, see ➲Execute message (0x10)
on page 22-30.

At RDI specification levels 1 and above, if bit 7 of X was 1, a word pointhandle is returned. If
execution suspended because a breakpoint was reached or a watchpoint was accessed, then
the value of pointhandle identifies the -point concerned.

Remote Debugging

22-40 Reference Manual
ARM DUI 0020D

OS operation request message (0x21)
OSOp(word op, byte argdesc, {args})

This message is sent by the debuggee to request execution of a call to the host operating system.

op identifies which call

argdesc allows description of up to 4 arguments to the call: if there are more, or their
format is more complicated than can be described by argdesc , their values
must be acquired by the appropriate combination of Read Memory and Read
CPU State operations. argdesc is a sequence of two-bit fields starting from
the least significant end of the word, each of which describes the
corresponding argument, as follows:

0 no such argument
1 a single byte
2 a word
3 a string

The format of a string value is determined by its first byte:

0-32 the string is of this length, and its component bytes follow,
(the terminating 0 byte is omitted).

33-254 the string is of this length. A word containing the address of the string
follows. The read memory message can be used to access the string.

255 a word follows containing the string’s length, then a word containing
its address. The read memory message can be used to access
the string.

Comms channel to host message (0x22)
CCToHost (word data)
return (byte status)

This message sends a word of data which has been transferred from the debuggee via the
Debugs Comms Channel up to the host.

Comms channel from host message (0x23)
CCFromHost ()
return (byte valid, word data, byte status)

This message requests a word of data from the host to be sent to the debuggee via the Debug
Comms Channel. If valid is 0, then the host has no data to transfer. Otherwise, data is valid.

Fatal message (0x5E)
Fatal(byte error)

The Fatal message indicates that the debuggee could not make sense of the last message
sent.

Remote Debugging

22-41Reference Manual
ARM DUI 0020D

Return message (0x5F)
Return(..., byte status)

The Return message is used to acknowledge a recognised request message.

A status value is always returned, indicating that the syntax of the original request was
understood, and whether or not it was satisfied.

The arguments to Return depend on the message being acknowledged, and are described in
➲22.2.4 Debugger to debuggee messages on page 22-24.

Reset message (0x7F)

This message indicates that the debuggee has reset itself, either because of a hardware reset,
or in response to a reset request.

22.2.6 Notes

Address spaces

In debuggee environments that support different address spaces in different processor modes,
the address space corresponding to the processor mode at the time the message is sent is used
by all memory access, breakpoint and watchpoint instructions.

Minimum support

There is a minimum subset of requests that all debuggees must support. The info message is
used to enquire whether a debuggee can support operations outside the minimum subset,
consisting of:

Message Function code

Open and/or Initialise 00

Close and Finalise 01

Read Memory Address 02

Write Memory Address 03

Read CPU State 04

Write CPU State 05

Set Breakpoint 0A (with first argument = 0)

Clear Breakpoint 0B

Execute 10

Info 20

Reset 7F

Remote Debugging

22-42 Reference Manual
ARM DUI 0020D

22.2.7 Error codes

Debuggee status

The following error code values indicate debuggee status:

Code Error Name Possible cause

0 No error Everything worked

1 Reset Debuggee reset

2 Undefined instruction Tried to execute the undefined instr

3 Software interrupt A SWI happened (when tracing SWIs)

4 Prefetch abort Execution ran into unmapped memory

5 Data abort No memory at the specified address

6 Address exception Accessed > 26 bit address in 26 bit mode

7 IRQ An interrupt occurred

8 FIQ A fast interrupt occurred

9 Error An error occurred

10 BranchThrough0 Branch through location 0

142 No more points That’s the last of the break/watchpoints

143 Breakpoint reached What Execute and Step can return...

144 Watchpoint accessed ... or this

146 Program finished End of the program reached while stepping

147 User interrupt User pressed Escape

148 CantSetPoint Break/watch-point resources exhausted

150 CantLoadConfig Configuration Data could not be loaded

151 BadConfigData Configuration data was corrupt

152 NoSuchConfig The requested configuration has not been loaded.

153 BufferFull Buffer was filled during the operation.

 Table 22-3: Debuggee status

Remote Debugging

22-43Reference Manual
ARM DUI 0020D

Internal fault or limitation

The following errors indicate an internal fault or limitation:

Information messages

The following errors are not really errors, but are just a means of passing information:

154 OutOfStore The Debug Agent ran out of memory.

155 NotInDownLoad Illegal request made during download.

156 PointInUse ICEBreaker breakpoint is already being used.

157 BadImageFormat Debug Agent could not make sense of AIF image supplied.

158 TargetRunning Target processor could not be halted (probably with
EmbeddedICE system).

159 DeviceWouldNotOpen Failed to open serial or parallel port.

160 NoSuchHandle No such memory description handle exists.

161 ConflictingPoint Incompatible breakpoint already exists.

Code Error Name Possible cause

253 InsufficientPrivilege Supervisor state was not accessible to this debug monitor

254 Unimplemented message Debuggee can’t honour this RDP request

255 Undefined message Garbled RDP request

 Table 22-4: Internal faults

Code Error Name Possible cause

240 LittleEndian The debuggee is little endian

241 BigEndian The debuggee is big endian

242 SoftInitialiseError A recoverable error occurred during initialisation. Perhaps dif-
ferent configuration data is required.

