
B
et

a
D

ra
ft

ARM Software Development Toolkit
ENGLAND
Advanced RISC Machines Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
England
Telephone:+44 1223 400400
Facsimile:+44 1223 400410
Email:info@armltd.co.uk

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone:+49 (0) 89 608 75545
Facsimile:+49 (0) 89 608 75599
Email:info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone:+81 44 850 1301
Facsimile:+81 44 850 1308
Email:info@armltd.co.uk

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone:+1 408 399 5199
Facsimile:+1 408 399 8854
Email:info@arm.com

World Wide Web Address: http://www.arm.com

Document Number: ARM DUI 0041B
Issued: June 1997

Copyright Advanced RISC Machines Ltd (ARM) 1997

Reference
Guide

Version 2.11

Proprietary Notice
Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.
Reference Manual
ARM DUI 0041B

ii

B
et

a
D

ra
ft

The product described in this document is subject to continuous developments and improvements. All particulars of
the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded.
This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss
or damage arising from the use of any information in this document, or any error or omission in such information, or
any incorrect use of the product.
Trademarks
ARM, the ARM Powered logo, and EmbeddedICE are trademarks of Advanced RISC Machines Ltd.
Windows 95 is a registered trademark of Microsoft Corporation.
Windows NT is a trademark of Microsoft Corporation.

Change Log
Issue Date By Change
A Jan 97 BJH Created from ARM DUI 0020; includes major updates for SDT 210.
B June 97 BJH Updated for SDT 211.

Preface-iiiReference Guide
ARM DUI 0041B

This preface introduces the ARM Software Development Toolkit and its documentation.

About This Manual iv
Typographical Conventions v
Release Components vi
Feedback vii

Preface

Preface
About This Manual

Overview
Preface-iv Reference Guide
ARM DUI 0041B

This manual covers the following topics:

• the components of the ARM Software Development Toolkit

• reference information on each of the ARM Software Tools

• procedure call standards

• file formats

Note This manual does not cover device-specific issues. Please refer to the appropriate ARM
device datasheet.

Organization

This Reference Guide is organized into the following parts:

Part 1 Toolkit Reference
Gives reference information on the individual tools in the toolkit.
For example: file-naming conventions, command-line options, variables,
procedure call standards, and utilities.

Part 2 Debug Reference
Gives reference information on ARM’s debugging tools.
For example: Angel, ARMulators, and ARM Symbolic Debugger.

Part 3 File Format Reference
Gives information on the file formats in use in the toolkit.
For example: ARM Object Format, ARM Image Format, ARM Object
Library Format, ELF.

Preface
Typographical Conventions

Typographical conventions
Preface-vReference Guide
ARM DUI 0041B

The following typographical conventions are used in this manual:

typewriter Denotes text that may be entered at the keyboard:
commands, file and program names, and assembler
and C source.

typewriter Denotes a permitted abbreviation for a command or
option. The underlined text may be entered instead of
the full command or option name.

typewriter-italic Shows text which must be substituted with
user-supplied information. This is most often used in
syntax descriptions.

Oblique Highlights important notes and ARM-specific
terminology.

Filenames

Unless otherwise stated, filenames are quoted in MS-DOS format, for example:

EXAMPLES\BASICASM\GCD1.S

If you are using the UNIX platform, you must translate them into their UNIX equivalent:

examples/basicasm/gcd1.s

Thumb Boxes like this contain information that applies specifically to Thumb-aware variants of
the ARM Software Development Toolkit.

Preface
Release Components

Programming and modeling tools
Preface-vi Reference Guide
ARM DUI 0041B

The following tools are described in full in the relevant chapters of this manual. Please note
that your release of the Toolkit may not include all the tools mentioned below; see the
Release Notes for a definitive list of the tools supplied with your release.

Retargetable libraries

Three retargetable libraries are supplied:

• The ARM ANSI C library, supplied in both source form and as an object library.

• The ARM embedded C library, supplied in both source form and as an object
library.

For further information see Chapter 4, Rebuilding the C Library .

armcc The ARM C compiler See Chapter 1, C Compilers

tcc The Thumb C compiler See Chapter 1, C Compilers

armasm The ARM assembler See Chapter 2, Assembler

tasm The Thumb assembler See Chapter 2, Assembler

armlink The ARM linker See Chapter 3, Linker

decaof The ARM–Thumb object-file decoder/
disassembler

See Chapter 7, Toolkit Utilities

decaxf The ARM Executable format decoder. See Chapter 7, Toolkit Utilities

armlib The ARM object-file librarian See Chapter 7, Toolkit Utilities

armsd The ARM command-line debugger See Chapter 10, ARM Debugger

Thumb The Thumb 16-bit ANSI C library is provided as an object library in both little-endian and
big-endian forms.

Preface
Feedback

Feedback on the ARM Software Development Toolkit
Preface-viiReference Guide
ARM DUI 0041B

If you have comments or suggestions about the ARM Software Development Toolkit, please
contact your supplier, giving:

• details of which platform and release of the ARM software tools you are using

• a small sample code fragment which illustrates your comment

• precise description of your comment or suggestion

Feedback on this manual

If you have feedback on this manual, please contact your supplier, giving:

• the manual’s title

• the manual’s document number

• the page number(s) to which your comments refer

• a concise explanation of the comment

General suggestions for additions and improvements are also welcome.

Reference Guide
ARM DUI 0041B

Contents-i

Preface iii

Part 1: Tools Reference

1 C Compilers 1-1
1.1 Introduction 1-2
1.2 About the ARM C Compilers 1-3
1.3 File Usage 1-4
1.4 Command Syntax 1-7
1.5 Implementation Details 1-20
1.6 Standard Implementation Definition 1-27
1.7 C Language Extensions 1-40
1.8 Inline Assembler 1-41
1.9 Compiler-specific Features 1-46

Contents

Contents
2 Assembler 2-1

2.1 Overview 2-2
2.2 Command Syntax 2-2
Reference Guide
ARM DUI 0041B

Contents-ii

2.3 Assembly Language Overview 2-6
2.4 Expressions and Operators 2-13
2.5 Directives 2-17
2.6 Symbolic Capabilities 2-23
2.7 Conditional Assembly: [, | and] 2-25
2.8 Repetitive Assembly: WHILE and WEND 2-26
2.9 Macros 2-26

3 Linker 3-1
3.1 Introduction 3-2
3.2 Command Syntax 3-4
3.3 Library Module Inclusion 3-12
3.4 Area Placement and Sorting Rules 3-13
3.5 Linker Predefined Symbols 3-14
3.6 Handling Relocation Directives 3-16
3.7 Automatic Inclusion of C libraries 3-19

4 Rebuilding the C Library 4-1
4.1 Introduction to the Runtime Libraries 4-2
4.2 Constructing a Makefile 4-4
4.3 Building a Target-specific Library 4-5
4.4 Retargeting the Library 4-6
4.5 Details of Target-dependent Code 4-9

5 ARM Procedure Call Standard 5-1
5.1 Introduction 5-2
5.2 Defining the APCS 5-3
5.3 APCS Variants 5-11
5.4 C Language Calling Conventions 5-13
5.5 Function Entry 5-15
5.6 The APCS in Non-user ARM Modes 5-23

6 Thumb Procedure Call Standard 6-1
6.1 Introduction 6-2
6.2 Register Names 6-3
6.3 The Stack 6-4
6.4 Control Arrival and Return 6-5
6.5 C Language Calling Conventions 6-7
6.6 Function Entry 6-8
6.7 Function Exit 6-10

Contents
7 Toolkit Utilities 7-1

7.1 Introduction 7-2
7.2 ARM Profiler 7-3
Reference Guide
ARM DUI 0041B

Contents-iii

7.3 ARM Librarian 7-6
7.4 ARM Object Format Decoder 7-7
7.5 ARM Executable Format Decoder 7-8
7.6 ANSI to PCC C Translator 7-9

Part 2: Debug Reference

8 Angel 8-1
8.1 Introduction 8-2
8.2 Structure 8-2
8.3 Angel C Library Support (SWIs) 8-3
8.4 ROM Applications and Late Debugger Start-up 8-8
8.5 Breakpoints and Undefined Instructions 8-9
8.6 Communications Architecture for Angel 8-10
8.7 Reliability and Retransmission 8-12
8.8 Channels Layer and Buffer Management 8-16
8.9 Device Driver Layer 8-20
8.10 Support for user application devices 8-28
8.11 Fusion IP stack for Angel 8-34
8.12 Serialization, Stacks and Modes 8-38

9 ARMulator 9-1
9.1 About the ARMulator 9-2
9.2 Modelling an ARM-based System 9-2
9.3 Basic Model Interface 9-4
9.4 Memory Model Interface 9-5
9.5 Coprocessor Model Interface 9-10
9.6 Operating System or Low-level Monitor Interface 9-13
9.7 Accessing the ARMulator’s State 9-15
9.8 Accessing the Debugger 9-26
9.9 Events 9-28

10 ARM Debugger 10-1
10.1 Command Language 10-2
10.2 Command-line Options 10-4
10.3 Commands Overview 10-6
10.4 Commands List 10-10
10.5 Specifying Source-level Objects 10-25
10.6 Variables 10-29
10.7 Low-level Debugging 10-33
10.8 armsd commands for EmbeddedICE 10-35
10.9 Angel and armsd 10-36

Contents
11 Remote Debugging 11-1

11.1 ARM Remote Debug Interface 11-2
11.2 RDI Functions 11-3
Reference Guide
ARM DUI 0041B

Contents-iv

11.3 Error Codes 11-19
11.4 Angel Debug Protocol (ADP) 11-21

Part 3: File Format Reference

12 ARM Image Format 12-1
12.1 Overview of ARM Image Format 12-2
12.2 AIF Flavors 12-3
12.3 The Layout of AIF 12-6
12.4 Zero-initialization code 12-10

13 ARM Object Library Format 13-1
13.1 Overview of ARM Object Library Format 13-2
13.2 Endianness and Alignment 13-3
13.3 Library File Format 13-4
13.4 Time Stamps 13-6
13.5 Object Code Libraries 13-7

14 ARM Object Format 14-1
14.1 ARM Object Format 14-2
14.2 Overall Structure of an AOF File 14-5
14.3 Format of the AOF Header Chunk 14-8
14.4 Attributes and Alignment 14-11
14.5 Format of the AREAS Chunk 14-14
14.6 Relocation Directives 14-15
14.7 Symbol Table Chunk Format (OBJ_SYMT) 14-18
14.8 The String Table Chunk (OBJ_STRT) 14-21
14.9 The Identification Chunk (OBJ_IDFN) 14-21

15 ARM Symbolic Debug Table Format 15-1
15.1 Overview of ARM Symbolic Debug Table Format 15-2
15.2 Order of Debugging Data 15-3
15.3 Representation of Data Types 15-4
15.4 Section Items 15-7
15.5 Procedure Items 15-9

16 ELF File Format 16-1
16.1 Overview of ELF File Format 16-2
16.2 Generic ELF File Layout 16-4
16.3 Scatter-loaded Executables 16-8

Contents
17 Other File Formats 17-1

17.1 Plain Binary Format 17-2
17.2 Extended Intellec Hex Format (IHF) 17-2
Reference Guide
ARM DUI 0041B

Contents-v

Index Index-1

Tools Reference

1-1Reference Guide
ARM DUI 0041B

This chapter describes the ARM and Thumb C compilers.

1.1 Introduction 1-2
1.2 About the ARM C Compilers 1-3
1.3 File Usage 1-4
1.4 Command Syntax 1-7
1.5 Implementation Details 1-20
1.6 Standard Implementation Definition 1-27
1.7 C Language Extensions 1-40
1.8 Inline Assembler 1-41
1.9 Compiler-specific Features 1-46

C Compilers1

C Compilers
1.1 Introduction

This chapter includes the reference information you need to make effective use of the ARM
C system. For an introduction to compiling and linking an ARM C program, see the Software
1-2 Reference Guide
ARM DUI 0041B

Development Toolkit User Guide (ARM DUI 0040).

Note This chapter is not intended to be an introduction to C and does not try to teach
programming in C, nor is it a reference manual for the C standard.

1.1.1 Recommended texts

C programming guides

Because the ARM C compiler is a compiler for ANSI C, the following books are especially
relevant:

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language
(2nd edition, 1988). Prentice-Hall, Englewood Cliffs, NJ, USA.
ISBN 0-13-110362-8.
This is the original C bible, updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.
This is a very thorough reference guide to C, including a useful amount of
information on ANSI C.

• Koenig, A, C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass.
ISBN 0-201-17928-8.
This explains how to avoid the most common traps and pitfalls in C programming.
It provides informative reading at all levels of competence in C.

ANSI C reference

• ISO/IEC 9899:1990, C Standard.
This is available from ANSI as X3J11/90-013. The standard is available from
the national standards body (eg. AFNOR in France, ANSI in the USA).

C Compilers
1.2 About the ARM C Compilers

The ARM C compiler compiles both ANSI C and the dialect of C used by Berkeley UNIX.

Wherever possible, it adopts widely-used command-line options which are familiar to users
1-3Reference Guide
ARM DUI 0041B

of both UNIX and DOS.

1.2.1 Compiler variants

There are two variants of the ARM C compiler:

armcc compiles C source into 32-bit ARM code

tcc compiles C source into 16-bit Thumb code

As they have the same basic front end, the descriptions in this chapter apply to both.
Where tcc has added features or restrictions, these are dealt with in Thumb-specific
sections.

Note If you want to link compiled ARM and Thumb code together, refer to the Software
Development Toolkit User Guide (ARM DUI 0040).

1.2.2 Source language modes

By default, the ARM C Compiler compiles ANSI C as defined by ISO/IEC
9899:1990–C Standard

ANSI mode

In ANSI mode, the ARM C compiler has been tested against release 7.00 of the Plum-Hall
C Validation Suite (CVS) which has been adopted by the British Standards Institute for
C compiler validation in Europe. In the language conformance sections of the CVS, it differs
in only two trivial ways; both relate to producing the required diagnostics:

• an empty initializer for an aggregate of complete type is not diagnosed.
For example:

int x[3] = {};

• a signed integer constant overflow is not treated as an error, but merely warned of.
For example:

case INT_MAX+1: ...

The ANSI command-line option is described on page 1-9.

pcc mode

Select pcc mode from the compiler’s command line to accept the dialect of C used by
Berkeley UNIX. This is described on page 1-9.

C Compilers
1.3 File Usage

This section introduces some key concepts.
1-4 Reference Guide
ARM DUI 0041B

1.3.1 Naming conventions

The ARM C system uses suffix-naming conventions to identify the classes of file involved in
the compilation and linking processes:

.c C source file

.h C header file

.o ARM object file

.s ARM or Thumb assembly language

.lst compiler listing file

For example, testfile.c names the C source of the file called testfile .

Many host systems support suffix-naming conventions (UNIX, MS-DOS), so the names
used by the C system on the command line, and as arguments to the C preprocessor
#include directive, map directly to host filenames.

Portability

The ARM C system supports the use of multiple filenaming conventions on one host.
In general, follow these guidelines:

• restrict the name of a file or directory to a maximum of eight lowercase letters and
digits, beginning with a letter

• ensure that extensions are no more than three letters and digits in length

• make embedded pathnames relative, rather than absolute

In each environment, the ARM C system supports:

• native filenames

• pseudo UNIX filenames, which have the format:

host-volume-name :/ rest-of-unix-file-name

• UNIX filenames

Names are parsed as follows:

• a name starting with volume-name :/ is a pseudo UNIX filename, otherwise

• a name containing / is a UNIX filename, otherwise

• the name is a host name

This filename interpretation succeeds only if you adhere to certain rules, such as filename
length.

C Compilers
1.3.2 Specifying keyboard input

Specifying - (minus) as the source filename takes input from the keyboard. It is terminated
by entering Ctrl D.
1-5Reference Guide
ARM DUI 0041B

At the end of each C function, an assembly listing for the function is sent to the output
stream.

1.3.3 Filename validity

The compiler does not check whether filenames given are acceptable to the host’s filing
system. If a filename is not acceptable, the compiler reports that the file could not be
opened, but gives no further diagnosis.

1.3.4 Object files

By default, the object file(s) created by the compiler are stored in the current directory.

A C source file (file.c) is compiled into an object file (file.o) written in ARM Object
Format (AOF). AOF is defined in 14.1 ARM Object Format on page 14-2.

1.3.5 Included files

During a compilation, the compiler may read included header files, conventionally given
a .h suffix, or included C source files, usually given a .c suffix.

A special feature of the ARM C system is that the ANSI library headers are built into the
C compiler (in a special, textually-compressed, in-memory filing system) and are used from
there by default. Placing a filename in angle brackets indicates that the included file is
a system file and ensures that the compiler looks first in its built-in filing system:

#include <stdio.h>

Enclosing a filename in double quotes in the #include directive indicates that it is not
a system file. In this example, the ARM C compiler looks for the specified file in the current
directory, by default:

#include "myfile.h"

The way the compiler looks for included files depends on three factors:

• whether the filename is an absolute filename, rather than a relative filename

• whether the filename is between angle brackets or double quotes

• use of the -I and -j flags and the special directory name :mem

The current place

The current place is the directory containing the source file (C source or #include header)
currently being processed by the compiler. This is often the current directory.

When a file is found relative to an element of the search path, the name of the directory
containing that file becomes the new current place. When the compiler has finished

C Compilers
processing that file, it restores the previous current place. At each instant, there is a stack of
current places corresponding to the stack of nested #include directives.

For example, suppose that the current place is \me\include and the compiler is seeking
1-6 Reference Guide
ARM DUI 0041B

the #include file sys\defs.h . This is found as:

\me\include\sys\defs.h

The new current place is now \me\include\sys and any file #included by defs.h ,
whose name is not absolute, is sought relative to \me\include\sys .

This is the search rule used by Berkeley UNIX systems.

If required, the stacking of current places can be disabled with the compiler option -fK ,
which makes the compiler use the search rule described originally by Kernighan and Ritchie
in The C Programming Language. Under this rule, each non-rooted user include is sought
relative to the directory containing the source file being compiled.

The search path

The order of directories on the search path is:

1 the compiler’s own in-memory filing system (for filenames enclosed in angle
brackets, but only if the -j flag is not used)

2 the current place (see above) (not for filenames enclosed in angle brackets)

3 arguments to -I flags, if used (for filenames enclosed in angle brackets or double
quotes)

4 arguments to the -j flag, if used (for filenames enclosed in angle brackets or
double quotes)

5 the compiler’s own in-memory filing system (for filenames enclosed in angle
brackets, but only if the -j flag is used)

C Compilers
1.4 Command Syntax

The general form of the command for invoking the C compiler is one of:

armcc options sourcefile
1-7Reference Guide
ARM DUI 0041B

tcc options sourcefile

By default, the C compiler looks for source files, and creates object, assembler, and listing
files in the current directory.

Many aspects of the compiler’s operation can be controlled using command-line options.
All options are prefixed by a minus sign, and some options are followed by an argument.
Whenever this is the case, the ARM C compiler allows space between the flag letter and
the argument.

Note This is not always true of other C compilers, so the following descriptions show the form that
would be acceptable to a UNIX C compiler. They also show the case of the letter that would
be accepted by a UNIX C compiler.

The command-line options are divided into the following subsections, so that options
controlling related aspects of the compiler’s operation are grouped together:

• using the ARM Procedure Call Standard (APCS)

• controlling the linker

• selecting processors

• using preprocessor flags

• controlling code generation

• controlling warning messages

• suppressing error messages

• controlling additional compiler features

Getting help

The -help option gives a summary of the compiler’s command-line options.

1.4.1 APCS command-line options

You use the following command-line option to specify which variant of the ARM Procedure
Call Standard (APCS) is to be used by the compiler.

-apcs [3] quals

Notes

• There must be a space between -apcs and the first qualifier.

• At least one qualifier must be present, and there must be no space between
qualifiers. The qualifiers are listed on the next page.

C Compilers
APCS qualifiers

Thumb The options marked with a * are not applicable to Thumb.
1-8 Reference Guide
ARM DUI 0041B

APCS variants

/26bit * 26-bit APCS variant.

/32bit * 32-bit APCS variant.

/reentrant * Re-entrant APCS variant.

/nonreentrant * Non re-entrant APCS variant.

Stack checking

/swstackcheck Software stack-checking APCS variant.
This is the default for ARM.

/noswstackcheck No software stack-checking APCS variant.
This is the default for Thumb.

Frame pointers

/fp * Use a dedicated frame-pointer register.

/nofp * Do not use a frame-pointer.

Floating-point compatibility

/fpe2 * Floating-point emulator 2 compatibility.

/fpe3 * Floating-point emulator 3 compatibility.

/fpregargs * Floating-point arguments passed in floating-point registers.

/nofpregargs * Floating-point arguments are not passed in floating-point
registers.

/softfp * Call software floating-point library functions.

Note: This is the default for ARM and the only floating-point
method available for Thumb.

/hardfp * Generate ARM coprocessor instructions for floating-point
(may also specify fpe2 /fpe3 and fpr /nofpr).

ARM/Thumb interworking

/interwork Compile code for ARM/Thumb interworking.
See the Software Development Toolkit User Guide.

/nointerwork Do not compile code which is suitable for ARM/Thumb
interworking. This is the default.

C Compilers
Narrow parameters

/wide For functions with parameters of narrow type (char, short,
float), this option applies the default argument promotions to
1-9Reference Guide
ARM DUI 0041B

1.4.2 Setting endianness

1.4.3 Setting the source language

its corresponding actual arguments (passing them as int or
double). This is known as callee-narrowing, and is the default.

/narrow For functions with parameters of narrow type (char, short,
float), this option converts the corresponding actual
arguments to the type of the parameter. This is known as
caller-narrowing, and it requires that all calls be within the
scope of a declaration containing a prototype.

- bigend Compiles code for an ARM operating with big-endian memory (most
significant byte has lowest address).

- littleend Compiles code for an ARM operating with little-endian memory (least
significant byte has lowest address). This is the default.

-ansi Compiles ANSI standard C (on by default).

-fc Enables the “limited pcc” option, designed to support the use of
pcc-style header files in an otherwise strict ANSI mode (for example,
when using libraries of functions implemented in old-style C from an
application written in ANSI C). This allows characters after #else and
#endif preprocessor directives (which are ignored).
The “limited pcc” option also supports system programming in ANSI
mode by suppressing warnings about explicit casts of integers to
function pointers, and permitting the dollar character in identifiers;
linker-generated symbols often contain “$$”, and all external symbols
containing “$$” are reserved to the linker.