 Table 22-5: Information

Code Error Name Possible cause

 Table 22-3: Debuggee status (Continued)

Remote Debugging

22-44 Reference Manual
ARM DUI 0020D

Misuse of the RDI

The following errors indicate misuse of the RDI or similar problem:

Code Error Name Possible cause

128 Not initialised Open must be the first call

129 Unable to initialise The target world is broken

130 WrongByteSex The debuggee can’t operate with the requested byte sex

131 Unable to terminate Target world was smashed by the debuggee

132 Bad instruction It is illegal to execute this instruction

133 Illegal instruction The effect of executing this is undefined

134 Bad CPU state Tried to set the SPSR of user mode

135 Unknown co-processor This co-processor is not connected

136 Unknown co-proc state Don’t know how to handle this request

137 Bad co-proc state Recognisably broken co-proc request

138
139
140

Bad point type
Unimplemented type
Bad point size

Misuse of the RDI

141 Unimplemented size Half words not yet implemented

145 No such point Tried to clear an unset break/watchpoint

 Table 22-6: RDI error codes

Reference Manual
ARM DUI 0020D

Index-1

Index
Numerics
32 vs 26 bit PC 19-11, 19-12
32-bit PC attribute 21-17

A
a.out 21-10
Aborts 19-25
Absolute attribute 21-15, 21-16, 21-18, 21-23,

21-25
Add Configuration Message 22-38
Additive relocation 21-21
Address mode 21-5
Address space 22-41
AIF

debug initialisation instruction 21-7
executable 21-2, 21-5
header layout 21-5
image debug type 21-5
image ReadOnly size 21-5

layout 21-4
non-executable 21-2, 21-5
program exit instruction 21-6
properties 21-2
RelocateOnly 21-8
self-decompressing 21-3
self-move 21-3, 21-7
self-relocation 21-3, 21-4, 21-6, 21-7
synopsis 6-16
zero-initialisation code 21-7

ALF 21-26
alignment 21-27
endian-ness 21-27, 21-30
LIB_DATA 21-28, 21-30
LIB_DIRY 21-28, 21-29, 21-30
LIB_TIME 21-28, 21-30
LIB_VSRN 21-28, 21-30
OFL_SYMT 21-28, 21-31
OFL_TIME 21-28, 21-31
time stamps 21-28, 21-29, 21-30

Alignment 21-11, 21-15, 21-16
Alignment (ALF) 21-27

Index

Reference Manual
ARM DUI 0020D

Index-2

ANSI C library 2-24, 2-48, 15-2, 15-3
ANSI library functions 15-10
AOF 21-10

additive relocation 21-21
alignment 21-11, 21-15, 21-16
area attributes (see also Attributes) 21-15,

21-16, 21-18, 21-19
area chunk format 21-19
area declarations 21-14
area header format 21-15
attributes and alignment 21-16
based area relocation 21-21
byte sex 21-10
chunk file format 21-11
chunks 21-13
endian-ness 21-10, 21-12, 21-14
forever binary property 21-24
format of area headers 21-15
format of the AOF header chunk 21-14
header chunk format 21-14
identification chunk 21-25
object file type 21-14
overall structure 21-11
PC-relative relocation 21-21
relocatable object format 21-14
relocation directives 21-15, 21-19
string table chunk 21-25
symbol attribute summary 21-25
symbol attributes (see also Attributes) 21-

23, 21-25
symbol table chunk 21-15, 21-20, 21-22,

21-25
synopsis 6-15

APCS
32 vs 26 bit PC 19-11, 19-12
aborts 19-25
APCS-2 compatibility 19-13
argument list marshalling 19-14
argument passing 19-2, 19-10, 19-20, 19-

21
argument passing (FP) 19-11, 19-12, 19-

14, 19-18
argument representation 19-14
ARM register usage 19-2, 19-4
ARM's non-user modes 19-25

C calling conventions 19-14
C function entry 19-2, 19-16, 19-17, 19-18,

19-19, 19-20
C function exit 19-12, 19-19, 19-22
callee saves standard 19-11
conformance 19-2, 19-3, 19-6, 19-7, 19-11
control arrival 19-8
control return 19-11
data representation 19-10
design criteria 19-2
explicit stack limit checking 19-12, 19-19
floating point arguments in floating point

registers 19-12
floating point registers 19-5, 19-18
FP args in FP regs 19-10, 19-12, 19-13
function entry 19-16, 19-17, 19-18, 19-19
function exit 19-22
function invocations 19-6, 19-8
general registers 19-4
implicit stack limit checking 19-12
inter-link-unit 19-4, 19-9, 19-17
intra-link-unit 19-9, 19-17
marshalling 19-14
non-simple value return 19-15
open array arguments 19-19
pre-ARM6-based ARMs 19-25
reentrant vs non-reentrant 19-13
register marshalling 19-14
register names 19-3
returning a non-simple value 19-15
saving FP registers 19-18
some examples 19-22
stack backtrace 19-7, 19-8, 19-16, 19-17,

19-20
stack chunk 19-4, 19-6, 19-8, 19-16, 19-19,

19-20, 19-21
stack conventions 19-2
stack limit checking 19-19, 19-20, 19-21
stack limit violations 19-19
stack, the 19-6
static base 19-4, 19-13, 19-16, 19-17
variants 19-4, 19-8, 19-10, 19-11

Area attributes (see also Attributes) 21-15, 21-
16, 21-18, 21-19

Area declarations 21-14

Index

Reference Manual
ARM DUI 0020D

Index-3

Area header format 21-15
Areas, see also ARM Assembly Language

and Directives 3-6
Argument passing 19-2, 19-10, 19-20, 19-21
Argument passing (FP) 19-11, 19-12, 19-14,

19-18
ARM assembly language

|$$$$$$$| 3-7
‘S’ bit 4-5
addition and logical operators 3-22
area attributes 3-7
areas 3-6
assembly language overview 3-6, 4-2
assertions 3-14
binary operators 3-22
boolean constants 3-10
boolean operators 3-23
built-in variables 3-19
characters 3-10
comments 3-10
condition flags 4-5, 4-10, 4-22
conditional assembly 3-24, 3-25
conditional execution 4-5, 4-20
constants 3-10
defining a macro 3-25
diagnostic generation 3-14
directives, see also Directives 3-11
disable floating point 3-16
dynamic listing options 3-15
entry point 3-16
expressions and operators 3-21
floating point instructions, see also Float-

ing point instructions 4-22
floating point store initialisation 3-11
generic coprocessor instructions, see

also Co-processor instructions
4-21

IEEE 754 4-23, 4-25
input lines 3-6
instruction set, see also ARM instruction

set, Floating point instructions,
Co-processor instructions 4-2

labels 3-8
layout of store 3-12

links to other object files 3-13
links to other source files 3-13
literal origin 3-13
local and global variables 3-18
local labels 3-9
macro default parameters 3-26
macro invocation 3-26
macros 3-9, 3-18, 3-25
multiplicative operators 3-22
numbers 3-10
numeric constants 3-10
operator precedence 3-21, 3-22
organisational directives 3-12
pseudo-instructions 4-20
register names 3-6, 3-18, 4-6
relational operators 3-23
repetitive assembly 3-24
setting constants 3-18
shift operators 3-22
store reservation and initialisation 3-11
string constants 3-10
string manipulation 3-22
symbolic capabilities 3-18
symbols 3-8
titles 3-16
unary operators 3-21
variable substitution 3-19

ARM Debug Monitor 14-19
ARM Image Format see AIF
ARM instruction set 4-2

block data transfer 4-14
branch (and link) 4-7
data processing 4-8, 4-9, 4-10
load and store multiple 4-14
long multiplication 4-17
multiplication 4-16
PSR transfer 4-11
single data swap 4-17
single data transfer 4-12
software interrupt 4-19
supervisor call 4-19

ARM Object Format 21-10
ARM Object Library Format see ALF
ARM RDI see RDI

Index

Reference Manual
ARM DUI 0020D

Index-4

ARM RDP see RDP
ARM Remote Debug Interface see RDI
ARM shared library format, see Shared library

format 6-18
ARM Symbolic Debug Table Format see Armsd

table format
ARM Toolkit contents 1-3
armasm

command line options 3-2
register names 3-4

armcc
arguments passed to main 2-24
arithmetic limits 2-18
arithmetic operations 2-21
arrays 2-28
assembly language files 2-12
big-endian 2-8, 2-20, 2-26, 2-48
bitfields 2-20, 2-32
byte ordering 2-8
character set 2-14, 2-18, 2-23, 2-26, 2-48
character sets 2-17, 2-26
characteristics of floating point 2-19
code generation control 2-11
command line options 2-4
compatibility of language and preprocessor

2-47
controlling additional compiler features 2-13
controlling code generation 2-11
controlling the linker 2-10
controlling warning messages 2-12, 2-13
current place 2-7, 2-15
data elements 2-17
declarators 2-23, 2-29
dependency determination 2-11
enumerations 2-23, 2-32
environment 2-24, 15-2
error 2-24
escape sequences 2-27
expression evaluation 2-22
fatal 2-24, 2-52
file naming conventions 2-5
filename validity 2-6
flag options 2-10
floating point 2-13, 2-18, 2-21, 2-28, 2-49,

2-53

floating point characteristics 2-19
floating point support 2-56
I/O redirection 2-25
identifiers 2-14, 2-17, 2-23, 2-26
IEEE 754 2-28
implementation details 2-17
implementation limits 2-22
included files 2-6, 2-7, 2-15, 2-23
integers 2-13, 2-14, 2-15, 2-17, 2-20, 2-21,

2-26, 2-27, 2-28
invocation 2-52
keyword options 2-8
language and preprocessor compatibility 2-