-fussy Is extra strict about enforcing conformance to ANSI standard or pcc
conventions (for example, prohibit the volatile qualifier in pcc
mode).

-pcc Compiles (BSD 4.2) portable C compiler C. This dialect is based on
the original Kernighan and Ritchie definition of C, and is the one used
on UNIX systems. The -pcc keyword alters the language accepted by
the compiler, but the built-in ANSI headers are still used.

-pedantic See -fussy .

-strict See -fussy .

C Compilers
1.4.4 Working with files

-errors file Writes the compiler error output to file .
1-10 Reference Guide
ARM DUI 0041B

1.4.5 Search paths

-list Creates a listing file. This consists of lines of source interleaved with
error and warning messages. You can gain finer control over the
contents of this file using the -f flag (see 1.4.15 Miscellaneous
compiler features on page 1-18).

-via file Opens the specified file and reads in more command-line
arguments from it.

-I dir-name Adds the specified directory to the list of places which are searched
for included files (after the in-memory or source file directory). The
directories are searched in the order they are given, by multiple -I
options. See 1.3.5 Included files on page 1-5 for full details.
The in-memory filing system is specified by :mem.

-fk Uses Kernighan and &Ritchie search rules for locating included files
(the current place is defined by the original source file and is not
stacked; see The current place on page 1-5 for details). If you do
not use this option, Berkeley-style searching is used.

-fd Makes the handling of “...” included files the same as <...> included
files. Specifically, the “current place” is excluded from the search
path.

-j dir-list Adds the specified comma-separated list of directories to the end of
the search path (for example, after all directories specified by -I
options), but otherwise works in the same way as -I . It also forces
the compiler to search the in-memory filing system after all other
searches have failed. The in-memory filing system is specified by
:mem.
-j is an ARM-specific flag and is not portable to other C systems.
You cannot have more than one -j option on a command line.
See 1.3.5 Included files on page 1-5 for full details.

C Compilers
1.4.6 Controlling the linker

-c Does not perform the link step. This just compiles the source
1-11Reference Guide
ARM DUI 0041B

1.4.7 Controlling code generation

program(s), leaving the object file(s) in the current directory (or as
directed by the -o flag). Note that this option is different from the -C
(uppercase) option, which is described on page 1-14.

-fe Checks that external names used within the file are still unique when
reduced to six case-insensitive characters. Some linkers support as
few as six significant characters in external symbol names. This can
cause problems with clashes if a system uses two names such as
getExpr1 and getExpr2 , which are only unique in the eighth
character. The check can only be made within a single compilation
unit (source file), so it cannot catch all such problems. Since ARM C
allows external names of up to 256 characters, this is strictly an aid
to portability.

-o file Names the file which holds the final output of the compilation step.
• In conjunction with -c , it gives the name of the object file.
• In conjunction with -S , it gives the name of the assembly

language file.
• Otherwise, it names the final output of the link step.

-Ospace Optimizes to reduce image size at the expense of increased
execution time.

-Otime Optimizes to reduce execution time at the expense of a larger image.

-S Does not generate object code, but the compiler writes a listing of the
assembly language to a file.The filename defaults to file .s in the
current directory (where file .c is the name of the source file
stripped of any leading directory names). The default can be
overridden using the -o flag.

C Compilers
1.4.8 Debug information

-asd Uses asd table format (default).
1-12 Reference Guide
ARM DUI 0041B

Note The effect of -gt<T- options >, -gx<X- options > and -g+ may be combined in the
single command-line argument:

 -g<X-options><T-options>

-dwarf Uses dwarf table format.

-gt letters Specifies which debug tables entries generate source level objects (Debug
tables can be very large, so it can be useful to limit what is included)

-gt All available entries should be generated.

-gtp Tables should not include pre-processor macrodefinitions.
(Ignored if DWARF debug tables are generated, as there is then
no way to describe macros.

-gx letters Specifies the level of optimisation allowed when generating debug tables.

-gx No optimisations

-gxr Unoptimised register allocation

-gxo Full optimisation

Note 1 You must take care with the values of local variables, as many local
variables may occupy the same register and you might get
unexpected values displayed in the debugger.

Note 2 The code generated with -gxo in force is still somewhat degraded
compared with that generated when no debug tables are
generated, as some optimisations normally performed by the
compiler cannot be described within the debug table formats used,
and so are always disabled.

-g+ Switches the generation of debug tables on for the current compilation
(with options as specified by -gt and -gx).

-g- Switches the generation of debug tables off for the current compilation

C Compilers
1.4.9 Processor selection

-processor name Compiles code for the specified processor. The compiler may take
1-13Reference Guide
ARM DUI 0041B

Halfword support

To enable halfword support, use option -architecture 4 or -architecture 4T ,
or specify an appropriate processor using -processor .

advantage of certain features of the selected processor which may
make the code incompatible with other processors; for example,
the use of halfword instructions.

name is the processor number; for example:

ARM2
ARM3
ARM6 (default)
ARM7
ARM7M
ARM7TM
ARM8
StrongARM1

- architecture n Specifies the ARM architecture version that compiled code will
comply with. The options are:

• 3

• 3M

• 4

• 4T

Thumb Specifying a Thumb-aware processor (eg. -processor ARM7TM) to armcc does
not make armcc generate Thumb code. Instead, it generates ARM code which uses
the Architecture 4 halfword load and store ARM instructions. This option is not available
with tcc, as tcc always generates Thumb code.

C Compilers
1.4.10 Preprocessor flags

Note In the following list, * means that the option can be repeated many times.
1-14 Reference Guide
ARM DUI 0041B

-E Executes only the preprocessor phase of the compiler.
The output from the preprocessor is sent to the standard output
stream and can be redirected to a file using the stream redirection
notations common to UNIX and MS-DOS:

toolname -E something.c > rawc

where toolname is either armcc or tcc . By default, comments
are stripped from the output (but see the -C flag, below).

-C Retains comments in preprocessor output when used in
conjunction with -E . Note that this option is different from the -c
(lowercase) flag, which suppresses the link step. See page 1-11
for a description of the -c option.

-M Executes only the preprocessor phase of the compiler (as with
-E) but the only output produced is a list, on the standard output
stream, of makefile dependency lines suitable for use by a make
utility. This can be redirected to a file using standard
UNIX/MS-DOS notation. For example:

toolname -M something .c >> Makefile

where toolname is either armcc or tcc .

-D symbol=value * Defines symbol as a preprocessor macro, as if the following line
were at the head of the source file:

#define symbol value

-D symbol * Defines symbol as a preprocessor macro, as if the following line
were at the head of the source file:

#define symbol

The symbol is given the default value 1.

-U symbol * Undefines symbol , as if the following line were at the head of the
source file:

#undef symbol

C Compilers
1.4.11 Controlling warning messages

This section describes how you turn warning messages on or off.
1-15Reference Guide
ARM DUI 0041B

The -W option controls the suppression of warning messages. The compiler uses warnings
to indicate potential portability problems or other hazards. You can avoid having too many
warning messages in the early stages of porting a program written in old-style C by disabling
warnings. The options are on by default, unless specified otherwise.

Note If the + character is included in the characters following the W flag, the warnings
corresponding to any following letters are enabled rather than supresssed.

-fa Checks for certain types of data flow anomalies. The compiler performs data flow
analysis as part of code generation. The checks enabled by this option indicate
when an automatic variable could have been used before it has been assigned a
value. The check is pessimistic and will sometimes report an anomaly where there
is none, especially in code like this:

int initialized = 0, value;
...
if (initialized) { int v = value; ...
...
value = ...; initialized = 1;

Here, value is read-only if initialized has been set. This is a semantic
deduction, not a data flow implication, so -fa reports an anomaly. In general, it is
useful to check all code using -fa at some stage during its development.

-fv Reports on all unused declarations, including those from standard headers.

-W Suppresses all warnings. If one or more letters follow the flag, only the warnings
controlled by those letters are suppressed.
The following example suppresses the warnings controlled by a and d, and enables
those controlled by f and g:

-Wad+fg

-Wa Suppresses the following warning:

Use of = in a condition context

This warning is given when the compiler encounters a statement such as:

if (a = b) {...

where it is possible that the author really intended:

if ((a = b) != 0) {...

or that the author intended the following, but missed a keystroke:

if (a == b) {...

In new code, avoid the deliberate use of if (a = b) ...
This warning is suppressed by default in pcc mode.

C Compilers
-Wd Suppresses the following message, given when a declaration without argument

types is encountered in ANSI mode (the warning is suppressed by default in pcc
mode).
1-16 Reference Guide
ARM DUI 0041B

Deprecated declaration foo() - give arg types

In ANSI C, declarations like this are deprecated, and a future version of the C
standard may ban them. They are already illegal in C++. However, it is sometimes
useful to suppress this warning when porting old code.

-Wf Suppresses the following message:

Inventing extern int foo()

which may be useful when compiling old-style C in ANSI mode. This is suppressed
by default in pcc mode.

-Wg Header file not guarded. This is off by default.

-Wl Lower precision in wider context. This option is off by default. This warning arises in
cases like:

long x; int y, z; x = y*z

where the multiplication yields an int result which is then widened to long. Because
int and long have the same length for ARM and THUMB, this only warns of
portability problems to targets with 16-bit ints or 64-bit longs.

-Wn Suppresses the following warning:

Implicit narrowing cast

This warning is issued when the compiler detects the implicit narrowing of a long
expression in an int or char context, or the implicit narrowing of a floating-point
expression in an integer or narrower floating-point context. Such implicit narrowings
are almost always a source of problems when moving code developed using a fully
32-bit system (such as ARM C) to a system in which ints occupy 16 bits and longs
32 bits. This is suppressed by default in PCC mode.

-Wp Suppresses the following warning:

non-ANSI #include <...>

ANSI requires that you only use #include <...> for ANSI headers, but it is
useful to disable this warning when compiling code not conforming to this aspect of
the standard. This option is suppressed by default, unless -strict is in use.

-Ws Padding inserted in struct. This is off by default.

-Wu Suppresses warnings about future compatibility (ie. C++) for both armcc and tcc.
This option is off by default.

-Wv Suppresses the following warning:

Implicit return in non-void context

This is most often caused by a return from a function which was assumed to return
int (because no other type was specified) but is being used as a void function.
As this is widespread in old-style C, it is suppressed by default in pcc mode.

C Compilers
1.4.12 Suppressing error messages

These options force the compiler to accept C source which would normally produce errors.
If you use any of these options, it means that the C source does not conform to the ANSI C
1-17Reference Guide
ARM DUI 0041B

standard (the compiler normally generates precisely the diagnostics required by ANSI).

These options are on by default unless specified otherwise, and + is interpreted as for -W.

1.4.13 Load and store options

1.4.14 Alignment options

-ec Suppresses all implicit cast errors. For example;

implicit cast of nonzero int to pointer

-ef Suppresses errors for unclean casts such as short to pointer.

-el Suppresses errors about linkage disagreements where functions are
implicitly declared extern and later defined as static.

-ep Suppresses the error which occurs if there are extraneous characters at
the end of a preprocessor line. This option is suppressed in PCC mode.

-ez Suppresses the error which occurs if a zero-length array is used.

-za Option Specifies whether LDR may only access word-aligned addresses:

1 Yes
0 No

-zr Number Allows the size of most load multiple and all store instructions to be
controlled between the limits of 3 and 16 registers transferred. This can
help control interrupt latency where this is critical. Number defaults to 16.
Note: The Thumb compiler (tcc) does not currently support this option.

-zap Number Specifies whether pointers to structs are assumed to be aligned on at
least <struct minimal alignment> boundaries:

1 Yes

0 No. Casting short[] to struct (short,
short,...) does not cause a problem.

-zas Number Specifies the minimal byte alignment for structs. Permitted values for
Number are as follows (default is 4):

1, 2, 4, 8

-zat Number Specifies the minimal byte alignment for top-level static objects, such as
global variables. Permitted values for Number are as follows (default 4):

1, 2, 4, 8

C Compilers
1.4.15 Miscellaneous compiler features

There are a number of additional compiler features which control areas such as code
generation and special portability options.
1-18 Reference Guide
ARM DUI 0041B

The -f option described below controls a variety of compiler features, including certain
checks more rigorous than usual. It is followed by a string of modifier letters. At least one
letter is required, though several may be given at once. For example:

-ffh

Note If the + character is included in the modifier letters, the effect of any following letters is
disabled, rather than enabled.

When writing high-quality production software, you are encouraged to use at least the -fh
options in the later stages of program development (the extra diagnostics produced can be
annoying in the earlier stages).

-zc Make char signed. It is normally unsigned in ANSI mode, and
signed in PCC mode.

-zi Number Defines the maximum number of instructions allowed to generate
an integer literal inline before using LDR rx,=value . The default
is 2.

-zo Generates one AOF area per function.

-zp LetterDigit Emulates #pragma directives. The letter and digit which follow it
are the same characters that would follow the “-” of a #pragma
directive. See 1.9.1 Pragmas on page 1-46 for details.

-ff Does not embed function names in the code area (see the -fn option).
This option is enabled by default to reduce the size of the code area.

-fh Checks that all external objects are declared before use, and that all
file-scoped static objects are used. If external objects are only declared in
included header files (never inline in a C source file), these checks directly
support good modular programming practices.

-fi Lists (in the listing file) the lines from any files included with directives of
the form:

#include "file"

-fj As for -fi, but for files included by lines of the form:

#include <file>

-fn Embeds function names in the code area (see -ff option). This improves
the readability of the output produced by the stack backtrace runtime
support function and the _mapstore() function. However, it does increase
the size of the code area by around 5%. In general, it is not useful to specify
-ff with -p (see 1.4.7 Controlling code generation on page 1-11).
This option is disabled by default.

C Compilers
-fp Reports on explicit casts of integers into pointers, for example:

char *cp = (char *) anInteger;

This warning indicates potential portability problems. Casting explicitly
1-19Reference Guide
ARM DUI 0041B

between pointers and integers, although not clean, is not harmful on the
ARM where both are 32-bit types. (Implicit casts are reported anyway,
unless suppressed by the -Wc option.)

-fu Lists unexpanded source. By default, if -list is specified, the compiler lists
the source text as seen by the compiler after preprocessing. If -fu is
specified, the user’s unexpanded source text is listed. For example, consider
the line:

p = NULL; /* assume NULL #defined to be (0) */

By default, this is listed as p = (0); with -fu specified, as p = NULL; .

-fw Allows string literals to be writable, as expected by some UNIX code, by
allocating them in the program’s data area rather than the notionally
read-only code area. Note that this also stops the compiler reusing a
multiple-occurring string literal.

-fy Treats enumerations as signed integers. This option is off by default (no
forced integers).

-fz Instructs the compiler that an inline SWI may overwrite the contents of the
link register. This option is usually used for modules containing C code
which run in Supervisor mode, and which contain inline SWIs.

C Compilers
1.5 Implementation Details

This section gives details of those aspects of the compiler and C library which the ANSI
standard for C identifies as implementation-defined, together with other points of interest.
1-20 Reference Guide
ARM DUI 0041B

1.5.1 Data Elements

1.5.2 Character sets and identifiers

An identifier can be of any length. The compiler truncates an identifier after 256 characters,
all of which are significant (the standard requires a minimum of 31 significant characters).

The source character set expected by the compiler is 7-bit ASCII. Within comments, string
literals, and character constants, the full ISO 8859-1 (Latin 1) 8-bit character set is
recognised.

In its generic configuration, as delivered, the C library processes the full ISO 8859-1
(Latin-1) 8-bit character set, except that the default locale is the C locale (see 1.6 Standard
Implementation Definition on page 1-27). The ctype functions therefore all return 0 when
applied to codes in the range 160 to 255.

Calling setlocale(LC_CTYPE, "ISO8859-1") makes the isupper and islower
functions behave as expected over the full 8-bit Latin-1 alphabet, rather than over the 7-bit
ASCII subset.

Uppercase and lowercase characters are distinct in all internal and external identifiers.

In pcc mode (-pcc option) and “limited pcc” or “system programming” mode (-fc option),
an identifier may also contain a dollar character.

Integers are represented in two’s complement
form.

Data items of type char are unsigned by default,
though in ANSI mode they may be explicitly
declared as signed char or unsigned char.

In the compiler’s pcc mode there is no signed
keyword, so chars are signed by default and may
be declared unsigned if required.

Floating-point quantities are stored in the IEEE
format. In double and long double quantities, the
word containing the sign, the exponent and the
most significant part of the mantissa is stored at
the lower machine address.

Type Size in bits

char 8

short 16

int 32

long 32

float 32

double 64

long double 64 (subject to change)

all pointers 32

 Table 1-1: Size of data elements

C Compilers
1.5.3 Arithmetic limits (limits.h and float.h)

The ANSI C standard defines two header files (limits.h and float.h) which contain
constants describing the ranges of values that can be represented by the arithmetic types.
1-21Reference Guide
ARM DUI 0041B

The standard also defines minimum values for many of these constants. This subsection
gives the values and significance of these two headers for the ARM.

Number of bits in the smallest object that is not a bit field (ie. a byte):

CHAR_BIT 8

Maximum number of bytes in a multibyte character, for any supported locale:

MB_LEN_MAX 1

For the following integer ranges, the middle column gives the numerical value of the range’s
endpoint, while the right hand column gives the bit pattern (in hexadecimal) that would be
interpreted as this value in ARM C. When entering constants, you must be careful about the
size and signed-ness of the quantity. Constants are interpreted differently in decimal and
hexadecimal/octal. See the ANSI C standard or any of the recommended textbooks on the
C programming language for more details.

Range End-point Hex Representation

CHAR_MAX 255 0xff

CHAR_MIN 0 0x00

SCHAR_MAX 127 0x7f

SCHAR_MIN -128 0x80

UCHAR_MAX 255 0xff

SHRT_MAX 32767 0x7fff

SHRT_MIN -32768 0x8000

USHRT_MAX 65535 0xffff

INT_MAX 2147483647 0x7fffffff

INT_MIN -2147483648 0x80000000

LONG_MAX 2147483647 0x7fffffff

LONG_MIN -2147483648 0x80000000

ULONG_MAX 4294967295 0xffffffff

 Table 1-2: ARM C compiler integers ranges

C Compilers
Characteristics of floating point

FLT_RADIX 2
FLT_ROUNDS .1
1-22 Reference Guide
ARM DUI 0041B

The base (radix) of the ARM floating-point number representation is 2, and floating-point
addition rounds to nearest.

Ranges of floating types
FLT_MAX 3.40282347e+38F
FLT_MIN 1.17549435e-38F
DBL_MAX 1.79769313486231571e+308
DBL_MIN 2.22507385850720138e-308
LDBL_MAX 1.79769313486231571e+308
LDBL_MIN 2.22507385850720138e-308

Ranges of base two exponents
FLT_MAX_EXP 128
FLT_MIN_EXP (-125)
DBL_MAX_EXP 1024
DBL_MIN_EXP (-1021)
LDBL_MAX_EXP 1024
LDBL_MIN_EXP (-1021)

Ranges of base ten exponents
FLT_MAX_10_EXP 38
FLT_MIN_10_EXP (-37)
DBL_MAX_10_EXP 308
DBL_MIN_10_EXP (-307)
LDBL_MAX_10_EXP 308
LDBL_MIN_10_EXP (-307)

Decimal digits of precision
FLT_DIG 6
DBL_DIG 15
LDBL_DIG 15

Digits (base two) in mantissa (binary digits of precision)
FLT_MANT_DIG 24
DBL_MANT_DIG 53
LDBL_MANT_DIG 53

Smallest positive values such that (1.0 + x != 1.0)
FLT_EPSILON 1.19209290e-7F
DBL_EPSILON 2.2204460492503131e-16
LDBL_EPSILON 2.2204460492503131e-16L

C Compilers
1.5.4 Structured data types

The ANSI C standard leaves details of the layout of the components of a structured data type
to each implementation. The following points apply to the ARM C compiler:
1-23Reference Guide
ARM DUI 0041B

• The alignment of a structure is the larger of:

- the maximum alignment required by any of its members

- the minimal alignment for all structs (as defined by -zat , which is described
in 1.4.14 Alignment options on page 1-17).

• Structures are arranged with the first-named component at the lowest address.

• A component with a char type is packed into the next available byte.

• A component with a short type is aligned to the next even-addressed byte.

• All other arithmetic-type components are word-aligned, as are pointers and
integers containing bitfields.

• Except for -strict (when the only valid types for bitfields are signed int and
unsigned int), bitfields may have any integral type.

• A bitfield whose type includes neither the signed or unsigned qualifier, is treated as
having the same signedness as plain char, unsigned by default (signed by default
in -pcc mode).

• A bitfield must be wholly contained within a correctly aligned object of tis type.

• Bitfields are allocated within words so that the first field specified occupies the
lowest-addressed bits of the word, depending on configuration:

little-endian lowest addressed means least significant

big-endian lowest addressed means most significant

1.5.5 Pointers

The following remarks apply to pointer types:

• Adjacent bytes have addresses which differ by one.

• The macro NULL expands to the value 0.

• Casting between integers and pointers results in no change of representation.

• The compiler warns of casts between pointers to functions and pointers to data (but
not in -pcc mode).

1.5.6 Pointer subtraction

When two pointers are subtracted, the difference is obtained as if by the expression:

((int)a - (int)b) / (int)sizeof(type pointed to)

C Compilers
If the pointers point to objects whose size is no greater than four bytes, the alignment of data
ensures that the division will be exact in all cases. For longer types, such as doubles and
structures, the division may not be exact unless both pointers are to elements of the same
array. Moreover, the quotient may be rounded up or down at different times, leading to
1-24 Reference Guide
ARM DUI 0041B

potential inconsistencies.

1.5.7 Arithmetic operations

The compiler performs the usual arithmetic conversions set out in the ANSI C standard.
The following points apply to operations on the integral types:

• All signed integer arithmetic uses a two’s complement representation.

• Bitwise operations on signed integral types follow the rules which arise naturally
from two’s complement representation.

• Right shifts on signed quantities are arithmetic.

• Any quantity which specifies the amount of a shift is treated as an unsigned 8-bit
value.

• Any value to be shifted is treated as a 32-bit value.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from a shift of an unsigned or
positive signed value; they yield -1 from a shift of a negative signed value.

• The remainder on integer division has the same sign as the divisor.

• If a value of integral type is truncated to a shorter signed integral type, the result is
obtained as if by masking the original value to the length of the destination, and
then sign extending.

• A conversion between integral types never causes an exception to be raised.

• Integer overflow does not raise an exception.