47
left shifts 2-21
little-endian 2-8, 2-20, 2-48
machine-specific features 2-50
no automatic link 2-10
object files 2-4, 2-5, 2-6, 2-10, 2-23, 2-56
pointer subtraction 2-21
pointers 2-15, 2-17, 2-20, 2-28, 2-48
portability 2-5, 2-12, 2-14, 2-24, 2-37
pragma directives 2-16, 2-50
pragmas see Pragmas
preprocessing directives 2-32
preprocessor 2-48
preprocessor flags 2-10
qualifiers 2-28, 2-52
registers 2-28, 2-51, 2-53
right shifts 2-21, 2-27
search path 2-7
search rule 2-7, 2-15
serious error 2-24
severity of diagnostics 2-24
standard headers 2-15
standard implementation definition 2-24
statements 2-23, 2-29
structure packing 2-29
structured data types 2-20
structures 2-21, 2-28
translation 2-24, 2-32
unions 2-23, 2-32
warning 2-24
warnings 2-47, 2-49

armlib

Index

Reference Manual
ARM DUI 0020D

Index-5

command line options 9-2
armlink

area placement 6-11
assignment of AREAs to overlay seg-

ments 6-30
command line 6-3
command line options 6-3
compatibility 6-24
describing a shared library to the linker 6-

26
describing an overlay structure to the

linker 6-31
dynamic linking 6-19
entry point 6-8, 6-17, 6-22, 6-27
forcing an area mapping 6-9, 6-11
foreverness 6-24
functionality 6-2
general options 6-3
IHF 6-5, 6-18
input files 6-9
input list processing 6-10
Intellec Hex format 6-5, 6-18
inter-link-unit 6-13
intra-link-unit 6-13
library module inclusion 6-10
output formats 6-2
overlays, see also Overlays 6-28
PCIT, see also Overlays 6-32
plain binary format 6-2, 6-16, 6-18
pre-defined symbols 6-12, 6-28
relocation directives, see Relocation di-

rectives
return handler code 6-38
segments, see Overlays
shared library format, see also Shared li-

brary format 6-18
special options 6-7
unused area elimination 6-9
usage 6-3
versions 6-24

armmake
$@, $*, $< and $? 13-8
.IGNORE 13-9
.SILENT 13-9

:: 13-9
@ 13-9
command execution 13-6
command line options 13-3
command lines 13-5
dependency lines 13-4
file naming 13-7
macro definition lines 13-5
makefile format 13-4
MFLAGS 13-9
rule patterns 13-8
suffixes 13-8
VPATH 13-7

armprof 8-2
armsd 7-2, 7-6, 8-2

$cmdline 7-12, 7-15
$echo 7-12
$examine_lines 7-12
$format 7-12
$fpresult 7-12
$fr_full 7-12
$inputbase 7-12
$list_lines 7-12
$rdi_log 7-12
$result 7-12
$sourcedir 7-13
$statistics 7-13
$statistics_inc 7-13
$type_lines 7-13
$vector_catch 7-13
activation levels 7-22
activation numbers 7-7
addresses 7-9, 7-12, 7-18, 7-23
alias 7-32
APCS 7-24
arguments 7-14, 7-15, 7-24
ARM architecture 7-23
ARM registers 7-23
arrays 7-9, 7-12, 7-18
ASCII 7-10
backquotes 7-32
backslash 7-7
backtrace 7-22
breakpoints 7-7, 7-15, 7-17, 7-19

Index

Reference Manual
ARM DUI 0020D

Index-6

call 7-18
command line 7-15, 7-34
command line options 7-3, 8-2
commands 7-6
compound data type 7-18
condition code flags 7-23
constants 7-10, 7-11, 7-13
context 7-7, 7-10, 7-14, 7-22
coproc 7-30
coprocessor support 7-30
count 7-19
cregisters 7-32
current context 7-6, 7-14, 7-16, 7-22, 7-27
cwrite 7-32
debugging tables 7-23
directory name 7-15
divided by zero 7-26
do 7-17
examine 7-27
executing programs 7-15
expressions 7-8, 7-10, 7-12
find 7-28
floating point 7-11
floating point control register 7-24
floating point flags 7-26
floating point mask 7-26
floating point numbers 7-10
floating point registers 7-24, 7-25
floating point status register 7-24, 7-25
format strings 7-10, 7-11
fpregisters 7-25
fr_full 7-25
frame pointer 7-24
function calls 7-7
getfile 7-15
go 7-15
help 7-33
hexadecimal 7-13, 7-27
host operating system 7-34
in 7-22
inexact 7-26
initialisation file 7-35
inputbase 7-13
integers 7-10
interrupt enable flags 7-23

introduction 7-2, 8-2
invalid operation 7-26
istep 7-18
languages 7-6, 7-9, 7-24
let 7-12, 7-15, 7-24, 7-25
line numbers 7-7, 7-22
line speed negotiation 7-2
link register 7-24
linking 7-23
list 7-27
load 7-15
locations 7-7, 7-10, 7-12, 7-17
log 7-33
low-level debugging 7-12
low-level symbols 7-23
lsym 7-28
memory 7-27
obey 7-33
octal 7-13
out 7-22
overflow 7-26
pointers 7-9, 7-11
precedence 7-8
print 7-6, 7-11, 7-18, 7-24
procedure calls 7-19
procedures 7-7, 7-14, 7-17, 7-22, 7-24
processor mode bits 7-23
processor status register 7-24
profclear 7-33
profoff 7-34
profon 7-33
profwrite 7-34
program counter 7-24
program locations 7-7
putfile 7-16
quit 7-34
records 7-18
reentrancy 7-24
register variables 7-20, 7-24
registers 7-25
reload 7-16
return 7-22
scratch register 7-24
shifts 7-9
sign bit 7-9

Index

Reference Manual
ARM DUI 0020D

Index-7

single stepping 7-19
stack frame initialisation 7-23
stack limit register 7-24
stack pointer 7-24
statements 7-7, 7-19
static base 7-24
step 7-19, 7-24
strings 7-11
symbols 7-14, 7-23, 7-28
type 7-14, 7-16
unbreak 7-19
underflow 7-26
unwatch 7-19
variables 7-6, 7-9, 7-10, 7-11, 7-13, 7-14,

7-18, 7-20, 7-25
watchpoints 7-19, 7-20, 7-23
where 7-22, 7-24
while 7-19, 7-34
wildcard 7-28

Armsd table format
addresses in memory 21-36
array items 21-41
begin naming scope items 21-44
bitfield items 21-44
code and length field 21-35
debugging data items 21-34, 21-35
encoding of debugging data 21-33
end naming scope items 21-44
endian-ness 21-33
endproc items 21-33, 21-39
enumeration items 21-43
fileinfo items 21-33, 21-44, 21-45
function declaration items 21-43
label items 21-40
macro undefinition items 21-45
offsets in file 21-36
procedure items 21-33, 21-39
representation of data types 21-34
section items 21-32, 21-33, 21-36
set items 21-43
source file positions 21-35, 21-45
struct items 21-41
subrange items 21-42
text names in items 21-36

type items 21-41
variable items 21-40

ARMulator
accessing ARMulator's state 14-17
ARMul_Ccycles 14-9
ARMul_CDPs 14-13
ARMul_CoProAttach 14-12
ARMul_CoProDetach 14-15
ARMul_CPExits 14-13
ARMul_CPInits 14-13
ARMul_CPReads 14-15
ARMul_CPWrites 14-15
ARMul_GetCPSR 14-17
ARMul_GetPC 14-17
ARMul_GetR15 14-17
ARMul_GetReg 14-17
ARMul_GetSPSR 14-17
ARMul_Icycles 14-10
ARMul_LDCs 14-13
ARMul_LoadByte 14-8
ARMul_LoadInstrN 14-7, 14-17
ARMul_LoadInstrS 14-7, 14-17
ARMul_LoadWordN 14-8
ARMul_LoadWordS 14-8
ARMul_MCRs 14-13
ARMul_MemAccess 14-10
ARMul_MemoryExit 14-7, 14-10
ARMul_MemoryInit 14-7, 14-10
ARMul_ModeChangeUpcall 14-10
ARMul_MRCs 14-13
ARMul_OSException 14-16
ARMul_OSHandleSWI 14-16, 14-17
ARMul_OSInit 14-16
ARMul_OSLastErrorP 14-16
ARMul_ReadByte 14-9
ARMul_ReadWord 14-9
ARMul_ScheduleEvent 14-18
ARMul_SetCPSR 14-17
ARMul_SetPC 14-17
ARMul_SetR15 14-17
ARMul_SetReg 14-17
ARMul_SetSPSR 14-17
ARMul_STCs 14-14
ARMul_StoreByte 14-8

Index

Reference Manual
ARM DUI 0020D

Index-8

ARMul_StoreWordN 14-8
ARMul_StoreWordS 14-8
ARMul_SwapByte 14-9
ARMul_SwapWord 14-9
ARMul_Time 14-18
ARMul_WriteByte 14-9
ARMul_WriteWord 14-9
ARMulator signals 14-18
co-processor modelling 14-12
environment 14-2
event handling 14-18
high speed memory interface 14-6
instruction-based 14-6
low level monitor 14-16
memory models 14-6
mode numbers 14-17
modelling an operating system or low-level

monitor 14-16
operating system model 14-16
pure 14-9
rapid prototype memory model 14-10
signals 14-18
the ARM Debug Monitor 14-19

Attributes
32-bit PC 21-17
absolute 21-15, 21-16, 21-18, 21-23, 21-25
based 21-18
case insensitive reference 21-23
code 21-16, 21-17, 21-18, 21-24
code datum 21-24
common 21-24
debugging table 21-17
no software stack check 21-17
position independent 21-17
read only 21-17
reentrant 21-17
shared library stub data 21-18
simple leaf function 21-24, 21-25
strong 21-23, 21-25
weak 21-23, 21-25
zero-initialised 21-16

B
Based area relocation 21-21
Based attribute 21-18
Big-endian

AOF 21-10
Binary format 6-2, 6-16, 6-18
Break/Watch-Point Inquiry 22-9
Breakpoint 22-3, 22-6, 22-7, 22-27, 22-28
BSD Unix library 2-48
Building a target-specific library 15-6
Byte sex 21-10