• Integer division by zero raises an exception.

By default, the following points apply to operations on floating-point types:

• When a double or long double is converted to a float, rounding is to the nearest
representable value.

• A conversion from a floating type to an integral type causes an exception to be
raised only if the value cannot be represented in a long int, (or unsigned long int in
the case of conversion to an unsigned int).

• Floating-point underflow is not detected; any operation which underflows returns
zero.

• Floating-point overflow raises an exception.

• Floating-point divide by zero raises an exception.

C Compilers
1.5.8 Expression evaluation

The compiler performs the usual arithmetic conversions (promotions) set out in the ANSI C
standard before evaluating an expression. The following should be noted:
1-25Reference Guide
ARM DUI 0041B

• The compiler may re-order expressions involving only associative and
commutative operators of equal precedence, even in the presence of parentheses.
For example, a + (b - c) may be evaluated as (a + b) - c .

• Between sequence points, the compiler may evaluate expressions in any order,
regardless of parentheses. Thus the side effects of expressions between
sequence points may occur in any order.

• Similarly, the compiler may evaluate function arguments in any order.

Any detail of order of evaluation not prescribed by the ANSI C standard may vary between
releases of the ARM C compiler.

1.5.9 Implementation limits

The ANSI C standard sets out certain minimum limits which a conforming compiler must
accept. You should be aware of these when porting applications between compilers.
A summary is given Table 1-3: Implementation limits on page 1-25. The mem limit
indicates that no limit is imposed by the ARM C compiler other than that imposed by the
availability of memory.

Description Required ARM C

Nesting levels of compound statements and iteration /
selection control structures.

15 mem

Nesting levels of conditional compilation. 8 mem

Declarators modifying a basic type. 31 mem

Expressions nested by parentheses. 32 mem

Significant characters:
in internal identifiers and macro names
in external identifiers

31
6

256
256

External identifiers in one source file. 511 mem

Identifiers with block scope in one block. 127 mem

Macro identifiers in one source file. 1024 mem

Parameters in one function definition / call. 31 mem

 Table 1-3: Implementation limits

C Compilers

Parameters in one macro definition / invocation. 31 mem

Description Required ARM C
1-26 Reference Guide
ARM DUI 0041B

Note: When running on 16-bit hosts, the ARM C compiler may impose a limit on the size of
an object file. Generally, this limit will be 65535 bytes in a single object file rather than 32767
bytes in a single C-language object. 32-bit hosted versions do not have this limit.

Characters in one logical source line. 509 no limit

Characters in a string literal. 509 mem

Bytes in a single object. 32767 mem
[see Note]

Nesting levels for #included files. 8 mem

Case labels in a switch statement. 257 mem

Members in a single struct or union, enumeration constants in
a single enum.

127 mem

Nesting of struct / union in a single declaration. 15 mem

 Table 1-3: Implementation limits (Continued)

C Compilers
1.6 Standard Implementation Definition

Appendix A.6 of the ISO C standard collects together information about portability issues;
section A.6.3 lists those points which must be defined by each implementation. This section
1-27Reference Guide
ARM DUI 0041B

corresponds to appendix A.6.3, dealing with aspects of the ARM C compiler and ANSI C
library that are not defined by the ISO C standard, and which are implementation-defined.

1.6.1 Translation

Diagnostic messages produced by the compiler are of the form:

source-file , line-number : severity : explanation

where severity is one of:

Warning a helpful message from the compiler

Error a violation of the ANSI specification from which the compiler was
able to recover by guessing the user’s intentions

Serious error a violation of the ANSI specification from which no recovery was
possible; the intention was not clear

Fatal an indication that the compiler’s limits have been exceeded or
that the compiler has detected a fault in itself (for example, not
enough memory)

1.6.2 Environment

The mapping of a command line from the ARM-based environment into arguments to
main() is implementation-specific. The generic ARM C library supports the following:

• main

• interactive device

• standard input, output, and error streams

main()

The arguments given to main() are the words of the command line (not including I/O
redirections), delimited by white space, except where the white space is contained in double
quotes.

Note that:

• a whitespace character is any character of which isspace() is true

• a double quote or backslash character (\) inside double quotes must be preceded
by a backslash character

• an I/O redirection will not be recognized inside double quotes

C Compilers
Interactive device

In an unhosted implementation of the ARM C library, the term interactive device may be
meaningless. The generic ARM C library supports a pair of devices, both called :tt ,
1-28 Reference Guide
ARM DUI 0041B

intended to handle a keyboard and a VDU screen. In the generic implementation:

• no buffering is done on any stream connected to :tt unless I/O redirection has
taken place

• if I/O redirection other than to :tt has taken place, full file buffering is used (except
where both stdout and stderr have been redirected to the same file, where line
buffering is used)

Standard input, output and error streams

Using the generic ARM C library, the standard input, output and error streams stdin ,
stdout , and stderr can be redirected at runtime. For example, if mycopy is a program
which simply copies the standard input to the standard output, the following line runs the
program:

mycopy < infile > outfile 2> errfile

and redirects the files as follows:

stdin is redirected to infile

stdout is redirected to outfile

stderr is redirected to errfile

The following shows the permitted redirections:

0< filename reads stdin from filename

< filename reads stdin from filename

1> filename writes stdout to filename

> filename writes stdout to filename

2> filename writes stderr to filename

2>&1 writes stderr to the same place as stdout

>& filename writes both stdout and stderr to filename

>> filename appends stdout to filename

>>& filename appends both stdout and stderr to filename

1.6.3 Identifiers

256 characters are significant in identifiers with or without external linkage. Allowed
characters are letters, digits, and underscores.

Case distinctions are significant in identifiers with external linkage.

In pcc mode (-pcc option) and limited pcc or system programming mode (-fc option),
the dollar character ($) is also valid in identifiers.

C Compilers
1.6.4 Integers

The representations and sets of values of the integral types are set out in the Software
Development Toolkit User Guide (ARM DUI 0040).
1-29Reference Guide
ARM DUI 0041B

Note also:

• The result of converting an integer to a shorter signed integer (if the value cannot
be represented) is as if the bits in the original value which cannot be represented
in the final value are masked out, and the resulting integer sign-extended.
The same applies when an unsigned integer is converted to a signed integer of
equal length.

• Bitwise operations on signed integers yield the expected result given two’s
complement representation. No sign extension takes place.

• The sign of the remainder on integer division is the same as defined for the function
div() .

• Right shift operations on signed integral types are arithmetic.

1.6.5 Characters

The characters in the source character set are assumed to be ISO 8859-1
(Latin-1 Alphabet), a superset of the ASCII character set. The printable characters are those
in the range 32 to 126 and 160 to 255. Any printable character may appear in a string or
character constant, and in a comment.

Other properties of the source character set are host-specific, except that the ARM
C compiler has no support for multi-byte character sets.

The properties of the execution character set are target-specific. In its generic form,
the ARM C library supports the ISO 8859-1 (Latin-1) character set, so the following points
are valid:

• The execution character set is identical to the source character set.

• There are four chars/bytes in an int. If the memory system is:

little-endian the bytes are ordered from least significant at the lowest
address to most significant at the highest address

big-endian the bytes are ordered from least significant at the highest
address to most significant at the lowest address

• A character constant containing more than one character has the type int. Up to
four characters of the constant are represented in the integer value. The first
character in the constant occupies the lowest-addressed byte of the integer value;
up to three following characters are placed at ascending addresses. Unused bytes
are filled with the NUL (or “\0”) character.

• There are eight bits in a character in the execution character set.

C Compilers
• All integer character constants that contain a single character or character escape

sequence are represented in both the source and execution character sets (by an
assumption which may be violated in any given retargeting of the generic ARM
C library).
1-30 Reference Guide
ARM DUI 0041B

• Characters of the source character set in string literals and character constants
map identically into the execution character set (by an assumption which may be
violated in any given retargeting of the generic ARM C library).

• No locale is used to convert multi-byte characters into the corresponding wide
characters (codes) for a wide character constant (not relevant to the generic
implementation).

• A plain char is treated as unsigned (but as signed in pcc mode).

The character escape codes are shown in Table 1-4: Escape codes .

1.6.6 Floating-point types

The representations and ranges of values of the floating-point types are given in the
Software Development Toolkit User Guide (ARM DUI 0040).

Note also:

• when a floating-point number is converted to a shorter floating-point number, it is
rounded to the nearest representable number

• the properties of floating-point arithmetic accord with IEEE 754

Escape sequence Char value Description

\a 7 Attention (bell)

\b 8 Backspace

\f 9 Form feed

\n 10 New line

\r 11 Carriage return

\t 12 Tab

\v 13 Vertical tab

\xnn 0xnn ASCII code in hexadecimal

\nnn 0nnn ASCII code in octal

 Table 1-4: Escape codes

C Compilers
1.6.7 Arrays and pointers

The ISO standard specifies three areas in which the behavior of arrays and pointers must
be documented. The points to note here are:
1-31Reference Guide
ARM DUI 0041B

• The type size_t is unsigned int (signed int in PCC mode)

• Casting pointers to integers and vice versa involves no change of representation

• The type ptrdiff_t is defined as (signed int)

1.6.8 Registers

Using the ARM C compiler, you can declare any number of objects to have the storage class
register . Depending on which variant of the ARM Procedure Call Standard (APCS) is in
use, there are between five and seven registers available. Declaring more than this number
of objects with register storage class must result in at least one of them not being held in a
register. In general, it is advisable to declare no more than four.

The valid types are:

• any integer type

• any pointer type

• any integer-like structure (any one word struct or union in which all addressable
fields have the same address or any one word structure containing only bitfields)

• a floating-point type, if software floating-point is used

Other variables, not declared with the register storage class, may be held in registers for
extended periods, and register variables may be held in memory for some periods.

The double-precision floating type double occupies two ARM registers.

There is a #pragma which assigns a file-scope variable to a specified register everywhere
within a compilation unit (see page 1-49).

1.6.9 Qualifiers

An object that has volatile-qualified type is accessed if any word or byte of it is read or
written. For volatile-qualified objects, reads and writes occur as directly implied by
the source code, in the order implied by the source code.

The effect of accessing a volatile-qualified short is undefined.

1.6.10 Declarators

The number of declarators that may modify an arithmetic, structure or union type is limited
only by available memory.

C Compilers
1.6.11 Statements

The number of case values in a switch() statement is limited only by memory.
1-32 Reference Guide
ARM DUI 0041B

1.6.12 Structure packing

Non-packed structs

By default, structures are aligned on word boundaries. Characters are aligned in bytes,
shorts are aligned on even-numbered byte boundaries, and all other types, except bitfields,
are aligned on word boundaries. Bitfields are subfields of ints, themselves aligned on word
boundaries.

Structures may contain internal padding to ensure:

• members are correctly aligned

• the structure occupies a whole number of words

An example of a conventional (non-packed) struct is given in Figure 1-1: Conventional
(non-packed) struct example .

 Figure 1-1: Conventional (non-packed) struct example

Packed structs

A packed struct is one in which there is neither padding between fields to ensure the natural
alignment of each field, nor trailing padding to ensure the natural alignment of a following
struct within an array.

Many applications read data from and write data to networks and computer buses in formats
defined by international standards and by other programs executing on different processors.
The data format is fixed. Data read and data to be written can be precisely mapped in C
using packed structs. However, packed structs cannot support reading values of the wrong
endianness.

example

0 1 2 3 4 5 6 7 8 9 10 11
c x s

word
boundary

byte

sizeof(example) == 12 (3 words)

struct {char c; int x; short s;} example;

padding padding

C Compilers
On the ARM, access to unaligned data can be expensive (taking up to seven instructions
and two extra work registers). Data accesses via packed structs should be minimized to
avoid performance loss. Generally, internal data structures should not be padded.
1-33Reference Guide
ARM DUI 0041B

Usage

There is no command-line option to change the default packing of structures. Packed
structures must be specified with the type qualifier: __packed .

If you wish to use packed rather than __packed , you must define it:

#define packed __packed

__packed behaves as a type qualifier (like volatile) and may qualify any
non-floating-point type.

While there is no difference between int x and __packed int x , there is a significant
difference between int *px and __packed int *px when px is de-referenced.
In the latter case, an int will be correctly loaded from a location of unknown alignment.

Floating types may not be fields of packed structures.

A packed struct or union type must be declared explicitly. It is a different type from
the corresponding nonpacked type and its packedness is an attribute of its struct tag (so
__packed is more than just a type qualifier). Any variables declared using a packed tag
automatically inherit the packed attribute, so __packed does not have to be specified:

__packed struct P { ... };

struct P pp; /* pp is a packed struct */

As a result, the following will be faulted:

struct Foo { ... };

__packed struct Foo PackedFoo; /* illegal */

or

struct Foo { ... };

typedef __packed struct Foo PackedFoo; /* illegal */

This ensures that a packed struct can never be assignment-compatible with an unpacked
struct. This could happen if __packed were merely a type qualifier like volatile and
const .

Each field of a packed struct or packed union inherits the packed qualifier.

There are no packed array types. A packed array is simply an array of objects of packed type
(there is no inter-element padding).

The effect of casting away __packed is undefined. For example:

int f(__packed int *px)
{

return *(int *)px; /* undefined behaviour */
}

C Compilers
All top-level objects (global or local) are word-aligned and occupy an integral number of
words of store, so there may be padding between separately declared top-level packed
structs.
1-34 Reference Guide
ARM DUI 0041B

Sub-structs of packed structs

A struct (or union) sub-field of a packed struct or union must be declared to have packed
struct (or packed union) type.

struct S {...};
__packed struct P {...};

struct T {
struct S ss; /* OK */
struct P pp; /* OK */

};

__packed struct Q {
struct S ss; /* faulted - sub-structs must be packed */
struct P pp; /* OK */

};

The sub-structs are abutted without any intermediate padding, and they contain no internal
padding themselves (because they must be packed).

 Figure 1-2: Sub-struct padding

1.6.13 Unions

When a member of a union is accessed using a member of a different type, the resulting
value can be predicted from the representation of the original type. No error is given.

Q

0 1 2 3 4 5 6 7 8 9 10

c x x

byte

z c

X Y

__packed struct P {char c; int x;};
__packed struct {

struct P X;
char z;
struct P Y;

} Q

Note: The structure contains no padding.

C Compilers
1.6.14 Enumerations

An object of type enum is normally implemented in the smallest integral type that contains
the range of the enum. The type of an enum will be one of the following, according to the
1-35Reference Guide
ARM DUI 0041B

range of the enum:

• unsigned char

• signed char

• unsigned short

• signed short

• signed int

This feature can reduce the size of the data area.
The command-line flag -fy sets the underlying type of enum to signed int.

1.6.15 Bitfields

The ARM C compiler handles bitfields in the following way:

• a plain bitfield (declared without either signed or unsigned qualifiers) is treated as
unsigned (signed int in pcc mode) and has the same signedness as plain char.

• a bitfield which does not fit in a correctly aligned object of its type, is placed in the
next such object.

• the order of allocation of bitfields within ints means that the first field specified
occupies the lowest-addressed bits of the word

• bitfields do not straddle storage unit (int) boundaries

1.6.16 Preprocessing directives

A single-character constant in a preprocessor directive cannot have a negative value.

The ANSI standard header files are contained within the compiler itself and may be referred
to in the way described in the standard (using, for example, #include <stdio.h> , etc.).

Quoted names for includable source files are supported. The rules for directory searching
are given in 1.3.5 Included files on page 1-5. The compiler will accept host filenames or
UNIX filenames. In the latter case, on non-UNIX hosts, the compiler tries to translate the
filename to a local equivalent. See 1.3.1 Naming conventions on page 1-4 for more details.

The recognized #pragma directives are shown in 1.9.1 Pragmas on page 1-46.

The date and time of translation are always available, so __DATE__ and __TIME__ always
give the date and time respectively.

1.6.17 Library functions

The precise attributes of a C library are specific to a particular implementation of it.
The generic ARM C library has or supports the following features:

C Compilers
• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error may occur when the
program is linked with the standard libraries. If it is not linked with standard
1-36 Reference Guide
ARM DUI 0041B

libraries, no error will be detected.

• The assert() function prints the following message and then calls the abort()
function:

*** assertion failed: expression, file filename , line linenumber

These functions usually test only for characters whose values are in the range 0 to 127 (inc):

isalnum()
isalpha()
iscntrl()
islower()
isprint()
isupper()
ispunct()

Characters with values greater than 127 return a result of 0 for all of these functions except
iscntrl() which returns non-zero for 0 to 31, and 128 to 255.

Setlocale call

After the call setlocale(LC_CTYPE, "ISO8859-1"), the following statements also
apply to character codes and affect the results returned by the ctype() functions:

Code Description

128-159 control characters

160 to 191 punctuation

192 to 214 uppercase

215 punctuation

216 to 223 uppercase

224 to 246 lowercase

247 punctuation

248 to 255 lowercase

 Table 1-5: Character codes

C Compilers
Mathematical functions

The mathematical functions return the following values on domain errors:
1-37Reference Guide
ARM DUI 0041B

Where -HUGE_VAL is returned, a number is returned which is defined in the header
math.h . Consult the errno variable for the error number.

The mathematical functions set errno to ERANGE on underflow range errors.

A domain error occurs if the second argument of fmod is zero, and -HUGE_VAL is returned.

Signal function

The set of signals for the generic signal() function is as follows:

Function Condition Returned value

log(x) x <= 0 -HUGE_VAL

log10(x) x <= 0 -HUGE_VAL

sqrt(x) x < 0 -HUGE_VAL

atan2(x,y) x = y = 0 -HUGE_VAL

asin(x) abs(x) > 1 -HUGE_VAL

acos(x) abs(x) > 1 -HUGE_VAL

pow(x,y) x=y=0 -HUGE_VAL

 Table 1-6: Mathematical functions

Signal Description

SIGABRT abort

SIGFPE arithmetic exception

SIGILL illegal instruction

SIGINT attention request from user

SIGSEGV bad memory access

SIGTERM termination request

SIGSTAK stack overflow

 Table 1-7: Signal function signals

C Compilers
The default handling of all recognized signals is to print a diagnostic message and call exit .
This default behavior applies at program start-up.

When a signal occurs, if func points to a function, the equivalent of
1-38 Reference Guide
ARM DUI 0041B

signal(sig, SIG_DFL) is first executed. If the SIGILL signal is received by a handler
specified to the signal() function, the default handling is reset.

Generic ARM C library

The generic ARM C library also has the following characteristics relating to I/O (but note that
a given targeting of it may not have them):

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline
character do appear when read back in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end
of the file.

• A write to a text stream does not cause the associated file to be truncated beyond
that point (device dependent).

• The characteristics of file buffering are as intended by section 4.9.3 of
the ANSI C standard.

• A zero-length file (in which no characters have been written by an output stream)
does exist.

• The same file can be opened many times for reading, but only once for writing or
updating. A file cannot be open simultaneously for reading on one stream and for
writing or updating on another.

• Local time zones and Daylight Saving Time are not implemented. The values
returned will always indicate that the information is not available.

• The status returned by exit() is the same value that was passed to it.
For definitions of EXIT_SUCCESS and EXIT_FAILURE , refer to the header file
stdlib.h .

• The error messages returned by the strerror() function are identical to those
given by the perror() function.

• If the size of area requested is zero, calloc() , malloc() and realloc() return
NULL.

• abort() closes all open files, and deletes all temporary files.

• fprintf() prints %p arguments in hexadecimal format (lowercase) as if
a precision of 8 had been specified. If the variant form (%#p) is used, the number
is preceded by the character @.

• fscanf() treats %p arguments identically to %x arguments.

• fscanf() always treats the character “-” in a %...[...] argument as a literal
character.

C Compilers
• ftell() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the following messages:
1-39Reference Guide
ARM DUI 0041B

Unspecified characteristics : The following characteristics, required to be specified in an
ANSI-compliant implementation, are unspecified in the generic ARM C library:

• the validity of a filename

• whether remove() can remove an open file

• the effect of calling the rename() function when the new name already exists

• the effect of calling getenv() (the default is to return NULL, no value available)

• the effect of calling system()

• the value returned by clock()

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number to signal() or raise()

others Error code number has no associated message

 Table 1-8: perror() messages

C Compilers
1.7 C Language Extensions

None of these extensions is available if the compiler is restricted to compiling strict ANSI C
(eg by -strict).
1-40 Reference Guide
ARM DUI 0041B

1.7.1 // comments

The character sequence // starts a comment, which is terminated by the next newline
character (as in C++). It should be noted that comment removal takes place after line
continuation has been performed, so:

// this is a -
single comment

The characters of a comment are examined only to find the comment's terminator, therefore:

• // has no special significance inside a comment introduced by /*

• /* has no special significance inside a comment introduced by //

1.7.2 Long long

64-bit integer types are available through the type specifier, long long.

Long long int and unsigned long long int are integral types, behaving analogously to
(unsigned) long with respect to the usual arithmetic conversions.

Integer constants may have a LL suffix to force the type of the constant to long long (if it will
fit) or unsigned long long, and LLU (or ULL) to force to unsigned long long.

In addition, a plain integer constant is of type (unsigned) long long if its value is large enough.
[This is a quiet change: without long long, 2147483648 has type unsigned long; with long
long, it has type long long. Thus, the value of 2147483648 > -1 is 1 in strict ANSI C, 0 with
long long].

Bitfields may be of type (unsigned) long long.

Enumerators may not have valuesthat are too large to be contained in a variable of type
long. (For example, long long enumerators are not available.)

The controlling expression of a switch statement may not have (unsigned) long long type,
and consequently, case labels must also have values which can be contained in a variable
of type unsigned long.

Printf and scanf format specifiers may include a ll , to specify that the following conversion
applies to an (unsigned) long long argument, as in %lld .

C Compilers
1.8 Inline Assembler

Assembly language can be used to achieve more efficient code or to use features of the
target processor which the compiler cannot use. The inline assembler enables the use of
1-41Reference Guide
ARM DUI 0041B

assembler instructions within a C program. This is useful in cases where a limited amount
of assembler code is needed.

The inline assembler supports very flexible interworking with C; any register operand may
be an arbitrary C expression. The inline assembler also auto expands complex instructions
and optimizes the assembler code.

The armcc inline assembler implements the full ARM instruction set, including generic
coprocessors, halfword instructions and long multiply.

The tcc inline assembler implements the full Thumb instruction set.

1.8.1 Syntax

The assembler command is started by the assembler specifier __asm, and is followed by a
list of assembler instructions inside braces. For example:

__asm
{

instruction [; instruction]
...
instruction

}

An instruction may optionally be followed by another instruction on the same line, separated
by a semicolon. No separation is neccesary if instructions are on different lines.