C
C

ANSI C library 2-24, 2-48, 15-2
ANSI C vs K&R 2-42
ANSI vs K&R 2-37
arithmetic 2-34, 2-43
arrays 2-44
byte ordering 2-39
character set 2-45
const 2-43
declarations 2-44
environment 2-37
expression 2-33
expressions 2-40, 2-41, 2-43, 2-44
function argument evaluation 2-22
function-argument evaluation 2-41
fundamental data types 2-37
identifiers 2-44
issues with topcc 11-4
lexical elements 2-42
library functions 2-33
little-endian 2-39
minimal stand alone run time library 15-2
pcc compatibility mode 2-37, 2-47
pointers and pointer arithmetic 2-40
portability 2-5, 2-12, 2-14, 2-24, 2-37
preprocessing directives 2-45
preprocessor 2-42, 2-45
recommended texts 2-2
registers 2-43

Index

Reference Manual
ARM DUI 0020D

Index-9

signed 2-43
standard headers and libraries 2-33, 2-48
statements 2-44, 2-45
store alignment 2-39
system-specific code 2-41
translation 2-42, 2-45
unions 2-42, 2-44
Validation Suite 2-3
void 2-43
volatile 2-43

C calling conventions 19-14
C function entry 19-2, 19-16, 19-17, 19-18,

19-19, 19-20
C function exit 19-12, 19-19, 19-22
C library

_clock_init 15-10
address space model 15-8
ANSI library functions 15-10
ANSI vs BSD 2-48
backtrace variants 15-8
basic choices 15-8
building 15-6
BYTESEX_EVEN 15-6
BYTESEX_ODD 15-6
clock_t 15-10
config.h 15-6
details of target-dependent code 15-10
divide variants 15-7
floating point emulator 15-4, 15-6, 15-7
floating point support 15-12
fp_type variants 15-7, 15-12
getenv 15-10
getenv_init 15-10
hostsys.h 15-5, 15-10
I/O model 15-9
I/O Support 15-10
kernel 15-13
makedefs 15-5
makemake 15-4, 15-6
memcpy variants 15-7
miscellaneous 15-14
options 15-5
remove 15-10
rename 15-10

retargetting 15-4, 15-5, 15-7
semi-hosted 15-4
source organisation 15-4
stack variants 15-8
stdfile_redirection variants 15-7
system 15-10
target-dependent code 15-10
time 15-10
variant selection 15-5

Callee saves standard 19-11
Case insensitive reference attribute 21-23
CCFromHostReply 22-39
CCToHostReply 22-39
Chunk file format 21-11
Code attribute 21-16, 21-17, 21-18, 21-24
Code datum attribute 21-24
Command 8-2
Common attribute 21-24, 21-25
Condition flags 4-5, 4-10, 4-22
Conditional execution 4-5, 4-20
Co-processor instructions 4-21

data operations 4-21
data transfers 4-21
register transfers 4-22

Co-processor interfacing 14-4
Co-processor Modelling 14-12
CVS 2-3

D
Daylight saving time 2-35
Debug initialisation instruction 21-7
Debug Monitor 14-19

PIE implementation 17-8
PIE LEDs 17-8, 17-9
semi-hosted C library 17-2
stacks 17-3
standard SWIs 17-4
target memory map 17-3
top of memory 17-3
vectors 17-3

Debuggee address space 22-41
Debuggee to debugger messages 22-23, 22-

39

Index

Reference Manual
ARM DUI 0020D

Index-10

Debugger to debuggee messages 22-23, 22-24
Debugging data items 21-34, 21-35

array 21-41
begin naming scope 21-44
bitfield 21-44
end naming scope 21-44
endproc 21-33, 21-39
enumeration 21-43
fileinfo 21-33, 21-45
function declaration 21-43
label 21-40
macro definition item 21-44
macro undefinition item 21-45
procedure 21-33, 21-39
section 21-32, 21-33, 21-36
set 21-43
struct 21-41
subrange 21-42
text names in items 21-36
type 21-41
variable 21-40

Debugging table attribute 21-17
decaof

command line options 10-2
Demon 14-19
Demon see Debug Monitor
Directives 3-11

! 3-14
3-12
% 3-11
* 3-18
] 3-24
^ 3-12, 4-13
| 3-24
ABS 3-8, 4-27
ALIGN 3-7, 3-16
AREA 3-7
ASSERT 3-14
CN 3-18
CP 3-18
DCB 3-11
DCD 3-11
DCFD 3-11
DCFS 3-11
DCW 3-11

ELSE 3-24
END 3-10, 3-12
ENDIF 3-24
ENTRY 3-16
EQU 3-18
EXPORT 3-13
FN 3-18
GBL 3-8, 3-15, 3-18
GET 3-3, 3-12, 3-13
IF 3-24
IMPORT 3-13
INCLUDE 3-3, 3-13
KEEP 3-13
LCL 3-8, 3-15, 3-18
LTORG 3-13
MACRO 3-25
MEND 3-15, 3-25
MEXIT 3-25
NOFP 3-16
NOP 4-20
OPT 3-15, 3-19
ORG 3-8, 3-12
RLIST 3-16, 4-15
RN 3-18
ROUT 3-9
SET 3-8, 3-15, 3-19
SUBT 3-16
TTL 3-16
WEND 3-24
WHILE 3-24

Dynamic linking 6-19

E
EmbeddedICE 7-4, 18-2
Emulation

cycle accurate 14-2
instruction accurate 14-2
timing accurate 14-2

Endian-ness 21-10, 21-12, 21-14
Endian-ness (ALF) 21-27, 21-30
Entry point 3-16, 6-8, 6-17, 6-22, 6-27
Entry veneers 6-21

initial values 6-22
patching 6-22

Index

Reference Manual
ARM DUI 0020D

Index-11

Error codes (RDI) 22-18
Error codes (RDP) 22-42
Executable AIF 21-2, 21-5
execution regions 6-41

F
Feedback 1-4
File naming conventions 2-5
Floating point emulator 15-4, 15-6, 15-7
Floating point instructions 3-16, 4-22

binary data operations 4-26
comparisons 4-25
data transfers 4-23
multiple data transfers 4-24
register transfers 4-23, 4-24
unary data operations 4-27

Floating point support 2-56, 15-12
Forever binary property 21-24
Foreverness 6-24

I
Identification chunk 21-25
IEEE 754 2-28
IEEE 754 F.P. standard 4-23, 4-25
Image debug type 21-5
Image ReadOnly size 21-5
Including Data Areas in a Shared Library 6-21
Instruction set, see also ARM instruction set,

Floating point instructions,Co-proc-
essor instructions 4-2

Intellec Hex format 6-5, 6-18
Inter-link-unit 19-4, 19-9, 19-17
Interrupt Execution 22-38
Intra-link-unit 19-9, 19-17

L
Layout of AIF 21-4
Layout of AIF header 21-5
Library file format see ALF

Library module inclusion 6-10
Little-endian

AOF 21-10
Load Configuration Message 22-38
Load Debug Agent 22-38
load regions 6-41

M
Macros

predefined 2-46
makemake 15-4, 15-6

N
Non-executable AIF 21-2, 21-5
Non-reentrant 19-13
NOP 5-17

O
Object code libraries see ALF
Object file (see also AOF) 21-10
Object file format see AOF
Object file type 21-14
Object libraries 6-2
Overlays 6-2, 6-28

assigning AREAs to overlay segments 6-
30

check_for_invalidated_returns 6-39
description for the linker 6-31
dynamic 6-6, 6-29
generation by armlink 6-6
generation by linker 6-6
Image$$load_seg 6-34
intercepting returns to overwritten seg-

ments 6-37
invalidated_returns 6-35
load_seg_and_go 6-33
load_seg_and_ret 6-33, 6-38
load_segment 6-33, 6-35
manager 6-6, 6-32

Index

Reference Manual
ARM DUI 0020D

Index-12

PCIT structure 6-33
procedure call indirection table (PCIT) 6-32
relocation directives 6-29
static 6-28

P
PC-relative relocation 21-21
PIE 15-4, 17-3, 17-9
Plain binary format 6-2, 6-16, 6-18
Platform Independent Evaluation (PIE) 15-4
Platform Independent Evaluation (PIE) card) 22-

21
Platform Independent Evaluation card 17-3, 17-

9
Plum-Hall C Validation Suite 2-3
Position independent attribute 21-17
Pragmas

code generation control 2-52
on the command line 2-50
optimisation control 2-52
pragmas controlling code generation 2-52
pragmas controlling optimisation 2-52
pragmas controlling printf/scanf argument

checking 2-51
pragmas controlling the preprocessor 2-50
preprocessor control 2-50
printf/scanf argument checking 2-51
specifying pragmas from the command line

2-50
Predefined macros 2-46
Profiler 8-1
Program exit instruction 21-6
Properties of AIF 21-2

R
RDI 22-2

add config block 22-3, 22-10
clear breakpoint 22-3, 22-7
clear watchpoint 22-3, 22-8
close and finalise debuggee 22-3, 22-4
error codes 22-18
execute 22-3, 22-9

function summary 22-3
get CPU names 22-3, 22-11
Get Driver Names 22-3, 22-11
get error messages 22-3, 22-11
information passing errors 22-19
internal faults 22-19
load config block 22-3, 22-10
load debug agent 22-4, 22-11
miscellaneous info 22-4, 22-11
misuse of RDI 22-19
multiple step 22-3, 22-9
open and/or initialise debuggee 22-3, 22-4
RDI functions 22-3
RDI_Vector_Catch 22-13
RDIInfo_Points 22-12
RDIInfo_Step 22-13
RDIInfo_Target 22-12
read co-processor state 22-3, 22-5
read CPU state 22-3, 22-5
read memory address 22-3, 22-4
select config block 22-3, 22-10
set breakpoint 22-3, 22-6
set watchpoint 22-3, 22-7
write co-processor state 22-3, 22-6
write CPU state 22-3, 22-5
write memory address 22-3, 22-4

RDI_DescribeCoPro 22-16
RDI_Profile_WriteMap 22-17
RDI_RequestCoProDesc 22-17
RDICommsChannel_FromHost 22-16
RDICommsChannel_ToHost 22-16
RDIErrorP 22-16
RDIICEBreaker_GetLoadSize 22-15
RDIICEBreaker_GetLocks 22-15
RDIICEBreaker_SetLocks 22-15
RDIInfo_CoPro 22-14
RDIInfo_Icebreaker 22-14
RDIInfo_Log 22-17
RDIInfo_MMU 22-14
RDIInfo_SemiHosting 22-14
RDIInfo_SetLog 22-17
RDIMemory_Access 22-14
RDIMemoryMap 22-14
RDIPointStatus_Break 22-15
RDIPointStatus_Watch 22-15