You can use standard C/C++ comments anywhere within the inline assembler block. You can
use the assembler command at any place inside a function where a C command is allowed.

1.8.2 Assembler instruction set

The ARM and Thumb instruction sets are described in the ARM Architecture Reference
Manual (ARM DDI 0100). All instruction opcodes and register specifiers may be written in
either lower or uppercase.

Operand expressions

Any register or constant operand may be an arbitrary C expression so that C variables may
be read or written. The compiler adds any extra code to evaluate the expressions and
allocates them to registers.

When an operand is written, the expression must be assignable (lvalue).

When writing code which uses both physical registers and C expressions, take care that you
do not use too many registers, or the compiler may be unable to evaluate the expressions.

The compiler issues an error message if it detects a register allocation problem.

C Compilers
Constants

The constant expression specifier # is optional. If it is used, the expression following it must
be constant.
1-42 Reference Guide
ARM DUI 0041B

Note The notation which can be used to specify the actual rotate of an 8-bit constant is not
available in inline assembler. This means that where an 8-bit shifted constant is used, you
should regard the C flag as corrupted if the PSR is updated.

Instruction expansion

The range of constants is not limited to the default range of the instruction. All ARM and
Thumb instructions with a constant operand support instruction expansion. In addition,
the MUL instruction can expand into a sequence of adds and shifts when the third operand
is a constant.

The effect of updating the PSR by an expanded instruction is:

• Arithmetic instructions set the NZCV flags correctly

• Logical instructions:

- set the NZ flags correctly

- do not alter the V flag

- corrupt the C flag

• TEQP, TSTP and MRS set the NZCV flags correctly.

Labels

Labels have the same syntax as C labels:

labelname :

Labels can only be used by branch instructions in the form:

B<cond > label

Storage declarations

All storage can be declared or allocated in C and passed onto the inline assembler using C
variables. Therefore, no additonal storage declarations are implemented.

Pseudo instructions

The pseudo instruction is NOP (no operation).

Note The pseudo instructions ADR and ADRL are not implemented. (MOV expr1 & expr2 can
be used instead).

C Compilers
Function calls

Calls using SWI or BL must specify exactly which calling standard is used. After the normal
instruction fields, three optional register lists specify:
1-43Reference Guide
ARM DUI 0041B

• the input parameters

• the registers which are output parameters after return

• the registers which corrupted by the called function

SWI<cond > number , { input_regs }, { output_regs }, { corrupted_regs }

BL<cond > < function >, { input_regs }, { output_regs }, { corrupted_regs }

An omitted list is assumed to be empty, except for BL, which always corrupts LR.

The register lists have the same syntax as LDM/STM register lists.

The condition code register can be specified as PSR.

1.8.3 Examples

64-bit addition

typedef struct { unsigned int hi, lo; } uint64;
__value_in_regs uint64 addu64(uint64 a, uint64 b)

{
uint64 res;
__asm
{
ADDS res.lo, a.lo, b.lo
ADC res.hi, a.hi, b.hi
}
return res;

}

String copying

void my_strcpy(char *src, char *dst)
{

int ch;
__asm
{

loop:
LDRB ch, [src], #1
STRB ch, [dst], #1
CMP ch, #0
BNE loop

}
}

C Compilers
Function call

int int_sum(int a, int b) // uses R0 and R1, returns R0
{

return a + b;
1-44 Reference Guide
ARM DUI 0041B

}
int sum_array(int arr[], int n)
{

int sum = 0;
while (--n >= 0)

__asm
{

MOV R0, sum
MOV R1, arr[n]
BL int_sum, {R0, R1}, {R0}, {R1,LR}
MOV sum, R0

}
return sum;

}

1.8.4 Pitfalls

1 C expressions with the comma operator must be bracketed:
 ADD x, y, (f(), z)

2 The & operator cannot be used to denote hexadecimal constants. Use the C 0x
prefix instead:

 AND x, y, 0xF00

3 When using physical registers, make sure that the compiler does not corrupt these
registers when evaluating expressions. For example:

__asm
{

MOV R0, x
ADD y, R0, x / y// (x/y) overwrites R0 with the result

}

Because the compiler uses a function call to evaluate x/y (which corrupts
R2,R3,IP,LR,PSR and alters R0 and R1), the value in R0 has been lost.
The compiler can detect the corruption in many cases; for example when it needs
a temporary register, but the register is already in use:

__asm

{
MOV ip, #3
ADDS x, x, #0x12345678// instruction is expanded
ORRCS x, x, ip

}

Here, the compiler uses IP as a temporary to expand the ADD instruction,
corrupting the value 3 in IP. This results in an error.

C Compilers
4 Do not use physical registers to address variables, even when it is obvious that a

certain variable is mapped onto a certain register. If the compiler detects this,
it either generates an error or puts the variable into another register to avoid
conflicts:
1-45Reference Guide
ARM DUI 0041B

int bad_f(int x) // x in R0
{

__asm
{

ADD R0, R0, #1 // wrongly asserts x still in R0
}
return x; // x in R0

}

This code returns x unaltered. In fact, the compiler assumes that x and R0 are two
different variables, despite the fact that x is allocated to R0 on both function entry
and exit. As the assembler code doesn't do anything useful, it is optimized away.

1.8.5 Restrictions

• You cannot write PC, SP, FP, SL and SB (where applicable, depending on the
selected calling standard). Other registers, like IP, LR, R0-R3, PSR must be used
with caution, as these may be used as temporary registers by the compiler when
evaluating expressions.

• LDM/STM instructions currently only allow physical registers to be specified in the
register list.

• BX is not yet implemented.

• Changing processor modes, or altering the state of coprocessors is permitted, but
the compiler is unaware of this.

- After changing to a different processor mode, no C expressions are allowed
until the mode is changed back to the original mode.

- Equally, when changing state of a FP coprocessor by executing FP
instructions, no floating-point expressions may be used until the original state
has been restored.

C Compilers
1.9 Compiler-specific Features

1.9.1 Pragmas
1-46 Reference Guide
ARM DUI 0041B

Pragmas are not portable to other compilers. Pragmas are recognized by the compiler in two
forms:

#pragma -LetterDigit
#pragma [no_]feature-name

A short-form pragma given without a digit resets that pragma to its default state, otherwise
to the state specified. For example:

#pragma -s1
#pragma no_check_stack
#pragma -p2
#pragma profile_statements

The list of recognized pragmas is shown in Table 1-9: Pragmas on page 1-47.

1.9.2 Specifying pragmas from the command line

Any pragma can also be specified from the compiler’s command line using:

-zp LetterDigit

1.9.3 Pragmas controlling the preprocessor

continue_after_hash_error Implements a #warning "..." preprocessor
directive.

include_only_once The containing #include file is included only
once, and if its name recurs in a subsequent
#include directive, the directive is ignored.

force_top_level The containing #include file should only be
included at the top level of a file. A syntax error
results if the file is included within a function.

C Compilers
Values marked with * are the default values.

Thumb The options marked with † are not available in Thumb.
1-47Reference Guide
ARM DUI 0041B

1. s0 is the default for ARM. Thumb defaults to s1 .

Pragma name Short Form ‘no’ Form

† check_memory_accesses c1 c0 *

check_printf_formats v1 v0 *

check_scanf_formats v2 v0 *

check_stack 1 s0 * s1

continue_after_hash_error e1 e0 *

force_top_level t1 t0 *

† FP register variable f1-f4 f0 *

include_only_once i1 i0 *

integer register variable r1-r7y r0 *

optimise_crossjump j1 * j0

optimise_cse z1 * z0

optimise_multiple_loads m1 * m0

† profile p1 p0 *

† profile_statements p2 p0 *

side_effects y0 * y1

warn_deprecated d1 * d0

warn_implicit_fn_decls a1 * a0

 Table 1-9: Pragmas

C Compilers
1.9.4 Pragmas controlling printf/scanf argument checking

Pragmas check_printf_formats and check_scanf_formats control whether the
actual arguments to printf and scanf are type-checked against the format designators
1-48 Reference Guide
ARM DUI 0041B

in a literal format string. Calls using non-literal format strings cannot be checked. By default,
all calls involving literal format strings are checked.

1.9.5 Pragmas controlling optimization

Pragmas optimise_crossjump , optimise_multiple_loads and optimise_cse
give fine control over where these optimizations are applied. For example, it is sometimes
advantageous to disable cross-jumping (the “common tail” optimization) in the critical loop
of an interpreter; and it may be helpful in a timing loop to disable common sub-expression
elimination and the optimization of multiple load instructions to load multiples. Note that
correct use of the volatile qualifier should remove most of the more obvious needs for
this degree of control (and volatile is also available in the ARM C compiler’s pcc mode
unless -strict is specified).

By default, functions are assumed to be impure, so function invocations are not candidates
for common sub-expression elimination. The noside_effects pragma asserts that the
function declarations up to the next #pragma side_effects describe pure functions,
invocations of which can be CSEs. See also __pure on page 1-50.

1.9.6 Pragmas controlling code generation

Stack-limit checking (ARM processors only)

If the compiler is configured to compile code for the explicit stack limit variant of the ARM
Procedure Call Standard (documented in Chapter 5, ARM Procedure Call Standard),
#pragma nocheck_stack disables the generation of code at function entry which checks
for stack limit violation. There is little advantage in turning off this check: it typically costs only
two instructions and two machine cycles per function call.

Note You must use nocheck_stack in writing a signal handler for the SIGSTAK event. When
this occurs, stack overflow has already been detected, so checking for it again in the handler
results in a fatal circular recursion.

Memory access checking

The pragma check_memory_accesses instructs the compiler to precede each access to
memory by a call to the appropriate one of:

__rt_rd?chk
__rt_wr?chk

where ? equals 1,2,4 for byte, short, long writes, respectively.
It is up to your library implementation to check that the address given is reasonable.

C Compilers
Global (program-wide) register variables

The pragmas f0 –f4 and r0 –r7 have no long form counterparts. Each introduces or
terminates a list of extern, file-scope variable declarations. Each such declaration declares
1-49Reference Guide
ARM DUI 0041B

a name for the same register variable.

For example:

#pragma r1/* 1st global register */
extern int *sp;
#pragma r2/* 2nd global register */
extern int *fp, *ap;/* synonyms */
#pragma r0/* end of global declaration */
#pragma f1
extern double pi;/* 1st global FP register */
#pragma f0

Any type that can be allocated to a register (see 1.6.8 Registers on page 1-31) can be
allocated to a global register. Similarly, any floating-point type can be allocated to
a floating-point register variable.

Global register r1 is the same as register v1 in the ARM Procedure Call Standard (APCS);
similarly r2 equates to v2, and so on. Depending on the APCS variant, between five and
seven integer registers (v1–v7, machine registers r4–r10) and four floating-point registers
(f4–f7) are available as register variables. In practice, it is probably unwise to use more than
three global integer register variables and two global floating-point register variables.

Provided the same declarations are made in each separate compilation unit, a global
register variable may exist program-wide.

Otherwise, because a global register variable maps to a callee-saved register, its value is
saved and restored across a call to a function in a compilation unit which does not use it as
a global register variable, such as a library function.

A corollary of the safety of direct calls out of a global-register-using compilation unit is that
calls back into it are dangerous. In particular, a global-register-using function called from
a compilation unit, which uses that register as a compiler-allocated register, will probably
read the wrong values from its supposed global register variables.

Currently, there is no check at link-time to ensure that direct calls are sensible. And even if
there were, indirect calls via function arguments pose a hazard which is harder to detect.
This facility must be used with care. Preferably, the declaration of the global register variable
should be made in each compilation unit of the program. See also __global_reg(n) on
page 1-51.

C Compilers
1.9.7 Function declaration keywords

Several function declaration options tell the compiler to give a function special treatment.
1-50 Reference Guide
ARM DUI 0041B

Note None of these keywords are portable to other C compilers.

__inline

This allows C functions to be inlined. The semantics of __inline are exactly the
same as the C++ inline keyword:

__inline int f(int x) {return x*5+1:}
int f(int x, int y) {return f(x), f(y);}

Currently, the compiler always inlines functions when __inline is used. Code
density and performance could be adversely affected if large functions are inlined.

__irq

This allows a C function to be used as an interrupt routine. All registers (except
floating-point registers) are preserved (not just those normally preserved under the
APCS). Also, the function is exited by setting the PC to lr–4 and the PSR to its
original value. This is not available in tcc.

__pure

By default, functions are assumed to be impure (ie. they have side-effects), so
function invocations are not candidates for common subexpression elimination.
__pure has the same effect as pragma noside_effects , and asserts that the
function declared is a pure function, invocations of which can be CSEs.
Note: A function is only properly defined as pure if its result depends only on the
value of its scalar argument. This means that pointers may not be passed into pure
functions because the compiler cannot tell how much they point at.

__swi
__swi_indirect

A SWI taking up to four arguments (in registers 0 to argcount –1) and returning up
to four results (in registers 0 to resultcount–1) can be described by a C function
declaration, which causes uses of the function to be compiled inline as a SWI.
For a SWI returning 0 results use:

void __swi(swi_number) swi_name (int arg1, ..., int argn);

For example:
void __swi(42) terminate_process(int arg1, ..., int argn);

For a SWI returning 1 result, use:
int __swi(s wi_number) swi_name (int arg1, ..., int argn);

For a SWI returning more than 1 result:
struct { int res1, ... resn }

__value_in_regs
__swi(swi_number) swi_name (int arg1, ... int argn);

Note: __value_in_regs is needed to specify that a (short) structure value is
returned in registers, rather than by the usual indirection mechanism specified in
the ARM Procedure Call Standard.

C Compilers
If there is an indirect SWI (taking the number of the SWI to call as an argument in
r12), calls through this SWI can similarly be described by a C function declaration
such as:
int __swi_indirect(swi_indirect_number)
1-51Reference Guide
ARM DUI 0041B

swi_name (int real_swi_number , int arg1, ... argn);

For example:
int __swi_indirect(0) ioctl(int swino, int fn, void *argp);

This might be called as:
ioctl(IOCTL+4, RESET, NULL);

__value_in_regs

This allows the compiler to return a structure in registers rather than returning
a pointer to the structure. For example:

typedef struct int64_structt {
unsigned int lo;
unsigned int hi;
} int64;
__value_in_regs extern int64 mul64(unsigned a, unsigned b);

See Chapter 5, ARM Procedure Call Standard for information on the default
method of passing and returning structures.

1.9.8 Variable declaration keywords

__global_reg(n)

Allocates the declared variable to a global integer register variable, in the same
way as #pragma rn . The variable must have an integral or pointer type. See also
1.9.6 Pragmas controlling code generation on page 1-48.

__global_freg(n)

Allocates the declared variable to a global floating-point register variable, in the
same way as #pragma fn . The variable must have type float or double. See also
1.9.6 Pragmas controlling code generation on page 1-48.
Note: The global register, whether specified by keyword or pragmas, must be
specified in all declarations of the same variable. So, the following is an error:

int x;
__global_reg(1) x;

C Compilers
1.9.9 Predefined macros

In the table below, where the value field is empty, the symbol concerned is merely defined,
as though by (for example) -D__arm on the command line.
1-52 Reference Guide
ARM DUI 0041B

Name Value Notes

__STDC__ 1 except in pcc mode
not defined in pcc mode

__arm defined if using armcc or tcc

__thumb defined if using tcc

__SOFTFP__ defined if compiling to use the software floating-point
library (apcs /softfp)

__APCS_NOSWST defined if apcs /noswst in use

__APCS_REENT defined if apcs /reent in use

__APCS_INTERWORK defined if apcs /interwork in use

__APCS_32 defined unless apcs /26bit is in use

__APCS_NOFP defined if apcs /nofp in use (no frame pointer)

__PCS_FPREGARGS defined if apcs /fpregargs is in use

__BIG_ENDIAN defined if compiling for a big-endian target

__TARGET_ARCH_xx xx represents the target architecture. So, for
example, using -arch 4T , __TARGET_ARCH_4T is
defined, and no other symbol starting with
__TARGET_ARCH_ is defined.

__TARGET_CPU_xx xx represents the target cpu. So, for example, with
-cpu ARM7TM , __TARGET_CPU_ARM7TM is defined,
and no other symbol starting __TARGET_CPU_ is
defined. If there is no target cpu, merely a target
architecture, the __TARGET_CPU_generic is
defined.

__TARGET_FEATURE_HALFWORD defined if the target architecture supports halfword
and signed byte access instructions.

 Table 1-10: Predefined macros

C Compilers

__TARGET_FEATURE_MULTIPLY defined if the target architecture supports the long

Name Value Notes
1-53Reference Guide
ARM DUI 0041B

*

multiply instructions MULL and MULAL.

__TARGET_FEATURE_THUMB defined if the target architecture is Thumb-aware

__ARMCC_VERSION gives the version number of the compiler. The value is
the same for armcc and tcc; it is a decimal number,
whose value can be relied on to increase
monotonically between releases. In release 2.11,
the value is 4.69.

__CLK_TCK 100 centisecond clock definition

__CC_NORCROFT 1 set by all Codemist compilers

__sizeof_int 4 sizeof(int) , but available in preprocessor
expressions

__sizeof_long 4 sizeof(long) , but available in preprocessor
expressions

__sizeof_ptr 4 sizeof(void *) , but available in preprocessor
expressions

 Table 1-10: Predefined macros

2-1Reference Guide
ARM DUI 0041B

This chapter describes the ARM Assembler. If you only need to understand the assembly
language output by the C compilers, see the datasheet for your device.

2.1 Overview 2-2
2.2 Command Syntax 2-2
2.3 Assembly Language Overview 2-6
2.4 Expressions and Operators 2-13
2.5 Directives 2-17
2.6 Symbolic Capabilities 2-23
2.7 Conditional Assembly: [, | and] 2-25
2.8 Repetitive Assembly: WHILE and WEND 2-26
2.9 Macros 2-26

Assembler2

Assembler
2.1 Overview

The ARM assembler is a two-pass assembler, processing its source files twice to reduce
the amount of internal state that it needs to keep.
2-2 Reference Guide
ARM DUI 0041B

The ARM assembler, armasm, compiles ARM assembly language into ARM Object Format
object code. This code can then be linked with object code produced by the ARM assembler
or the ARM C compiler, and with object libraries created by the ARM librarian.

The Thumb assembler, tasm, compiles both ARM and Thumb assembly language into ARM
Object Format object code.

2.2 Command Syntax
The command to invoke the ARM assemblers is one of:

armasm { options } sourcefile objectfile
tasm { options } -o objectfile sourcefile

2.2.1 Command-line options

The options are listed below. Permitted abbreviations are shown underlined .

-apcs option {/ qualifier }{/ qualifier ...}

Specifies whether the ARM Procedure Call Standard
(APCS) is in use, and also specifies some attributes of
CODE AREAs:

NONE No APCS registers set up

3 APCS version 3 registers set up

Qualifiers should only be used with 3.
See also Predeclared register names on page 2-4.

-arch architecture Sets the target architecture. Legitimate values are:
• 3

• 3M

• 4

• 4T
Some processor-specific instructions produce either errors
or warnings if assembled for the wrong target architecture.

- bigend Assembles code suitable for a big-endian ARM, (by setting
the built-in variable {ENDIAN} to big).

- check reglist Checks LDM and STM register lists to ensure that all
registers are provided in increasing register number order.
If this is not the case, a warning is given. This can be used
to help detect misuse of symbolic register names.

Assembler

-cpu ARMcore Sets the target ARM core. Legitimate values include:

• ARM6

• ARM7
2-3Reference Guide
ARM DUI 0041B

• ARM7M

• ARM7TM

• ARM8

• StrongARM

Some processor-specific instructions will produce warnings
if assembled for the wrong ARM core.

- depend dependfile Saves source file dependency lists, which are suitable for
use with make utilities.

- errors errorfile Outputs error messages to errorfile .

-g Outputs ARM Symbolic Debugger debugging tables,
suitable for use with armsd and the ARM Debugger for
Windows.

- help Displays a summary of the command-line options.

- i dir {,dir } Adds directories to the source file search path so that
arguments to GET/INCLUDE directives do not need to be
fully qualified. The search rule used is similar to the ANSI C
search rule; the current place is the directory where the
current file was found.

-list listingfile Several options work with -list :

- noterse Turns the terse flag off. When the terse
flag is on, lines skipped due to conditional
assembly do not appear in the listing.
With the terse flag off, these lines appear
in the listing. The default is on.

- width n Sets the listing page width. (Default is 79.)

- length n Sets the listing page length. Length zero
means an unpaged listing. (Default is 66.)

- xref Lists cross-referencing information on
symbols: where they were defined; and
where they were used, both inside and
outside macros. The default is off.

Assembler

- littleend Assembles code suitable for a little-endian ARM,
(by setting the built-in variable {ENDIAN} to little).
2-4 Reference Guide
ARM DUI 0041B

Predeclared register names

By default the following register names are predeclared:

• R0–R15

• r0–r15

• sp and SP

• lr and LR

• pc and PC

- maxcache n Sets the maximum source cache size. The default is 8MB.

- nocache Turns off source caching. Source caching is performed
when reading source files on the first pass, so that they
can be read from memory during the second pass.
The default is on.

- noesc Ignores C-style special characters (\n , \t , etc.).

-noregs Tells the assembler not to predefine implicit register names
(r0–r15, f0–f7, a1–a4, v1–v6, sl, fp, ip, sp, lr, pc).

- nowarn Turns off warning messages.

-pre define directive Pre-executes a SETx directive. This implicitly executes
a corresponding GBLx directive. The full SETx argument
must be quoted as it contains spaces, for example:

-pd "Version SETA 44"

-unsafe Changes into warnings any errors produced due to the
selected architecture and cpu.

-via file Opens file and reads in more armasm command-line
arguments. This is intended mainly for hosts such as a PC,
where command-line length is severely limited.

Thumb -16 Tells the assembler to interpret instructions as Thumb
instructions.This is equivalent to placing a CODE16
directive at the head of the source file.

-32 Tells the assembler to interpret instructions as ARM
instructions.

Assembler
If the APCS is in use, the following register names are also predeclared:

• a1–a4

• v1–v6
2-5Reference Guide
ARM DUI 0041B

• sl

• fp, ip, and sp

Qualifiers

The qualifiers are as follows:

/ reentrant Sets the re-entrant attribute for any code AREAs, and
predeclares sb (static base) in place of v6.

/32bit Informs the linker that the code being generated is written for
32-bit ARMs. The armasm built-in variable {CONFIG} is also set
to 32. This is the default setting.

/26bit Tells the linker that the code is intended for 26-bit ARMs. The
armasm built-in variable {CONFIG} is also set to 26. Note that
these options do not themselves generate particular
ARM-specific code, but allow the linker to warn of any mismatch
between files being linked, and also allow programs to use the
standard built-in variable {CONFIG} to determine the code to
produce.

/ swstackcheck Marks CODE AREAs as using sl for the stack limit register,
following the APCS (the default setting).

/ noswstackcheck Marks CODE AREAs as not using software stack-limit checking,
and predeclares an additional v-register:

v6 if re-entrant

v7 if not re-entrant

Assembler
2.3 Assembly Language Overview

Assembly language is the language which the assembler parses and compiles to produce
object code in ARM Object Format. This can be:
2-6 Reference Guide
ARM DUI 0041B

• ARM assembly language

• Thumb assembly language

• a mixture of both

This section deals with features that are common to both ARM and Thumb assembly
language. For language-specific information, see the ARM Architecture Reference Manual
(ARM DDI 0100), which describes every ARM and THUMB instruction in terms of syntax
and availability. Refer to the Software Development Toolkit User Guide (ARM DUI 0040) for
information on writing assembly language modules.

2.3.1 Case rules

Instruction mnemonics and register names may be written in uppercase or lowercase,
but not mixed. Directives must be written in uppercase.

2.3.2 Input lines

The general form of assembler input lines is:

{ label } { instruction } {; comment}

A space or tab should separate the label (where one is used) and the instruction. If no label
is used the line must begin with a space or tab. Any combination of these three items will
produce a valid line; empty lines are also accepted by the assembler and can be used to
improve the clarity of source code.

Line length

Assembler source lines may be up to 255 characters long.

To make source files easier to read, a long line of source can be split onto several lines by
placing a backslash character, ‘\ ’, at the end of a line. The backslash must not be followed
by any other characters (including spaces or tabs). The backslash with the end-of-line
sequence is treated by the assembler as white space.

Note Do not use the backslash with the end-of-line sequence within quoted strings.

2.3.3 AREAs

AREAs are independent, named, indivisible chunks of code and data manipulated by the
linker. The linker places each AREA in a program image according to the AREA placement
rules (ie. not necessarily adjacent to the AREAs with which it was assembled or compiled).
Conventionally, the output of an assemble or compilation consists of two AREAs:

• one for the code (usually marked read-only)

• one for the data which may be written to

Assembler
AREA syntax

The syntax of the AREA directive is:

AREA name{, attr }{, attr }...
2-7Reference Guide
ARM DUI 0041B

You may choose any name for your AREAs, but certain choices are conventional.
For example, |C$$code| is used for code AREAs produced by the C compiler, or for code
AREAs otherwise associated with the C library. AREA attributes are as follows:

ABS Is absolute (rooted at a fixed address).

ALIGN=expression Forces the start of the AREA to be aligned on a power-of-two
byte-address boundary. By default, AREAs are aligned on
a 4-byte word boundary, but the expression can have any
value between 2 and 32 inclusive.

BASED Rn Is the static base data AREA containing tables of address
constants locating static data items. Rn is a register,
conventionally r9. Any label defined within this AREA becomes
a register-relative expression which can be used with LDR and
STR instructions. For full details see Chapter 5, ARM
Procedure Call Standard .

CODE Contains machine instructions. READONLY is the default.

COMDEF Is the common AREA definition.

COMMON Is the common AREA.

DATA Contains data, not instructions. READWRITE is the default.

HALFWORD Indicates that the code AREA contains ARM halfword
instructions.

INTERWORK Indicates that the code AREA is suitable for ARM/Thumb
interworking.

NOINIT Indicates that data AREA is initialized to zero. It contains only
space reservation directives, with no initialized values.

PIC Indicates position-independent code. It will execute where
loaded without modification.

READONLY Indicates that this AREA will not be written to (default).

READWRITE Indicates that this AREA may be read and written to.

REENTRANT Indicates that the code AREA is re-entrant.

REL Is relocatable. It may be relocated by the linker (default).

Assembler
In ARM assembly language, each AREA begins with an AREA directive. If the directive is
missing, the assembler generates an AREA with an unlikely name (|$$$$$$$|) and
produces a diagnostic message. This limits the number of spurious errors caused by the
missing directive, but does not lead to a successful assembly. A re-entrant object generally
2-8 Reference Guide
ARM DUI 0041B

has a third AREA marked:

BASED sb

which will contain relocatable address constants. This allows the code area to be read-only,
position-independent and re-entrant, making it easily ROM-able.

2.3.4 ORG and ABS

The ORG (origin) directive sets the base address and the ABS (absolute) attribute of the
containing AREA, or of the following AREA if there is no containing AREA:

ORGbase-address

In some circumstances, this creates objects which cannot be linked. In general, it only
makes sense to use ORG in programs consisting of one AREA, to map fixed hardware
addresses such as trap vector locations. Otherwise, ORG should be avoided.

2.3.5 Symbols

Numbers, logical values, string values and addresses may be represented by symbols.
Symbols representing numbers or addresses, logical values and strings are declared using
the GBL and LCL directives, and values are assigned immediately by SETA, SETL and
SETS directives respectively (see section 2.6.2 Local and global variables on page 2-23).
Addresses are assigned by the assembler as assembly proceeds, some remaining in
symbolic, relocatable form until link time.

• Symbols must start with an uppercase or lowercase letter; the assembler treats the
two forms as distinct. Numeric characters and the underscore character may be
part of the symbol name. All characters are significant.

• Symbols should not use the same name as instruction mnemonics or directives.
While the assembler can distinguish between them through their relative positions
in the input line, a programmer may not be able to do so.

• Symbol length is limited by the 255-character line-length limit.

Symbol name delimiters

If there is a need to use a wider range of characters in symbols—for instance when working
with other compilers—use enclosing bars to delimit the symbol name; for example,
|C$$code| . The bars are not part of the symbol.

2.3.6 Labels

Labels are a special form of symbol, distinguished by their position at the start of lines.
The address given by a label is not explicitly stated, but is calculated during assembly.

Assembler
2.3.7 Local labels

The local label is a subclass of label, and begins with a number in the range 0-99.
Local labels work in conjunction with the ROUT directive and are useful for solving
2-9Reference Guide
ARM DUI 0041B

the problem of macro-generated labels. Unlike global labels, a local label may be defined
many times; the assembler uses the definition closest to the point of reference.

Beginning a local area label

The label area starts with the next line of source, and ends with the next ROUT directive or
the end of the program. To begin a local label area, use:

{ label } ROUT

Defining local labels

Local labels are defined as:

number { routinename }

When defining a local label, routinename need not be used. If omitted, it is assumed to
match the label of the last ROUT directive. It is an error to give a routine name when no label
has been attached to the preceding ROUT directive.

Making a reference to a local label

The syntax is:

%{x}{ y} n{ routinename }

where:

% Introduces the reference and may be used anywhere where an
ordinary label reference is valid.

x Tells the assembler where to search for the label:

B indicates backward

F indicates forward

If no direction is specified, the assembler looks both forward and
backward. However, searches will never go outside the local
label area (that is, beyond the nearest ROUT directives).

y Provides the following options:

A looks at all macro levels

T looks only at this macro level

If y is absent, the assembler looks at all macros from the current
level to the top level.

n {routinename } Is the number of the local label. If routinename is present, it is
checked against the enclosing ROUT label.

Assembler
2.3.8 Comments

The first semicolon on a line marks the beginning of a comment, except where
the semicolon appears inside a string constant. A comment alone is a valid line.
2-10 Reference Guide
ARM DUI 0041B

All comments are ignored by the assembler.

2.3.9 Constants

Numbers Numeric constants are accepted in three forms:

decimal for example, 123

hexadecimal for example, &7B

n_xxx where:

n is a base between 2 and 9

xxx is a number in that base

Strings Strings consist of opening and closing double quotes, enclosing
characters and spaces. If double quotes or dollar signs are used within a
string as literal text characters, they should be represented by a pair of the
appropriate character; for example $$ for $. The standard C escape
sequences can be used within string constants.

Boolean The Boolean constants “true” and “false” should be written as {TRUE}
and {FALSE} .

Characters Character constants consist of opening and closing single quotes,
enclosing either a single character or an “escaped” character, using the
standard C escape characters.

2.3.10 The END directive

Every assembly language source must end with:

END

on a line by itself.

2.3.11 Symbolic assembly

ARM instructions

LDR can be used to generate literal constants when an immediate value cannot be moved
into a register because it is out of range of the MOV and MVN instructions. The syntax is:

LDR register ,= expression

If expression is a numeric constant, a MOV or MVN will be used rather than an LDR if the
constant can be constructed by either of these instructions. Otherwise, the assembler will
generate a program-relative LDR, and if the desired literal does not already exist within the
addressable range of this LDR, it will place the literal in the next literal pool, (see also LTORG
in 2.5.4 Organizational directives: END, ORG, LTORG and KEEP on page 2-19).

Assembler
Additionally, LDR or STR can be used to transfer data to or from an address specified by a
label (optionally with an offset) as follows:

opcode { cond }{B} register , label-expression
2-11Reference Guide
ARM DUI 0041B

When used in this form, label-expression must either be addressable PC-relative from
this instruction, or must be a register-relative label created using the ‘^’ directive with a
register operand, (see 2.5.3 Describing the layout of store: ^ and # on page 2-18).

THUMB instructions

The assembler also accepts the following forms:

LDR source, label

LDR source, =<expr>

where:

label is a program label defined within the addressable range of this instruction
(ie. within the range +4 to +1024, allowing for the PC being offset from the
current instruction by 4.

expr may be either:

• an expression evaluating to a numeric constant

• an external symbol, optionally + or - a numeric constant

The value of expr is placed in the next literal pool. If the same numeric
constant is referenced more than once in a given literal pool, only one
copy of the constant is placed in the literal pool. If an external symbol is
used, a relocation directive will be placed in the object file to relocate the
value in the literal pool by the value of the external symbol when the object
file is linked.

2.3.12 Pseudo-instructions

The assemblers support several pseudo-instructions which are translated into the
appropriate combination of ARM instructions at assembly time.

ARM instructions

ADR The pseudo-instruction ADR assembles address to register. Because the
ARM has no “load effective address” instruction, the assembler provides
ADR, which always assembles to produce ADD or SUB instructions to
generate the address. The syntax is:

ADR{condition }{L} register , expression

The expression can be register-relative, program-relative or numeric.
ADR must assemble to one instruction, whereas ADRL allows a wider
range of effective addresses to be assembled in two instructions.

Assembler
NOP NOP generates the preferred no-operation code for a given ARM

processor, which is:

MOV R0,R0.
2-12 Reference Guide
ARM DUI 0041B

NOP is really a directive and so cannot be used conditionally; not
executing a no-operation is the same as executing it, so conditional
execution would be pointless.

THUMB instructions

ADR places address of label in reg :

ADR reg, label

label must be defined locally, it cannot be imported.

The range of ADR is limited: +4 to +1024 from the current instruction.
label must be aligned.

MOV has the syntax:

MOV Rd, Rs

If Rd and Rs are both low registers, a MOV instruction is synthesized using
an ADD immediate instruction with a zero immediate value. This MOV Rd,
Rs generates the opcode for ADD Rd, Rs, #0

This has the side effect of altering the condition codes.

NOP The Thumb NOP pseudo instruction generates a MOV R8,R8 instruction.

NOP

The ARM NOP generates a MOV R0, R0 instruction. Hence, the condition
codes are unaltered by ARM or Thumb NOPs.

Assembler
2.4 Expressions and Operators

Expressions are combinations of simple values, unary and binary operators, and
parentheses. There is a strict order of precedence in their evaluation:
2-13Reference Guide
ARM DUI 0041B

1 Expressions in parentheses are evaluated first.

2 Operators are applied in precedence order.

Adjacent unary operators evaluate from right to left; binary operators of equal precedence
are evaluated from left to right. The assembler includes an extensive set of operators for use
in expressions, many of which resemble their counterparts in high-level languages.

2.4.1 Unary operators

Unary operators have the highest precedence (bind most tightly) and are evaluated first.
A unary operator precedes its operand and adjacent operators are evaluated from right to
left.

Operator Usage Explanation

? ?A Number of bytes generated by line defining label A.

BASE
INDEX

:BASE:A
:INDEX:A

If A is a PC-relative or register-relative expression:

BASE returns the number of its register
component, and

INDEX returns the offset from that base register.

BASE and INDEX are most useful in macros.

+ and - +A
-A

Unary plus. Unary negate. + and – can act on numeric,
program-relative and string expressions.

LEN :LEN:A Length of string A.

CHR :CHR:A ASCII string of A.

STR :STR:A Hexadecimal string of A.
STR returns an eight-digit hexadecimal string
corresponding to a numeric expression, or the string T
or F if used on a logical expression.

NOT :NOT:A Bitwise complement of A.

LNOT :LNOT:A Logical complement of A.

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}.

 Table 2-1: Operator precedence

Assembler
2.4.2 Binary operators

Binary operators are written between the pair of sub-expressions on which they operate.
Operators of equal precedence are evaluated in left to right order. The binary operators are
2-14 Reference Guide
ARM DUI 0041B

presented below in groups of equal precedence, in decreasing precedence order.

Multiplicative operators

These are the binary operators which bind most tightly and have the highest precedence:

These operators act only on numeric expressions.

String manipulation operators

In the two slicing operators LEFT and RIGHT:

A must be a string

B must be a numeric expression.

Operator Usage Explanation

* A*B multiply

/ A/B divide

MOD A:MOD:B A modulo B

 Table 2-2: Multiplicative operators

Operator Usage Explanation

LEFT A:LEFT:B the left-most B characters of A

RIGHT A:RIGHT:B the right-most B characters of A

CC A:CC:B B concatenated on to the end of A

 Table 2-3: String manipulation operators

Assembler
Shift operators

The shift operators act on numeric expressions, shifting or rotating the first operand by
the amount specified by the second.
2-15Reference Guide
ARM DUI 0041B

Note: SHR is a logical shift and does not propagate the sign bit.

Addition and logical operators

The bitwise operators act on numeric expressions. The operation is performed
independently on each bit of the operands to produce the result.

Relational operators

Relational operators act on two operands of the same type to produce a logical value:

• numeric

• program-relative

• register-relative

• strings

Operator Usage Explanation

ROL A:ROL:B rotate A left by B bits

ROR A:ROR:B rotate A right by B bits

SHL A:SHL:B shift A left by B bits

SHR A:SHR:B shift A right by B bits

 Table 2-4: Shift operators

Operator Usage Explanation

AND A:AND:B bitwise AND of A and B

OR A:OR:B bitwise OR of A and B

EOR A:EOR:B bitwise Exclusive OR of A and B

+ A+B add A to B

- A-B subtract B from A

 Table 2-5: Addition and logical operators

Assembler
Strings are sorted using ASCII ordering. String A will be less than string B if it is either a
leading substring of string B, or if the left-most character of A in which the two strings differ
is less than the corresponding character in string B.
2-16 Reference Guide
ARM DUI 0041B

Note that arithmetic values are unsigned, so the value of 0>–1 is {FALSE} .

Boolean operators

These are the weakest binding operators with the lowest precedence.

The Boolean operators perform the standard logical operations on their operands, which
should evaluate to {TRUE} or {FALSE} .

Operator Usage Explanation

= A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= A/=B A not equal to B

<> A<>B A not equal to B

 Table 2-6: Relational operators

Operator Usage Explanation

LAND A:LAND:B logical AND of A and B

LOR A:LOR:B logical OR of A and B

LEOR A:LEOR:B logical Exclusive OR of A and B

 Table 2-7: Boolean operators

Assembler
2.5 Directives

2.5.1 Storage reservation and initialization: DCB, DCW and DCD
2-17Reference Guide
ARM DUI 0041B

DCB defines one or more bytes: can be replaced by =

DCW defines one or more halfwords (16-bit numbers)

DCD defines one or more words: can be replaced by &

% reserves a zeroed area of store

The syntax of DCB, DCW, DCD is:

{ label } directive expression-list

DCD can take program-relative and external expressions as well as numeric ones.
In the case of DCB, the expression-list can include string expressions, whose
characters are loaded into consecutive bytes in store. Unlike C strings, armasm strings do
not contain an implicit trailing NUL, so a C string has to be fabricated as follows:

C_string DCB "C_string",0

The syntax of % is:

{ label } % numeric-expression

This directive sets to zero the number of bytes specified by numeric-expression .

An external expression consists of an external symbol followed optionally by a constant
expression. The external symbol must come first.

2.5.2 Floating-point store initialization: DCFS and DCFD

DCFS defines single-precision floating-point values

DCFD defines double-precision floating-point values

The syntax of these directives is:

{ label } directive fp-constant {, fp-constant }

Single-precision numbers occupy one word, and double-precision numbers occupy two;
both should be word-aligned. An fp-constant takes one of the following forms:

{-} integer E{-} integer For example; 1E3, -4E-9
{-}{ integer }. integer {E{-} integer } For example; 1.0, -.1, 3.1E6

E may also be written in lowercase.

Thumb DCD and Thumb

If you use the DCD directive with a Thumb label within a code area, the value stored is
that of the Thumb label plus 1. This is because bit 0 of the register used in a BX instruction
must be set to 1 in order to change state from ARM to Thumb. To avoid this, use the DATA
directive when decoding data in code. See 2.5.11 Thumb-specific directives: CODE 16,
CODE32 and DATA on page 2-22 for details of the DATA directive.

Assembler
2.5.3 Describing the layout of store: ^ and #

^ sets the origin of a storage map

reserves space within a storage map
2-18 Reference Guide
ARM DUI 0041B

The syntax of these directives is:

^ expression {, base-register }
{ label } # expression

where:

In a ^ directive with a base-register , the register becomes implicit in all symbols defined
by # directives which follow, until cancelled by a subsequent ^ directive.
These register-relative symbols can later be quoted in load and store instructions.

For example:

^ 0,r9
4

Lab # 4
LDR r0,Lab

is equivalent to:

LDR r0,[r9,#4]

^ This directive sets the origin of a storage map at the address specified by
expression . A storage-map location counter, @, is also set to the same
address. The expression must be fully evaluable in the first pass of
the assembly, but may be program-relative. If no ^ directive is used, the
@ counter is set to zero; it can be reset any number of times using ^ to
allow many storage maps to be established.

Space within a storage map is described by the # directive. Every time # is
used its label (if any) is given the value of the storage location counter
@, and @ is then incremented by the number of bytes reserved.

Assembler
2.5.4 Organizational directives: END, ORG, LTORG and KEEP

END Stops the processing of a source file. If assembly of the file was invoked by a
2-19Reference Guide
ARM DUI 0041B

2.5.5 Links to other object files: IMPORT and EXPORT

IMPORT symbol {[FPREGARGS]}{,WEAK}

Provides the assembler with a name (symbol) which is not defined in this
assembly, but which is resolved at link time to a symbol defined in a separate
object file. The symbol is treated as a program address; if the WEAK attribute is
given, the linker does not fault an unresolved reference to this symbol, but zeroes
the location referring to it. If [FPREGARGS] is present, the symbol defines a
function which expects floating-point arguments passed in floating-point registers.

EXPORTsymbol {[FPREGARGS,DATA,LEAF]}

Declares a symbol for use at link time by other, separate object files.

FPREGARGSdefines a function which expects floating-point arguments
to be passed in floating-point registers

DATA defines a code-segment datum rather than a function or a
procedure entry point

LEAF denotes that it is a leaf function which calls no other
functions

GET directive, the assembler returns and continues after the GET directive (see
2.5.6 Links to other source files: GET/INCLUDE on page 2-20). If END is
reached in the top-level source file during the first pass without any errors, the
second pass begins. No END directive is an error.

ORG numeric-expression

Determines a program’s origin; it sets the initial value of the program location
counter. Only one ORG is allowed in an assembly and no ARM instructions or
store initialization directives may precede it. If there is no ORG, the program is
relocatable and the program counter is initialized to 0.

LTORG Directs the current literal pool to be assembled immediately following it.
A default LTORG is executed at every END directive which is not part of a nested
assembly. Large programs may need several literal pools, each closer to their
literals’ location to avoid violating LDR’s 4KB offset limit.

KEEP {symbol}

Retains local (non-exported) symbols in the assembler’s symbol table.
The assembler does not by default describe local (non-exported) symbols in its
output object file (see 2.5.5 Links to other object files: IMPORT and
EXPORT). If the KEEP directive is used alone, all symbols are kept; if only
a specific symbol needs to be kept it can be specified by name.

Assembler
2.5.6 Links to other source files: GET/INCLUDE

GET filename

Includes a file within the file being assembled. This may in turn use GET directives
2-20 Reference Guide
ARM DUI 0041B

to include more files. Once assembly of the included file is complete, assembly
continues at the line following the GET directive.

INCLUDE filename

Is a synonym for GET.

2.5.7 Diagnostic generation: ASSERT, !, and INFO

ASSERT logical-expression

Supports diagnostic generation. If the logical-expression returns {FALSE} ,
a diagnostic is generated during the second pass of the assembly. ASSERT can be
used both inside and outside macros.

! arithmetic-expression, string-expression

Is related to ASSERT, but is inspected on both passes of the assembly, providing a
more flexible means for creating custom error messages. The arithmetic
expression is evaluated; if it equals zero, no action is taken during pass one, but
the string is printed as a warning during pass two. If the expression does not equal
zero, the string is printed as a diagnostic and the assembly halts after pass one.

INFO arithmetic-expression, string-expression

The arithmetic expression is evaluated. It it equals zero, no action is taken during
pass one, but the string is prefixed with the source file and line number, and is
printed as a warning during pass two. If the expression does not equal zero,
the string is printed as a diagnostic and the assembly halts after pass one.

2.5.8 Titles: TTL and SUBT

Titles can be specified within the code using the TTL (title) and SUBT (subtitle) directives.
Each is used on all pages until a new title or subtitle is called.

If more than one appears on a page, only the latest will be used: the directives alone create
blank lines at the top of the page.

The syntax is:

TTL title
SUBT subtitle

2.5.9 Dynamic listing options: OPT

The OPT directive is used to set listing options from within the source code, providing that
listing is turned on.

The default setting is to produce a normal listing including the declaration of variables,
macro expansions, call-conditioned directives and MEND directives, but without producing a
listing during the first pass.