Index

Reference Manual
ARM DUI 0020D

Index-13

RDIProfile_ClearCounts 22-17
RDIProfile_ReadMap 22-17
RDIProfile_Start 22-17
RDIProfile_Stop 22-17
RDIRead_Clock 22-14
RDISemiHosting_GetState 22-15
RDISemiHosting_GetVector 22-15
RDISemiHosting_SetState 22-15
RDISemiHosting_SetVector 22-15
RDISet_CmdLine 22-16
RDISet_CPUSpeed 22-14
RDISet_RDILevel 22-13, 22-16
RDISet_Thread 22-14, 22-16
RDISignal_Stop 22-15
RDP

clear breakpoint message 22-28
clear watchpoint message 22-29
close and finalise message 22-24
comms channel from host message 22-

40
comms channel to host message 22-40
debuggee status error codes 22-42
debuggee to debugger messages 22-23,

22-39
debugger to debuggee messages 22-23,

22-24
error codes 22-42
execute message 22-30
fatal message 22-40
info message 22-31, 22-41
informational errors 22-43
internal faults 22-43
message summary 22-23
minimum support 22-41
misuse of RDI errors 22-44
open and/or initialise message 22-24
OS operation reply message 22-37
OS operation request message 22-40
read co-processor state message 22-26
read CPU state message 22-25
read memory address message 22-24
reset message 22-39, 22-41
return message 22-22, 22-30, 22-31, 22-

34, 22-39, 22-41

set breakpoint message 22-27
set watchpoint message 22-28
step message 22-31
stopped message 22-34, 22-39
write co-processor state message 22-26
write CPU state message 22-26
write memory address message 22-25

Read only attribute 21-17
reconfig

armasm options 12-4
armcc options 12-3
armlink options 12-7
armsd options 12-6
command line mode 12-9
on screen mode 12-8
tasm options 12-5
usage 12-8

Reentrant 19-13
Reentrant attribute 21-17
Register marshalling 19-14
Register names 19-3
Register usage 19-2, 19-4
Release components 1-3, 14-3
Relocatable object format 21-14
RelocateOnly 21-8, 21-9
Relocation directives 6-15, 21-15, 21-19

additive 6-14
based area 6-14
dynamic overlays 6-29
handling 6-13
instruction sequences 6-14
inter-link-unit 6-13
intra-link-unit 6-13
PC-relative 6-13, 6-16
subject field 6-13
value 6-13

Remote Debug Interface see RDI
Remote Debug Protocol see RDP
Retargetable libraries 1-3

Thumb 1-3
Retargetting the library 15-7

Index

Reference Manual
ARM DUI 0020D

Index-14

S
scatter loading 6-41

description format 6-42
Select Configuration Message 22-38
Self-decompressing 21-3
Self-move 21-3, 21-7
Self-relocation 21-3, 21-4, 21-6, 21-7
Semi-hosted C library 17-2
semi-hosted C library 15-4
semihosting 7-41
Shared library format 6-18

addressing architecture 6-20
compatibilty 6-24
description for the linker 6-26
entry veneers, see Entry veneers
forever binary 6-25
foreverness 6-19, 6-24
including data 6-21
link unit 6-20
stub properties 6-18
versions 6-24

Shared library stub data attribute 21-18
Simple leaf function attribute 21-24, 21-25
Software interrupts 14-5
Stack backtrace 19-7, 19-8, 19-16, 19-17, 19-20
Stack conventions 19-2
String table chunk 21-25
Strong attribute 21-23, 21-25
stub functions 22-21
SWIs under the Debug Monitor 17-4

SWI_CLI 17-4
SWI_Clock 17-4
SWI_Close 17-6
SWI_EnterOS 17-4
SWI_Exit 17-4
SWI_Flen 17-6
SWI_GenerateError 17-7
SWI_GetEnv 17-4
SWI_GetErrno 17-4
SWI_InstallHandler 17-6
SWI_IsTTY 17-6
SWI_Open 17-5
SWI_Read 17-6
SWI_ReadC 17-4

SWI_Remove 17-5
SWI_Rename 17-5
SWI_Seek 17-6
SWI_Time 17-4
SWI_TmpNam 17-6
SWI_Write 17-6
SWI_Write0 17-4
SWI_WriteC 17-4

Symbol attributes (see also Attributes) 21-23,
21-25

Symbol table chunk 21-15, 21-20, 21-22, 21-25

T
Target memory map 17-3
THUMB

floating-point support 2-56
retargetable libraries 1-3

Thumb
instruction set 5-2

topcc
command line options 11-2
issues 11-4
translation details 11-3

W
warning message control 2-12, 2-13
Watchpoint 22-3, 22-7, 22-8, 22-28, 22-29
Weak attribute 21-23, 21-25

Z
Zero-initialisation code 21-7
Zero-initialised attribute 21-16