Assembler
These settings can be altered by adding the appropriate values from the list, and using them
with the OPT directive as shown in Table 2-8: OPT directive settings :
2-21Reference Guide
ARM DUI 0041B

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw: issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on the listing of SET, GBL and LCL directives.

32 Turns off the listing of SET, GBL and LCL directives.

64 Turns on the listing of macro expansions.

128 Turns off the listing of macro expansions.

256 Turns on the listing of macro calls.

512 Turns off the listing of macro calls.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on the listing of conditional directives.

8192 Turns off the listing of conditional directives.

16384 Turns on the listing of MEND directives.

32768 Turns off the listing of MEND directives.

 Table 2-8: OPT directive settings

Assembler
2.5.10 Miscellaneous directives: ALIGN, NOFP, RLIST and ENTRY

ALIGN {power-of-two {,offset-expression }}
2-22 Reference Guide
ARM DUI 0041B

2.5.11 Thumb-specific directives: CODE 16, CODE32 and DATA

After store-loading directives have been used, the program counter (PC) will
not necessarily point to a word boundary. If an instruction mnemonic is
encountered, the assembler inserts up to three bytes of zeros to achieve
alignment. However, an intervening label may not then address the following
instruction. If this label is required, ALIGN should be used. On its own,
ALIGN sets the instruction location to the next word boundary; the optional
power-of-two parameter can be used to align with a coarser byte
boundary, and the offset-expression parameter to define a byte offset
from that boundary.

NOFP In some circumstances there will be no support in either target hardware or
software for floating-point instructions. In these cases the NOFP directive can
be used to ensure that no floating-point instructions or directives are allowed
in the code.

RLIST The RLIST (register list) directive can be used to give a name to a set of
registers to be transferred by LDM or STM.The syntax of this directive is:

label RLIST list-of-registers

If the -CheckReglist command-line option is selected, the registers in
a register list must be supplied in increasing register order. Any failure to do
this will result in a warning being produced. This can be used to help check
that symbolic register names have not been misused.
list-of-registers is a comma-separated list of register names and/or
ranges enclosed in braces. For example:

Context RLIST {r0-r6,r8,r10-r12,r15}

ENTRY The ENTRY directive declares its offset in its containing AREA to be the
unique entry point to any program containing this AREA.

Thumb CODE16 Tells the assembler that subsequent instructions are to be interpreted as
16-bit (Thumb) instructions.

CODE32 Tells the assembler that subsequent instructions are to be interpreted as
32-bit (ARM) instructions.

DATA Tells the assembler that the label is a “data-in-code” label (ie. it defines an
area of data within a code segment). You must specify this directive if you
are defining data in a code area.

Assembler
2.6 Symbolic Capabilities

2.6.1 Setting constants: EQU, *, RN, FN, CP and CN
2-23Reference Guide
ARM DUI 0041B

EQU and * Give a symbolic name to a fixed or program-relative value. The syntax is:

label EQU expression
label * expression

RN Defines register names. Registers can only be referred to by name. The
names R0-R15, r0-r15, PC, pc, LR and lr, are predefined.

FN Defines the names of floating-point registers. The names F0-F7 and f0-f7
are predefined. The syntax is:

label RN numeric-expression
label FN numeric-expression

CP Gives a name to a coprocessor number, which must be within the range
0 to 15. The names p0-p15 are predefined.

CN Names a coprocessor register number; c0-c15 are predefined.
The syntax is:

label CP numeric-expression
label CN numeric-expression

2.6.2 Local and global variables

While most symbols have fixed values determined during assembly, variables have values
which may change as assembly proceeds.

GBL and LCL

The assembler supports both global and local variables. The syntax is:

directive variable -name

The scope of global variables extends across the entire source file while that of local
variables is restricted to a particular instantiation of a macro (see 2.9 Macros on page 2-26).

GBLA Declares a global arithmetic variable.
Values of arithmetic variables are 32-bit unsigned integers.

GBLL Declares a global logical variable.

GBLS Declares a global string variable.

LCLA Declares and initializes a local arithmetic variable (initial state zero).

LCLL Declares and initializes a local logical variable (initial state false).

LCLS Declares and initializes a local string variable (initial state null string).

Variables must be declared before use with one of these directives.

Assembler
SET

The value of a variable can be altered using the relevant one of the following three directives:

SETA sets the value of an arithmetic variable
2-24 Reference Guide
ARM DUI 0041B

SETL sets the value of a logical variable

SETS sets the value of a string variable

The syntax of these directives is:

variable-name directive expression

where expression evaluates to the value being assigned to the variable named.
For example:

VersionNumber SETA 21

VersionString SETS "Version 2.1"

Debug SETL {TRUE}

Note When you set the value of a string variable, you must use quotes, as shown in the above
example.

2.6.3 Variable substitution: $

Once a variable has been declared, its name cannot be used for any other purpose, and any
attempt to do so will result in an error. However, if the $ character is prefixed to the name,
the variable’s value will be substituted before the assembler checks the line’s syntax. Logical
and arithmetic variables are replaced by the result of performing a :STR: operation on them
(see 2.4.1 Unary operators on page 2-13), string variables are replaced by their value.

2.6.4 Built-in variables

There are several built-in variables. They are:

{PC} or . Current value of the program location counter.

{VAR} or @ Current value of the storage area location counter.

{TRUE} Logical constant true.

{FALSE} Logical constant false.

{OPT} Value of the currently-set listing option. The OPT directive can be
used to save the current listing option, force a change in it or
restore its original value.

{CONFIG} Has the value 32 if the assembler is in 32-bit program counter
mode, and the value 26 if it is in 26-bit mode.

{ENDIAN} Has the value big if the assembler is in big-endian mode, and
the value little if it is in little-endian mode.

Assembler

{CODESIZE} Has the value 16 if compiling Thumb code. Otherwise it is 32.

{CPU} Has the name of the selected cpu , or generic ARM if no cpu
2-25Reference Guide
ARM DUI 0041B

2.7 Conditional Assembly: [, | and]
Sections of a source file may be assembled conditionally, only if certain conditions are true.

[or IF marks the start of the condition

] or ENDIF marks the end of the condition

| or ELSE provides an else construct

The syntax is:

[logical-expression
... code ...
|
... code ...
]

Note that [, | and] may not be the first character of a line. If logical-expression is
true, the section will be assembled. If it is false, the second piece of code (with its beginning
marked by | and the end by]) will be assembled instead. Lines of code skipped during
conditional assembly will not be listed unless the assembler is switched from its default terse
mode by the -NOTERSE command-line switch.

has been specified.

{ARCHITECTURE} Has the value of the selected ARM architecture:
• 3

• 3M

• 4

• 4T

{PCSTOREOFFSET} Is the offset between the address of the instructions:

STR PC,[...]

or

STM Rb,{... PC} instruction

with the value of PC stored out. This varies depending on
the CPU and architecture specified.

Assembler
2.8 Repetitive Assembly: WHILE and WEND

The conditional looping statement, useful for generating repetitive tables, is provided in
the assembler by the WHILE...WEND directives. This produces an assembly-time loop, not
2-26 Reference Guide
ARM DUI 0041B

a runtime loop. Because the test for the WHILE condition is made at the top of the loop, it is
possible that no code will be generated during assembly; lines are listed as for conditional
assembly. The syntax is:

WHILE logical-expression
... code ...
WEND

2.9 Macros
Macros are useful when a group of instructions and/or directives is frequently needed. The
ARM assembler will replace the macro name with its definition. Macros may contain calls to
other macros, nested up to 255 levels.

2.9.1 Defining a macro

Two directives are used to define a macro. The syntax is:

MACRO
{$ label } macroname {$ parameter1 }{,$ parameter2 }{,$ parameter3 }..

... code ...
MEND

The MACRO directive must be followed by a macro prototype statement on the next line.
This tells the assembler the name of the macro and its parameters. A label is optional, but
is useful if the macro defines internal labels. Any number of parameters can be used; each
must begin with $ to distinguish them from ordinary program symbols.

Within the macro body, $label , $parameter , etc., can be used in the same way as any
other variables (see 2.6.2 Local and global variables on page 2-23, and 2.6.3 Variable
substitution: $ on page 2-24). They will be given new values each time the macro is called.

Note that the $label parameter is simply treated as another parameter to the macro.
The macro itself describes which labels are defined where. The label does not represent
the first instruction in the macro expansion. For instance, in a macro that uses several
internal labels (eg. for loops), it is useful to define each internal label as the base label with
a different suffix.

Sometimes a macro parameter or label needs to be appended by a value. The appended
value should be separated by a dot, which the assembler will ignore once it has used it
to recognize the end of the parameter and label.

For example:

$label .1
$label . loop
$label .$ count

Assembler
The end of the macro definition is signified by the MEND directive. There must be
no unclosed WHILE/WEND loops or conditional assembly when the MEND directive
is reached. Macro expansion terminates at MEND. However it can also be
terminated with the MEXIT directive, which can be used in conjunction with
2-27Reference Guide
ARM DUI 0041B

WHILE/WEND or conditional assembly.

2.9.2 Setting default parameter values

Default values can be set for parameters by following them with an equals sign and
the default value. If the default has a leading or trailing space, the whole value
should appear in quotes, as shown below:

...{$parameter="default value"}

2.9.3 Macro invocation

A macro defined with a pattern such as:

$labxxxx $arg1,$arg2=5,$arg3

can be invoked as:

Labelxxxx val1,val2,val3

An omitted actual argument is given a null (empty string) value. To force use of
the default value, use “|” as the actual argument.

Note You cannot use an instruction name as a macro name, or as the first part of a
macro name.

3-1Reference Guide
ARM DUI 0041B

This chapter introduces the ARM linker.

3.1 Introduction 3-2
3.2 Command Syntax 3-4
3.3 Library Module Inclusion 3-12
3.4 Area Placement and Sorting Rules 3-13
3.5 Linker Predefined Symbols 3-14
3.6 Handling Relocation Directives 3-16
3.7 Automatic Inclusion of C libraries 3-19

Linker3

Linker
3.1 Introduction

The purpose of the ARM linker is to combine the contents of one or more object files
(the output of a compiler or assembler) with selected parts of one or more object libraries,
3-2 Reference Guide
ARM DUI 0041B

to produce an executable program.

3.1.1 Linker functions

The ARM linker performs the following functions:

• resolves symbolic references between object files

• extracts from object libraries the object modules needed to satisfy otherwise
unsatisfied symbolic references

• sorts object fragments (AOF areas) according to their attributes and names, and
consolidates similarly attributed and named fragments into contiguous chunks (see
3.4 Area Placement and Sorting Rules on page 3-13)

• relocates (fully or partially) relocatable values

• generates an output image, possibly comprising several files (or a partially linked
object file instead)

3.1.2 Linker input

The ARM linker, armlink, accepts as input:

• one or more separately-compiled or separately-assembled object files written in
ARM Object Format (AOF) (see Chapter 14, ARM Object Format)

• optionally, one or more object libraries in ARM Object Library Format
(see Chapter 13, ARM Object Library Format)

3.1.3 Linker output

The ARM linker can produce output in any of the following formats:

ARM Object Format See Chapter 14, ARM Object Format .

ARM Image Format See Chapter 12, ARM Image Format .

ARM Executable ELF Format See Chapter 16, ELF File Format .

ARM Shared Library Format A read-only position-independent re-entrant shareable code
segment (or shared library), written as a plain binary file,
with a stub containing read-write data, entry veneers, etc.,
written in ARM Object Format (see Chapter 14, ARM
Object Format for details).

Linker

Scatter-loading format Enables a user to partition a program image into regions
which can be positioned independently in memory.
The linker generates the symbols necessary to allow a
3-3Reference Guide
ARM DUI 0041B

small piece of code to load the regions’ memory at
addresses different to their execution addresses.
Scatter loading is described in the Software Development
Toolkit User Guide (ARM DUI 0040).

ARM Overlay Format A root segment written in ARM Image Format (AIF), with a
collection of overlay segments, each written as a plain
binary file. Overlays may be:

static each segment is bound to a fixed address at
link time

dynamic each segment may be relocated during loading

Overlays are described in the Software Development
Toolkit User Guide (ARM DUI 0040).

Plain binary format Relocated to a fixed address (see Chapter 17, Other
File Formats for details).

VLSI-Extended Intellec Hex Format

Suitable for driving the Compass integrated circuit design
tools (see Chapter 17, Other File Formats for details).

Linker
3.2 Command Syntax

The format of the linker command is:

armlink options input-file-list
3-4 Reference Guide
ARM DUI 0041B

where:

3.2.1 General command-line options

- debug

Includes debug information in the output file. This is the default.

-errors file

Redirects the standard error stream to file (diagnostics will be filed there). This is
especially useful under DOS, as stderr cannot be redirected using normal
command-line redirection.

- help

Prints a screen of help text summarizing the linker’s options and exit with a good return
code.

- info topic

Prints information about a number of specified topics during the link process.

topic is a comma-separated list of keywords. A keyword may be one of
the following:

options Means one or more command-line options. If an option takes an
argument, a space must separate the argument from the keyword.
Options are case-insensitive. In the remainder of this section, the
permitted abbreviations recognized by armlink are shown underlined .

input-list Is one or more object files and libraries separated by spaces. Input files,
libraries and linker options may also be given in a file used as an
argument to the -via option. This is especially convenient when the
input file list is long.

The input list is strictly ordered as given. For example:

file1 file2 –via vf1 file3 –via vf2 file4

yields the input file list:

file1 file2 vf1/1 vf1/2 .. file3 vf2/1 vf2/2 .. file4

where vf1/1 , vf1/2 , ... are the first, second..., files listed with -via .
Each of the files in the input list must be in ARM Object Format
(compiled or assembled files) or ARM Object Library Format (libraries).

Linker
totals Reports the total code and data sizes in the image. The totals are broken

down into separate totals for object files and library files.

sizes Gives a more detailed breakdown of the code and data sizes on an object
by object basis.
3-5Reference Guide
ARM DUI 0041B

interwork Lists all calls for which the ARM/Thumb interworking veneer was
necessary.

unused Lists all unused AREAs, when used with the -remove option.

-list file

Redirects the standard output stream to file . This is especially useful in conjunction
with -map , -xref and -symbols .

-map

Creates a map of the base and size of each area in the output image. This option is
most useful in conjunction with the -shl and -overlay options. The map output is
produced on the standard output stream (from where it can be redirected to a file using
the host’s stream redirection facilities or the -list option).

- nodebug

Turns off the inclusion of debug information in the output file. If objects are compiled or
assembled without debugging information, the linker still includes low-level symbolic
debugging data unless the -nodebug option is specified.

- output file

Names the linker’s final output; this is often the name of the image file.

- symbols file

Lists each symbol used in the link step (including linker-generated symbols), and its
value, to file . A filename of – (minus) names the standard output stream.

- verbose

Prints messages indicating progress of the link operation. Giving the option twice
makes it even more verbose (this may be abbreviated to -vv).

-via file

Reads a further list of input filenames and linker options from file. There may be no more
than 64 words on each line of a VIA file, and an option may not be split across more
than one line. Conventionally, each filename and option is given on a separate line.
There may be multiple VIA options, and VIA options may be nested.

- xref

Lists references between input areas (most useful with the -overlay option).
The cross-reference list is produced on the standard output stream (from where it can
be redirected to a file using the host’s stream redirection facilities or -list).

Linker
3.2.2 Output format options

The following options each select a different output format (so are mutually exclusive):
3-6 Reference Guide
ARM DUI 0041B

-aif Generates an output image in executable ARM Image Format (AIF).
This is the default if no output format option is given. The default load
address for an AIF image is 0x8000 (32KB). Any other address
(greater than 0x80) can be specified by using the -Base option
(see 3.2.4 Special command-line options on page 3-9). AIF is
described in Chapter 12, ARM Image Format .

-aif - relocatable

Generates a relocatable AIF image which self-relocates to its load
address when entered.

-aif - relocatable - workspace n

Generates a relocatable AIF image which, when entered, copies
itself to within n bytes of the top of memory and self-relocates to that
address. For a description of -Workspace see 3.2.4 Special
command-line options on page 3-9).
Some fields of the AIF header and the self-relocation code generated
by the linker can be customized by giving your versions in areas
called AIF_HDR and AIF_RELOC, respectively, in the first object file
in the input list. AIF_HDR must be exactly 128 bytes long (for further
details see Chapter 12, ARM Image Format).

-aof Generates partially-linked output in ARM Object Format (AOF),
suitable for inclusion in a subsequent link step. AOF is described in
Chapter 14, ARM Object Format .

-bin Generates a plain binary image. The default load address for
a binary image is 0. Any other address can be specified using
the -Base option (see 3.2.4 Special command-line options on
page 3-9). Plain binary images are described in Chapter 17, Other
File Formats .

Linker

-bin -aif Generates a plain binary image preceded by an AIF header which
describes it. This format is intended for use by simple program
loaders and is the format of choice for them.
3-7Reference Guide
ARM DUI 0041B

Such an image cannot be executed by loading it at its load address
and entering it at its first word: the AIF header must first be discarded
and the image must be entered at its entry point. As with a plain AIF
image, the base address, which defaults to 0, can be set using the
-Base option (see 3.2.4 Special command-line options on
page 3-9). Note that with -bin -aif , the base address is the
address of the binary image, not the address of the AIF header
(which is discarded). A separate base address can be given for the
image’s data segment using the -data option (see 3.2.4 Special
command-line options on page 3-9); otherwise, by default, data is
linked immediately following code. This option directly supports
images with code in ROM and data in RAM.

-elf Generates an ELF format image.

-ihf Generates a plain binary image encoded in VLSI Extended Intellec
Hex Format. The output is ASCII-coded, is always big-endian, and is
suitable for driving the Compass integrated circuit design tools
(see Chapter 17, Other File Formats for details).

- overlay file Generates a statically-overlaid image, as described in file .
The output is a root AIF image together with a collection of plain
binary overlay segments. Although the static overlay scheme is
independent of the target system, parts of the overlay manager are
not, and must be re-implemented for each target environment.
Overlays are described in the Software Development Toolkit User
Guide (ARM DUI 0040).

- overlay file - relocatable

Generates a dynamically relocatable overlaid image, as described in
file . The output is a relocatable AIF root image together with
a collection of relocatable plain binary overlay segments. Although
the dynamic overlay scheme is independent of the target system,
parts of the overlay manager are not, and must be re-implemented
for each target environment.
Overlays are described in the Software Development Toolkit User
Guide (ARM DUI 0040).

Linker

-shl file Generates a position-independent, re-entrant, read-only, shareable
library, suitable for placement in ROM, together with a non re-entrant
stub in ARM Object Format (in the file named by the -output
3-8 Reference Guide
ARM DUI 0041B

3.2.3 Scatter-loading command-line options

Scatter loading is described in detail in the Software Development Toolkit User Guide
(ARM DUI 0040).

The syntax for scatter loading is:

-scatter file

The linker generates a scatter-loaded image when this option is present on the linker
command line.

Overlays

The options -scatter and -overlay are mutually exclusive. If a scatter-loaded
application requires overlays, the scatter-load description file should be used to specify the
overlays.

keyword) which can be used in a subsequent client link step. A
description of what is to be exported from the library is given in the
file, which also contains the name of the file to hold the shareable
library image.

-shl file - reentrant

As for -shl , except that a re-entrant stub is generated rather than a
non re-entrant stub. A re-entrant stub is required if some other
shared library is to refer to this one (by including the code of the
re-entrant stub in it). Dually, a re-entrant stub demands a re-entrant
client. Usually, a client application is not re-entrant (multi-threadable),
so the default non re-entrant stub is useful more often.

-split Tells the linker to output the read-only and read-write image sections
to separate output files. It may be used only in conjunction with -bin
and -ihf image types, and is meaningful only if separate read-only
and read-write base addresses have been specified (see 3.2.4
Special command-line options on page 3-9).
This example produces a read-only file file.ro and a read-write
file file.rw :

-o file -split -ro robase -rw rwbase

This example produces a read-only file file and a read-write file
file.dat :

-o file -split -b robase -data rwbase

Linker
Ignored linker options

Several options are ignored when -scatter is present. These options are:

-ro -base
3-9Reference Guide
ARM DUI 0041B

-base
-rw -base
-data
-split

Output file directory

When -bin is present on the command line, the output file specification is treated as
a directory name. Each load region is placed in a separate file in that subdirectory.
The filename becomes the load region name. Because of this, load region names must not
contain characters unacceptable to the file system.

The following produces a directory named xxxx containing binary files:

-scatter file -bin -o xxxx

AIF files

Specifying -aif or -bin -aif generates an extended AIF file. This enables
a scatter-loaded application to be packed into one file that is acceptable to the debugger.
A modified form of AIF header is used.

When the -scatter option is used, -aif is equivalent to -bin -aif. A linker warning
is generated if -aif is supplied without -bin .

The following produces a single file called yyyy containing an AIF header and the load
regions:

-scatter file -aif -bin -o yyyy

3.2.4 Special command-line options

The options -base , -entry , -data and -workspace are each followed by a numerical
argument. You can use a 0x or & prefix to indicate a hexadecimal value, and the suffixes K
and M to indicate multiplication by 1024 and 1024 x 1024, respectively.

The default base address for an AIF image is &8000 (=32K, =0x20K). The default base
address for a binary image (-bin , -bin -aif , and -ihf) is 0.

- case Makes the matching of symbol names case insensitive.

-dupok Allows duplicate symbols (a warning is displayed) so that an area can be
included more than once. The 2nd, 3rd, 4th, etc. copies of the area are
not included in the image provided unused area elimination is enabled
(see above).

Linker

- entry entry-address
- entry offset +object (area)
3-10 Reference Guide
ARM DUI 0041B

The objects included in an image must have a unique designated entry
point. Usually, this is given by one of the input areas having been
assembled from a source containing an ENTRY directive. Otherwise, the
entry point must be given on the linker’s command line. The entry point is
the target of the entry branch from the image’s AIF header. The entry
point may be given as an absolute address or as an offset within an area
within a particular object. For example:

-entry 8+startup(C$$code)

Note: There must be no spaces within the argument to -entry . The
letter’s case is ignored when matching both object and area names. This
latter form is often more convenient, and is mandatory when specifying an
entry point for unused area elimination. (See -remove on page 3-11).

-first object(area)
-last object(area)

These options place the area named area from the object named
object first or last in the output. They are useful for forcing an area
mapping low addresses to be placed first (typically the reset and interrupt
vector addresses), or an area containing a checksum to be placed last.

-match flags Sets the symbol matching options and the default where pc-relative
implies code relocation. Each option is controlled by a single bit in
flags :

0x01 matches an undefined symbol of the form _sym to a symbol
definition of the form sym

0x02 matches an undefined symbol of the form sym to a symbol
definition of the form _sym

0x04 matches an undefined symbol of the form Module_Symbol to
a definition of the form Module.Symbol

0x08 matches an undefined symbol of the form symbol_type to
a definition of the form symbol

0x10 treats all pc-relative relocation directives as relocating instructions

These options are usually set by configuring the armlink image when it is
installed. The default value is 0x10 (treat pc-relative relocations as
relocating code but do no default symbol matching). Do not override
options accidentally when using -match from the command line.

Linker

- nozeropad Prevents zero-initialized areas from being expanded in images.
This can be done at run time by initialization code. At run time, the
-nozeropad option sets memory between Image$$ZI$$Base and
3-11Reference Guide
ARM DUI 0041B

Image$$ZI$$Limit to zero. The ARM C library does this by default.
For plain binary files to decrease image size, -nozeropad is not the
default. Binary images have their ZI area padded with zeros.

- nounusedareas

Does not remove AREAS unreachable from the AREA containing the
entry point.

-ro-base base-address
- base base-address

Sets the base address for the output to base-address . This is
the address at which an image may be loaded and executed without
further relocation. If there are separate read-only and read-write
sections, this is the base of the read-only section.

-rw-base data-base-address
-data data-base-address

Sets the base for the data (read-write) segment of the output to
data-base-address rather than to base-address+code-size .

- remove Removes unused areas from the output. An area is used if it is either:

• the area containing the entry point, or

• referred to from a used area

- unresolved symbol

Matches each reference to an undefined symbol to the global definition
of symbol . Note that symbol must be both defined and global,
otherwise it will appear in the list of undefined symbols, and the link step
will fail. This option is particularly useful during top-down development,
when it may be possible to test a partially-implemented system, from
which the lower levels of code are missing, by connecting each reference
to a missing function to a dummy function which does nothing.
This option does not display warnings.

- u symbol As for -unresolved , but this option displays warnings.

Linker
3.3 Library Module Inclusion

An object file may contain references to external objects (functions and variables) that
the linker will attempt to resolve by matching them to definitions found in other object files
3-12 Reference Guide
ARM DUI 0041B

and libraries.

Usually, at least one library file is specified in the input list. A library is just a collection of
AOF files stored in an ARM Object Library Format file. The important differences between
object files and libraries are:

• each object file in the input list appears in the output unconditionally, whether or not
anything refers to it (although unused areas will be eliminated from outputs of type
AIF)

• a module from a library is included in the output if, and only if, an object file or an
already-included library module makes a non-weak reference to it

The linker processes its input list as follows:

1 The object files are linked together, ignoring the libraries. Usually there will be a
resultant set of references to as yet undefined symbols. Some of these may be
weak, such as references which are allowed to remain unsatisfied, and which do
not cause a library member to be loaded.

2 The libraries are processed in the order that they appear in the input file list, as
follows:

a) The library is searched for members containing symbol definitions which
match currently unsatisfied, non-weak references.

b) Each such member is loaded, satisfying some unsatisfied references
(including possibly weak ones), and maybe, creating new unsatisfied
references (again, maybe including weak ones).

c) The search is repeated until no further members are loaded.

Each library is processed in turn, so a reference from a member of a later library to
a member of an earlier library cannot be satisfied. As a result, circular dependencies
between libraries are forbidden.

It is an error if any non-weak reference remains unsatisfied at the end of a linking operation,
other than one which generates partially-linked, relocatable AOF.

To forcibly include a library module, put the name(s) of the library module(s) in parentheses
after the library name. Note that there should be no space between the library name and the
opening parenthesis. Multiple module names must be separated by a comma. There must
be no space in the list of module names.

Linker
3.4 Area Placement and Sorting Rules

Each object module in the input list, and each subsequently included library module,
contains at least one area. AOF areas are the fragments of code and data manipulated by
3-13Reference Guide
ARM DUI 0041B

the linker.

In all output types other than AOF, the linker sorts the set of areas first by attribute, then by
area name, except where overridden by a -first or -last option. The -first and
-last options can be used to force particular areas to be placed first or last, regardless of
their attributes, names or positions in the input list.

The read-only parts of the image are collected into one contiguous region which can be
protected at runtime on systems that have memory management hardware. Page alignment
between the read-only and read-write portions of the image can be forced using the area
alignment attribute of AOF areas, set using the following attribute of the ARM assembler
AREA directive:

ALIGN=n

Portions of the image associated with a particular language runtime system are collected
together into a minimum number of contiguous regions. (This applies particularly to code
regions which may have associated exception handling mechanisms.) More precisely, the
linker orders areas by attribute as follows:

• read-only code

• read-only based data

• read-only data

• read-write code

• based data

• other initialized data

• zero-initialized (uninitialized) data

• debugging tables

Debugging tables are included only if the linker’s -debug option is used. (This is the default.)
A debugger is expected to retrieve the debugging tables before the image is entered.
The image is free to overwrite its debugging tables once it has started executing.

Areas not ordered by attribute are ordered by AREA name. The comparison of names is
lexicographical and case-sensitive, using the ASCII collation sequence for characters.
Identically attributed and named areas are ordered according to their relative positions in the
input list.

In some image types (AIF, for example), zero-initialized data is created at
image-initialization time and does not appear in the image itself.

As a consequence of these rules, the positioning of identically attributed and named areas
included from libraries is not predictable. However, if library L1 precedes library L2 in the
input list, all areas included from L1 will precede each area included from L2. If more precise
positioning is required, you can extract modules manually, and include them in the input list.

Linker
Once areas have been ordered and the base address has been fixed, the linker may insert
padding to force each area to start at an address which is a multiple of:

2(area alignment)
3-14 Reference Guide
ARM DUI 0041B

(area alignment is commonly 2, for word alignment).

3.5 Linker Predefined Symbols
There are several symbols which the linker defines independently of any of its input files.
The most important of these start with the string Image$$. These symbols, along with all
other external names containing $$, are reserved by ARM. See the Software Development
Toolkit User Guide (ARM DUI 0040) for details of the symbols generated by the -scatter
option.

Image-related symbols

Object/area-related symbols

Image$$RO$$Base Address of the start of the read-only area (usually contains code).

Image$$RO$$Limit Address of the byte beyond the end of the read-only area.
Image$$RO$$Limit need not be the same as
Image$$RW$$Base, although it often will be in simple cases of
-aif and -bin output formats.

Image$$RW$$Base Address of the start of the read-write area (usually contains data)
Image$$RW$$Base is generally different from
Image$$RO$$Limit if:

• the -data option is used to set the image’s data base
(Image$$RW$$Base);

• either of the -shl or -overlay options is used to create
a shared library or overlaid image, respectively

Do not rely on Image$$RO$$Limit being the same as
Image$$RW$$Base.

Image$$RW$$Limit Address of the byte beyond the end of the read-write area.

Image$$ZI$$Base Address of the start of the zero-initialized area (zeroed at image
load or startup time).

Image$$ZI$$Limit Address of the byte beyond the end of the zero-initialized area.

areaname$$Base Address of the start of the consolidated area called areaname.

areaname$$Limit Address of the byte beyond the end of the consolidated area called
areaname .

Linker
3.5.1 Notes

The read-write (data) area may contain code, as programs sometimes modify themselves
(or better, generate code and execute it). Similarly, the read-only (code) area may contain
3-15Reference Guide
ARM DUI 0041B

read-only data, (for example string literals, floating-point constants, ANSI C const data).

These symbols can be imported and used as relocatable addresses by assembly language
programs, or referred to as extern addresses from C (using the -fC compiler option which
allows dollars in identifiers). Image region bases and limits are often of use to programming
language runtime systems.

Other image formats (for example shared library format) have linker-defined symbolic
values associated with them. These are documented in the relevant sections in this chapter.

Linker
3.6 Handling Relocation Directives

This section describes how the linker implements the relocation directives defined by ARM
Object Format.
3-16 Reference Guide
ARM DUI 0041B

3.6.1 The subject field

A relocation directive describes the relocation of a single subject field, which may be:

• a byte

• a halfword (2 bytes)

• a word (4 bytes)

• a value derived from a suitable sequence of instructions

The relocation of a word value cannot overflow. In the other cases, overflow is detected and
faulted by the linker. This is described in 3.6.7 The relocation of instruction sequences
on page 3-17.

3.6.2 The relocation value

A relocation directive refers either to the value of a symbol, or to the base address of an AOF
area in the same object file as the AOF area containing the directive. This value is called the
relocation value, and the subject field is modified by it, as described in the following
subsections.

3.6.3 PC-relative relocation

A PC-relative relocation directive requests the following modification of the subject field:

subject-field = subject-field + relocation-value
- base-of-area-containing (subject-field)

A special case of PC-relative relocation occurs when the relocation value is specified to be
the base of the area containing the subject field. In this case, the relocation value is not
added and:

subject-field = subject-field - base-of-area-containing (subject-field)

which caters for a PC-relative branch to a fixed location, for example.

3.6.4 Forcing use of an inter-link-unit entry point

A second special case of PC-relative relocation applies when the relocation value is the
value of a code symbol. (This is specified by REL_B being set in the rel_flags field;
see 14.1.3 AOF and the linker on page 14-3 for details.) It requests that the inter-link-unit
value of the symbol be used, rather than the intra-link-unit value. Unless the symbol is
marked with the SYM_LEAFAT attribute (by a compiler or via the assembler’s EXPORT
directive), the inter-link-unit value will be 4 bytes beyond the intra-link-unit value.
This directive allows the tail-call optimization to be performed on re-entrant code. For more
information about tail-call continuation, see 5.5 Function Entry on page 5-15.

Linker
3.6.5 Additive relocation

A plain additive relocation directive requests that the subject field be modified as follows:
3-17Reference Guide
ARM DUI 0041B

subject-field = subject-field + relocation-value

3.6.6 Based area relocation

A based area relocation directive relocates a subject field by the offset of the relocation
value within the consolidated area containing it:

subject-field = subject-field + relocation-value
- base-of-area-group-containing (relocation-value)

For example, when compiling re-entrant code, the C compiler places address constants in
an adcon area called sb$$adcons based on register sb, and generates code to load them
using sb-relative LDRs. At link time, separate adcon areas are merged, so sb no longer
points where presumed at compile time (except for the first area in the consolidated group).
The offset field of each LDR (other than those in the first area) must be modified by the offset
of the base of the appropriate adcon area in the consolidated group:

LDR-offset = LDR-offset + base-of-my-sb$$adcons-area
- sb$$adcons$$Base

3.6.7 The relocation of instruction sequences

The linker recognizes that the following instruction sequences define a relocatable value:

• a B or BL

• an LDR or STR

• 1 to 3 ADD or SUB instructions, having a common destination register and
a common intermediate source register, and optionally followed by an LDR or STR
with that register as base

For example, the following is a relocatable instruction sequence:

ADD Rb, rx, #V1
ADD Rb, Rb, #V2
LDR ry, [Rb, #V3]

with value V = V1+V2+V3 .

The length of sequence recognized may be further restricted to 1, 2 or 3 instructions only by
the relocation directive itself. For more information, see 3.6 Handling Relocation
Directives on page 3-16.

Thumb If bit 0 of the relocation offset is set, the linker relocates a Thumb instruction sequence.
The only Thumb instruction sequence that can be relocated is the BL instruction.

Linker
After relocation, the new value of V is split between the instructions as follows:

• If the original offset in the LDR or STR can be preserved, it will be preserved. This is
possible if the difference between the new value and the original LDR offset can be
3-18 Reference Guide
ARM DUI 0041B

encoded in the available number of ADD/SUB instructions. This preservation allows
a sequence of ADDs and SUBs to compute a common base address for several
following LDRs or STRs.

The remainder of the new value is split between the ADDs or SUBs as follows:

• If the new value is negative, it is negated, ADDs are changed to SUBs (or vice versa)
and LDR/STR up is changed to LDR/STR down (or vice versa).

• Each ADD or SUB instruction in turn removes the most significant part of the (now
positive) new value, which can be represented by an 8-bit constant, shifted left by
an even number of bit positions which can be represented by an ARM
data-processing instruction’s immediate value.

If there is no following LDR or STR, and the value remaining is nonzero, the relocation has
overflowed.

If there is a following LDR or STR, any value remaining is assigned to it as an immediate
offset. If this value is greater than 4095, the relocation has overflowed.

In the relocation of a B or BL instruction, word offsets are converted to and from byte offsets.
A B or BL is always relocated by itself, never in conjunction with any other instruction.

Linker
3.7 Automatic Inclusion of C libraries

The ARM Linker automatically searches for a C library which matches the attributes of the
object files being linked.
3-19Reference Guide
ARM DUI 0041B

To do this, the C libraries' filenames are annotated with letters and digits to idebtify them.
The annotation has the form:

_<apcs-variant >.< bits ><bytesex >

If the library uses all default apcs options, the annotation is just:

.< bits ><bytesex>

3.7.1 For ARM libraries

bits is 32 or 26

bytesex is either:

l little-endian

b big-endian

apcs-variant is the concatenation of a hardware floating-point option:

h hardware floating point, instruction set 3

r hardware floating point, instruction set 3,
fp arguments in fp registers.

2 hardware floating point, instruction set 2

z hardware floating point, instruction set 2,
fp arguments in fp registers.

with a software stack checking option:

c no software stack checking
(software stack checking is turned on if
this option is not specified)

with an interworking option:

i compiled for arm/thumb interworking
(arm/thumb interworking is turned off if
this option is not specified)

and a frame pointer option:

n pcs uses no frame pointer
(a frame pointer is used if this option is
not specified)

Example

The following example is an ARM little-endian C library, using hardware floating-point
instructions and with no software stack checking:

armlib_hc.32l

Linker
3.7.2 For THUMB libraries

bits is always 16

bytesex is either:
3-20 Reference Guide
ARM DUI 0041B

l little-endian

b big-endian

apcs-variant is the concatenation of a software stack checking option:

s software stack checking
(software stack checking is turned off if
this option is not specified)

and an interworking option:

i compiled for arm/thumb interworking
(arm/thumb interworking is turned off if
this option is not specified)

Example

The following example is a Thumb little-endian C library with software stack checking:

armlib_s.16l

Note Not all combinations are possible; for example .16 implies no frame pointer, software floating
point. Only a subset of the possible combinations are made by ARM as part of a release.

The compiler and assembler generate a weak reference to symbols with names
Lib$$Request$$library$$variant for required libraries, where variant is
determined by the APCS options in use. this is described above, except that armcc with
apcs/interwork generates a reference to the thumb interworking libraries. The ARM and
THUMB C compilers and assemblers require only the armlib library.

While processing the object files and libraries specified to the linker on its command line, a
warning is given if symbols are seen requesting different variants of the same library, but all
requested variants are added to the list of requested libraries (in the order they are
requested by the input files).

The libraries in the list are searched only if there are still unsatisfied non-weak
referencesafter all specified objects and libraries have been loaded. They are obtained from
the directory specified to the linker by use of a -libpath argument (or configured as its
library path via the graphical configurer), or failing that, from the directory which is the value
of the environment variable ARMLIB.

4-1Reference Guide
ARM DUI 0041B

This chapter describes how you rebuild the C libraries.

4.1 Introduction to the Runtime Libraries 4-2
4.2 Constructing a Makefile 4-4
4.3 Building a Target-specific Library 4-5
4.4 Retargeting the Library 4-6
4.5 Details of Target-dependent Code 4-9

Rebuilding the C Library4

Rebuilding the C Library
4.1 Introduction to the Runtime Libraries

Retargeting the ANSI C library requires some knowledge of ARM assembly language, and
some understanding of the ARM processor and hardware being used. You need to refer to
4-2 Reference Guide
ARM DUI 0041B

the following:

• the relevant ARM datasheet

• section 2.3 Assembly Language Overview

• ARM Architecture Reference Manual (ARM DDI 0100)

There are two runtime libraries provided to support cross-compiled C:

• the minimal embedded C library

• the ANSI C library

The libraries are supplied in:

• source form for retargeting to your ARM-based hardware

• binary form, targeted at the ARMulator (so you can immediately run and debug
programs running on an emulated ARM)

Using the embedded C Library

If you intend to use the C Library in an embedded form (for example, linking with
an application running from read-only memory on a target card, please refer to the Software
Development Toolkit User Guide (ARM DUI 0040).

4.1.1 Source files

The supplied source structure holds the following directories:

stdh Contains the ANSI header files (which require no change in
retargeting). These files are also built into armcc.

util Contains the source of the makemake utility, written in classic C.

semi Contains targeting code for the semihosted C Library, which targets
the debug monitor supported by:

• the ARMulator

• ARM Platform Independent Evaluation (PIE) card for
the ARM60

together with SunOS-hosted make definitions and library build
options. The library is called semihosted because many functions
such as file I/O are implemented on the host computer, via the host’s
C library. In principle, a targeting of the library requires both a target
directory and a host directory; however, where there is only one
hosting, it is convenient to amalgamate the two directories.

Rebuilding the C Library
thumb Contains Thumb-specific C Library assembly code together with

Thumb make definitions and library build options.

fplib Contains source code for the software floating-point library.
4-3Reference Guide
ARM DUI 0041B

The target-independent code is generally grouped into one file per section of the ANSI
library (though with exceptions; stdlib is implemented partly in alloc.c and partly in
stdlib.c), with use of conditional compilation or assembly to enable construction of a
fine-grain library (approximately one object file per function). The ARMulator-targeted code
is similarly grouped.

4.1.2 ANSI C library

The full ANSI C library contains the following:

• target-independent modules written in ANSI C; for example:

printf()

• target-independent modules written in ARM assembly language: for example:

divide()

memcpy()

• target-dependent modules written in ANSI C; for example: default signal handlers
like the clock() module

• target-dependent modules written in ARM assembly language

The target-independent portions of the library can be built immediately, but you need to
make some modifications to the target-dependent parts to implement them. The library has
a modular structure, so you do not have to retarget it in its entirety; re-target only what will
be used.

The retargetable ARM C library conforms to the ANSI C library specification. Sample code
is included which targets the library at the common operating environment supported by the
ARMulator, ARM Evaluation boards and ARM Development boards.

The following sections provide information on how to port the ARM C library to other targets.

fpe340 Contains object code of the floating-point emulator (for which source
code is not provided).

*.c, *.h, *.s
(top-level)

Contain target-independent source code.

Rebuilding the C Library
4.2 Constructing a Makefile

When you retarget a library, the first stage in the procedure is to construct a makefile. To do
this, you use the supplied utility program makemake, which allows description of library
4-4 Reference Guide
ARM DUI 0041B

variants in a host-independent manner, and permits the building of a library on a host that
severely limits the number of files in a directory.

The arguments to makemake are

• the name of the host directory and

• if distinct, the name of the target directory

makemake takes as input the files make_sun or make_wat from the host directory and
sources and options from the target directory. It outputs a makefile called Makefile in
the host directory (often, the host directory and the target directory will be the same).

Input files

In order to retarget the library, at least the following files must be provided:

makedefs (in the host directory)

Host-dependent definitions of tools, paths, options, etc. to include in the
constructed Makefile for the library. Use the file makedefs from the semi
directory as a template.

options (in the target directory)

library variant selection (a number of lines, each of the form option_name =
value). See 4.4 Retargeting the Library on page 4-6. Use the file options from
the semi directory as a template.

sources (in the target directory)

List of objects to include in the target library, and sources from which they are to
be constructed. Each line (other than those controlling variant selection) has one
of the forms:

• object_name source_name

• object_name source_name [compiler_options]
where object_name lacks the .o extension. Variant selection involves lines of
the form:

#if expression
#elif expression
#else
#end

with the obvious significance. Expression primaries are option_name = value
and option_name != value , and expression operators are && and || (of equal
precedence). Use the file sources from the semi subdirectory as a template,
modifying it as needed.

Rebuilding the C Library
hostsys.h (in the target directory)

This defines the functions which must be supplied for a full retargeting of the library,
and also defines certain target-dependent values required by target-independent
4-5Reference Guide
ARM DUI 0041B

code. Use the file hostsys.h from the semi subdirectory as a template, changing
the values in it appropriately (see 4.4 Retargeting the Library on page 4-6 and
4.5 Details of Target-dependent Code on page 4-9).

config.h (in the target directory)

This contains the hardware description. The version of this file in the semi directory
will suffice for a little-endian ARM with mixed-endian doubles; a big-endian ARM
needs BYTESEX_ODD defined (and BYTESEX_EVEN not). Little-endian
floating-point values are not supported by the floating-point emulator or library.

The files containing the target-specific implementation code are also provided in
the target directory.

4.3 Building a Target-specific Library
When the target-dependent files have been provided, construction of a library proceeds as
follows:

1 cd util
cc -o makemake makemake.c

As makemake is written portably in classic C it should just compile and go.
The options to C compilers vary, but most support this way of making an
executable program called makemake from the source makemake.c

2 cd ..
util\makemake targetdir [hostdir]

hostdir is needed only if it is different from targetdir (under UNIX, use
util/makemake ...)

3 Edit the makefile now produced as hostdir\Makefile , and choose
• big or /little endianness

• 26 or 32 bit APCS

4 cd hostdir
make depend

This augments Makefile ; as a side-effect it also makes the assembler-sourced
objects.

5 make

This makes armlib.o .

Rebuilding the C Library
4.4 Retargeting the Library

The following generic variants are available as “tick box” options in the options file in the
target directory:
4-6 Reference Guide
ARM DUI 0041B

fp_type =linked Includes the object module containing the floating-point
emulator in the library (and linked into any image), and a
small interface module to take control of the illegal
instruction vector on startup, and relinquish it on closedown.

=module Floating-point emulation is provided externally (present in
ROM, for example).

=library Includes the software floating-point routines in the C library.
This can be used to produce a standalone image which
does not require a floating-point emulator. See the Software
Development Toolkit User Guide (ARM DUI 0040) for
information on floating-point operations.

memcpy =small memcpy , memmove and memset are implemented by
generic C code (which attempts to do as much as possible
in word units); each occupies about 100 bytes.

=fast memmove and memcpy are implemented together in
assembler, which attempts to do the bulk of the move 8
words at a time using LDM/STM (about 1200 bytes).
memset is implemented similarly (about 200 bytes).

divide =small The fully-rolled implementations.

=unrolled Unsigned and signed divide are unrolled 8 times for greater
speed, but use more code. Complete unrolling of divide is
possible, but should be done with care as the significant
size increase might give decreased rather than increased
performance on a cached ARM. Whichever variant is
selected, it includes fast unsigned and signed divide by 10.

stack =contiguous
=chunked

For details, see 4.4.2 Address space model on page 4-7.

stdfile_redirection

=on _main extracts UNIX-style stdstream connection directives
from the image’s argument string (<, >, >>, >&, 1>&2).

backtrace =on The default signal handler ends by producing a call-stack
traceback to stderr . Use of this variant is not encouraged,
since it increases the proportion of the library that is linked
into all images, while providing functionality better obtained
from a separate debugger.

Rebuilding the C Library
4.4.1 Basic choices

After the tick box choices have been made, you need to make basic choices about the
address-space model and the I/O model the library will follow.
4-7Reference Guide
ARM DUI 0041B

4.4.2 Address space model

Two address space models are supported:

• contiguous stack

• chunked stack

Contiguous stack

Choosing stack = contiguous gives:

 Figure 4-1: Chunked stack

Stack space

.............

Free stack

..............

<––––
<––––
<––––
<––––

top of memory (high address)
stack pointer (sp)
stack limit pointer (sl)
stack low-water mark (sl - StackSlop)

Unused memory

Heap space

<–––– top of heap (HeapTop)

Static data <–––– top of application
(Image$$RW$$Limit)

............. the application’s memory image

Code <–––– application load address

Rebuilding the C Library
Chunked stack

Choosing stack = chunked gives:
4-8 Reference Guide
ARM DUI 0041B

 Figure 4-2: Contiguous stack

A third variant, like the first, but with the stack outside the heap and not under the
application’s control, can easily be synthesized. This may be a more appropriate variant if
there is a skeletal operating system which implements an address-mapped stack segment.

4.4.3 I/O model

The library, as supplied, only conveniently handles byte-stream files. This does not mean
that other file types cannot be handled in the target-dependent I/O support level, but that
such support may be complicated; block stream files, for example, are simple to support in
the absence of user-supplied buffers.

Unused memory <–––– initial top of memory (HeapLimit)
This may be raised; see _osdep_heapsuppt_extend
in 4.5.5 Miscellaneous on page 4-13

Heap space

<–––– top of heap (HeapTop)
chained stack chunks within heap

Static data <–––– top of application (Image$$RW$$Limit)
the application’s memory image

.............

Code <–––– application load address

Rebuilding the C Library
4.5 Details of Target-dependent Code

4.5.1 ANSI library functions
4-9Reference Guide
ARM DUI 0041B

The following ANSI standard functions have an implementation that fully depends on the
target operating system. No functions are used internally by the library (so only clients which
directly call the functions will fail, if any functions are not implemented).

clock_t clock(void)

The compiler is expected to predefine __CLK_TCK if the units of clock_t differ
from the default of centiseconds. If this is not done, time.h must be adjusted to
define appropriate values for CLK_TCK and CLOCKS_PER_SEC.

void _clock_init(void) (declared weak)

where:

clock_init() (if provided) is called from the library’s initialization code.

clock() needs initializing if a read-only timer is all it has to work with.

time_t time(time_t *timer)
int remove(const char *pathname)
int rename(const char *old, const char *new)
int system(const char *string)
char *getenv(const char *name)
void getenv_init(void) (declared weak)

getenv_init() is called from the library’s initialization code if you provide
an implementation of it.

4.5.2 I/O support

If any I/O function is to be used, hostsys.h must define the type FILEHANDLE, the values
of which identify an open file to the host system. There must be at least one distinguished
value of this type, defined by the macro NONHANDLE, used to distinguish a failed call to
_sys_open .

For an unaltered __rt_lib_init , the macro TTYFILENAME must be defined as a string
to be used in opening a file to terminal.

The macro HOSTOS_NEEDSENSURE should be defined if the host OS requires an ensure
operation to flush OS file buffers to disk if an OS write is followed by an OS read that itself
requires a seek (the flush happens before the seek).

FILEHANDLE _sys_open(const char *name, int openmode)

The function _sys_open() is needed by fopen() and freopen() , which in turn
are required if any I/O function is to be used. openmode is a bitmap, whose bits
mostly correspond directly to the ANSI mode specification: for details, see
hostsys.h in 4.1.1 Source files on page 4-2. (Target-dependent extensions are
possible, in which case freopen() must be extended too.)

Rebuilding the C Library
int _sys_iserror(int status)

A _sys_iserror() function, or a _sys_iserror() macro, is required if any of
the following int-returning functions is provided to determine whether the return
4-10 Reference Guide
ARM DUI 0041B

value indicates an error.

int _sys_close(FILEHANDLE fh)

This function must be defined if any I/O function is to be used. The return value is
0 or an error indication.

int _sys_write(FILEHANDLE fh, const unsigned char *buf,
unsigned len, int mode)

This function must be defined if any output function or sprintf variant is to be
used. The mode argument is a bitmap describing the state of the FILE connected
to fh . See the _IOxxx constants in ioguts.h for the its meaning: only a few of
these bits are expected to be needed by _sys_write . The return value is
the number of characters not written (ie. non-0 denotes a failure of some sort), or
an error indicator.

int _sys_read(FILEHANDLE fh, unsigned char *buf,
unsigned len, int mode)

The function _sys_read() must be defined if any input function or sscanf
variant is to be used. The mode argument is a bitmap describing the state of the
FILE connected to fh , as for _sys_write . The return value is one of the following:

• the number of characters not read (ie. len - result were read), or

• an error indication, or

• an EOF indicator. The EOF indication involves the setting of 0x80000000
in the normal result. The target-independent code is capable of handling
either:

early EOF where the last read from a file returns some characters plus
an EOF indicator, or

late EOF where the last read returns just EOF

int _sys_seek(FILEHANDLE fh, long pos)

The function must be defined if any input or output function is to be used. It puts
the file pointer at offset pos from the beginning of the file. The result is >= 0 if okay,
and is negative for an error.

int _sys_ensure(FILEHANDLE fh)

This function is only required if you define HOSTOS_NEEDSENSURE (see above).
A call to _sys_ensure() flushes any buffers associated with fh , and ensures
that the file is up to date on the backing store medium. The result is >= 0 if okay,
and is negative for an error.

Rebuilding the C Library
long _sys_flen(FILEHANDLE fh)

This function returns the current length of the file fh (or a negative error indicator).
It is needed in order to convert fseek(, SEEK_END) into (, SEEK_SET) as
4-11Reference Guide
ARM DUI 0041B

required by _sys_seek . It must be defined if fseek() is to be used. Note that it
is possible to adopt a different model here if the underlying system directly supports
seeking relative to the end of a file, in which case _sys_flen() can be
eliminated.

void _ttywrch(int ch)

This function must be defined. It writes a character, notionally to the console. It is
used (in the host-independent part of the library) in the last-ditch error reporter,
when writing to stderr is believed to have failed or to be unsafe (for example, in the
default SIGSTK handler).

int _sys_istty(FILE *)

This function returns non-zero if the argument file is connected to a terminal. It is
used to provide default unbuffered behavior (in the absence of a call to
set(v)buf), and to disallow seeking. It must be defined if any output function
(including sprintf() variants) or fseek() is to be used.

void _sys_tmpnam(char *name, int fileno);

This function returns the name for temporary file number fileno in the buffer
name. It must be defined if tmpnam() or tmpfil() are to be used.

4.5.3 Floating-point support

int __fp_initialise(void)
void __fp_finalise(void)

This function returns 1 if floating-point instructions are available, otherwise 0. If the
variant fp_type == module is selected, these two functions must be supplied
(though they need not do anything).

bool __fp_address_in_module(void *)

This function must be provided if the variant fp_type == module is selected and
the supplied abort handlers are used. It should return 1 if the argument address
falls within the code of the fp emulator (to allow the abort handler to describe what
is really an abort on a floating-point load or store as such, rather than somewhere
within the emulator’s code).

Rebuilding the C Library
4.5.4 Kernel

The Kernel handles the entry to, and exit from, an application linked with the library. It also
exports some variables for use by other parts of the library. Details of what the kernel must
4-12 Reference Guide
ARM DUI 0041B

do depend on the target environment.

The ARMulator version of this file (kernel.s in the semi directory) can be used as a
prototype.

The following are the main interfaces to the kernel:

__main()

This provides the entry point to the application, and is called after low-level library
initialisation. (The required initialization depends on the target environment: this
may include heap, stack, and fp support, calling various osdep_xxx_init()
functions if they exist). __rt_lib_init must be called to initialize the body of the
library.

void __rt_exit(int);

This mandatory function finalizes the library (including calling atexit()
handlers), then returns to the operating system with its argument as a completion
code.

char *__rt_command_string(void);

This mandatory function returns the address of (maybe a copy of) the string used
to invoke the program.

void __rt_trap(__rt_error *, __rt_registers *);

This mandatory function handles a fault (for example, the processor detected
a trap, and enabled fp exception). The argument register set describes the
processor state at the time of the fault, with the PC value addressing the faulting
instruction (except perhaps in the case of imprecise floating-point exceptions).
The implementation in the ARMulator kernel is usually adequate.

unsigned __rt_alloc(unsigned minwords, void **block);

This function is the low-level memory allocator underlying malloc() .
The malloc() function allocates only memory between HeapBase and HeapTop;
a call to __rt_alloc attempts to move HeapTop: compare UNIX sbrk() .
__rt_alloc should try to allocate a block of a size greater than or equal to
minwords . If this is not available, and if __osdep_heapsupport_extend is
defined, it should be called to attempt to move HeapLimit. Otherwise (or if the call
fails) it should allocate the largest possible block of sensible size. The return value
is the size of block allocated, and *block is set to point to the start of the allocated
block (the return may be 0 if no sensibly-sized block can be allocated). Allocations
are rounded up to a suitable size to avoid an excessive number of calls to
__rt_alloc .

Rebuilding the C Library
void *(*__rt_malloc)(size_t)

This is a function pointer, which the kernel should initialize to some primitive
memory allocation function. The library itself contains no calls to malloc() , other
4-13Reference Guide
ARM DUI 0041B

than those from functions of the malloc family, such as calloc() . Instead the
function pointed to by __rt_malloc is called. __rt_malloc is set to malloc
during initialization (if malloc is linked into the image). The use of __rt_malloc
ensures that allocations succeed, if they are made before malloc is initialized, and
prevents malloc from being necessarily linked into an image, even when unused.

extern void (*__rt_free)(void *)

This is a function pointer, which the kernel should initialize to some primitive
memory-freeing function (see __rt_malloc above).

4.5.5 Miscellaneous

void __osdep_traphandlers_init(void)

This arranges to catch processor aborts (and passes them to __rt_trap).

void __osdep_traphandlers_finalise(void)

This removes the processor abort handlers installed by ..._init() .

void __osdep_heapsupport_init(HeapDescriptor *)

This function must be provided, but may be null.

void __osdep_heapsupport_finalise(void)

This function must be provided, but may be null.

{ int, void *} __osdep_heapsupport_extend(int size, HeapDescriptor *)

This function requests extension of the heap by at least size bytes. The return
values are the number of bytes acquired, and the base address of the new
acquisition. This function must be provided, but a null version just returning 0 will
suffice if heap extension is not needed.

char *_hostos_error_string(int no, char *buf);

This function is called to return a string describing an error outside the set ERRxxx
defined in errno.h . It may generate the message into the supplied buf if it needs
to do so. It must be defined if perror() or strerror() is to be used.

char *_hostos_signal_string(int no)

This function is called to return a string describing a signal whose number is
outside the set SIGxxx defined in signal.h .

5-1Reference Guide
ARM DUI 0041B

This chapter describes the ARM Procedure Call Standard (APCS).

5.1 Introduction 5-2
5.2 Defining the APCS 5-3
5.3 APCS Variants 5-11
5.4 C Language Calling Conventions 5-13
5.5 Function Entry 5-15
5.6 The APCS in Non-user ARM Modes 5-23

ARM Procedure Call Standard5

ARM Procedure Call Standard
5.1 Introduction

The ARM Procedure Call Standard (APCS) is a set of rules which regulates and facilitates
calls between separately compiled or assembled program fragments.
5-2 Reference Guide
ARM DUI 0041B

The APCS defines:

• constraints on the use of registers

• stack conventions

• the format of a stack-based data structure, used by stack tracing programs
to reconstruct a sequence of outstanding calls

• passing of machine-level arguments, and the return of machine-level results at
externally visible function/procedure calls

• support for the ARM shared library mechanism; a standard way for shared
(re-entrant) code to address the static data of its clients

Since the ARM CPU is used in a wide variety of systems, the APCS is not a single standard
but a consistent family of standards. (See section 5.3 APCS Variants on page 5-11 for
details of the variants in the family.) As you implement runtime systems, operating systems,
embedded control monitors, etc., you must choose the variant(s) most appropriate to your
requirements.

There is no binary compatibility between program fragments which conform to different
members of the APCS family. Developers who are concerned with long-term binary
compatibility must choose their options carefully.

In the following, the term function is used to mean function, procedure or subroutine.

5.1.1 Design criteria

The APCS is a compromise between fastest, smallest and easiest to use; most importantly:

• function calls should be fast, and it should be easy for compilers to optimize
function entry sequences

• the function call sequence should be as compact as possible

• extensible stacks and multiple stacks should be accommodated

• the standard should encourage the production of re-entrant code, with writable
data separated from code

• the standard should be simple enough to be used by assembly language
programmers, and should support simple approaches to link editing, debugging
and runtime error diagnosis

Overall, compact code and a clear definition rank highest, with simplicity and ease of use
ahead of performance in matters of fine detail where impact on performance is small.

ARM Procedure Call Standard
5.2 Defining the APCS

This section defines the ARM Procedure Call Standard. Extra descriptions of features of the
standard are also included; these do not form part of the standard, but are given to aid clarity.
5-3Reference Guide
ARM DUI 0041B

Program fragments

A program fragment which conforms to the APCS while making a call to an external function
(one which is visible between compilation units) is said to be conforming. A program which
conforms to the APCS at all instants of execution is said to be strictly conforming.

In general, compiled code is expected to be strictly conforming, hand-written code merely
conforming.

Whether or not program fragments for a particular ARM-based environment are required to
conform strictly to the APCS is part of the definition of that environment.

5.2.1 Register names

The ARM has:

• 15 visible general registers

• a program counter register

• eight floating-point registers.

In non-user machine modes, some general registers are shadowed. In all modes, the
availability of the floating-point instruction set depends on the processor model, hardware
and operating system.

In the context of the APCS, the ARM registers have the names and functions described in
Table 5-1: ACPS registers on page 5-4.

5.2.2 General registers

The 16 integer registers are divided into 3 sets:

• four argument registers which can also be used as scratch registers or as
caller-saved register variables

• five callee-saved registers, conventionally used as register variables

• seven registers which have a dedicated role, at least some of the time, in at least
one variant of APCS-3 (see 5.3 APCS Variants on page 5-11)

The five frame registers fp, ip, sp, lr and pc have dedicated roles in all variants of the APCS.

The ip register has a dedicated role only during function call; at other times it may be used
as a scratch register. (Conventionally, ip is used by compiler code generators as the/a local
code generator temporary register.)

There are dedicated roles for sb and sl in some variants of the APCS; in other variants they
may be used as callee-saved registers.

ARM Procedure Call Standard
The APCS permits lr to be used as a register variable when it is not in use during a function
call. It further permits an ARM system specification to forbid such use in some, or all,
non-user ARM processor modes.
5-4 Reference Guide
ARM DUI 0041B

5.2.3 Floating-point registers

Each ARM floating-point (FP) register holds one FP value of single, double, extended or
internal precision. A single-precision value occupies one machine word; a double-precision
value occupies two words; an extended precision value occupies three words, as does an
internal precision value.

These registers are divided into two sets, analogous to the subsets a1 through a4 and
v1 through v5/v7 of the general registers:

• registers f0 through f3 need not be preserved by called functions; f0 is the FP result
register, and f0 through f3 may hold the first four FP arguments. See 5.2.8 Data
representation and argument passing on page 5-9 and 5.3 APCS Variants on
page 5-11

• registers f4 through f7, the variable registers, preserved by callees

Number APCS name APCS role

r0
r1
r2
r3

a1
a2
a3
a4

argument 1 / integer result / scratch register
argument 2 / scratch register
argument 3 / scratch register
argument 4 / scratch register

r4
r5
r6
r7
r8

v1
v2
v3
v4
v5

register variable
register variable
register variable
register variable
register variable

r9
r10
r11
r12
r13
r14
r15

sb/v6
sl/v7
fp
ip
sp
lr
pc

static base / register variable
stack limit / stack chunk handle / register variable
frame pointer
scratch register / new-sb in inter-link-unit calls
lower end of current stack frame
link address / scratch register
program counter

 Table 5-1: ACPS registers

ARM Procedure Call Standard

Name Number APCS Role
5-5Reference Guide
ARM DUI 0041B

5.2.4 The stack

The stack is a singly-linked list of activation records, linked through a stack backtrace data
structure (see 5.2.5 The stack backtrace data structure on page 5-6), stored at the
high-address end of each activation record.

• The stack must be readable and writable by the executing program.

• Each contiguous chunk of the stack must be allocated to activation records in
descending address order. At all instants of execution, sp must point to the lowest
used address of the most recently allocated activation record.

• There may be multiple stack chunks, and there are no constraints on the ordering
of these chunks in the address space.

Stack chunk limit

Associated with sp is a possibly implicit stack chunk limit, below which sp must not be
decremented. (See 5.3 APCS Variants on page 5-11.)

At all instants of execution, the memory between sp and the stack chunk limit must contain
nothing of value to the executing program; it may be modified unpredictably by the execution
environment.

implicit The stack chunk limit is said to be implicit if chunk overflow is detected
and handled by the execution environment. If the stack chunk limit is
implicit, sl may be used as v7, an additional callee-saved variable register.

explicit The stack chunk limit is said to be explicit in all other cases.

If the conditions of the remainder of this subsection hold at all instants of execution,
the program conforms strictly to the APCS. If they hold at, and during, external function calls
(visible between compilation units), the program merely conforms to the APCS.

f0
f1
f2
f3

0
1
2
3

FP argument 1 / FP result / FP scratch register
FP argument 2 / FP scratch register
FP argument 3 / FP scratch register
FP argument 4 / FP scratch register

f4
f5
f6
f7

4
5
6
7

floating-point register variable
floating-point register variable
floating-point register variable
floating-point register variable

 Table 5-2: Floating-point registers

ARM Procedure Call Standard
If the stack chunk limit is explicit, sl must:

• point at least 256 bytes above it

• identify the current stack chunk in a system-defined manner
5-6 Reference Guide
ARM DUI 0041B

• identify the same chunk as sp points into at all times

The values of sl, fp and sp must be multiples of 4.

(sl >= stack_chunk_limit + 256 allows the most common limit checks to be made
very cheaply during function entry.)

This final requirement implies that on changing stack chunks, registers sl and sp must be
loaded simultaneously using:

LDM ..., {..., sl, sp}.

(In general, this means that return from a function executing on an extension chunk to one
executing on an earlier-allocated chunk should be via an intermediate function invocation,
specially fabricated when the stack was extended.)

5.2.5 The stack backtrace data structure

The value in fp must be zero or must point to a list of stack backtrace data structures which
partially describe the sequence of outstanding function calls. (If this constraint holds when
external functions are called, the program is conforming; if it holds at all instants of
execution, the program is strictly conforming.)

The stack backtrace data structure shows between four and 27 words, with those words
higher on the page being at higher addresses in memory. The values shown in brackets are
optional, and their presence need not imply the presence of any other. The floating-point
values are stored in an internal format, and occupy three words each:

save code pointer [fp] <-fp points to here
return link value [fp, #-4]
return sp value [fp, #-8]
return fp value [fp, #-12]
[saved v7 value]
[saved v6 value]
[saved v5 value}
[saved v4 value]
[saved v3 value]
[saved v2 value]
[saved v1 value]
[saved a4 value]
[saved a3 value}
[saved a2 value]
[saved a1 value]
[saved f7 value] three words
[saved f6 value] three words
[saved f5 value] three words
[saved f4 value] three words

ARM Procedure Call Standard
5.2.6 Function invocations and backtrace structures

If function invocation A calls function B, then A is termed a direct ancestor of the invocation
of B. If invocation A[1] calls invocation A[2] calls... calls B, then each of the A[i] is an ancestor
5-7Reference Guide
ARM DUI 0041B

of B and invocation A[i] is more recent than invocation A[j] if i > j.

The return fp value must be 0, or must be a pointer to a stack backtrace data structure
created by an ancestor of the function invocation which created the backtrace structure
pointed to by fp. No more recent ancestor must have created a backtrace structure.
(There may be any number of tail-called invocations between invocations that create
backtrace structures.)

Value Restored to

return link value pc

return sp value sp

return fp value fp

 Table 5-3: Function exit

Variant Save code pointer

32-bit PC Saved using the instruction:

STM{...PC}

at the start of the sequence of instructions that created
the stack backtrace data structure.

26-bit PC Saved using the instruction:

STM{...PC}

at the start of the sequence of instructions that created
the stack backtrace data structure.

 Table 5-4: APCS variants

ARM Procedure Call Standard
5.2.7 Control arrival

At the instant when control arrives at the target function:
5-8 Reference Guide
ARM DUI 0041B

• pc contains the address of an entry point to the target function (re-entrant functions
may have two entry points).

• lr contains the value to restore to pc on exit from the function (the return link
value . See 5.2.5 The stack backtrace data structure on page 5-6).
(In 26-bit variants of the APCS, lr contains the PC + PSR value to restore to pc on
exit from the function: see 5.3 APCS Variants on page 5-11.)

• sp points at or above the current stack chunk limit; if the limit is explicit, it must point
at least 256 bytes above it: see 5.2.4 The stack on page 5-5.

• fp contains 0 or points to the most recently created stack backtrace structure: see
5.2.5 The stack backtrace data structure on page 5-6.

• The space between sp and the stack chunk limit is readable and writable memory
which the called function can use as temporary workspace and overwrite with any
values before the function returns: see 5.2.4 The stack on page 5-5.

• Arguments are marshalled as described in 5.2.8 Data representation and
argument passing on page 5-9.

A re-entrant target function (see 5.3 APCS Variants on page 5-11) has two entry points.
Control arrives:

• at the intra-link-unit entry point if the caller has been directly linked with the callee

• at the inter-link-unit entry point if the caller has been separately linked with a stub
of the callee

(Sometimes the two entry points are at the same address. They are normally separated by
a single instruction.)

On arrival at the intra-link-unit entry point, sb must identify the static data of the link unit
which contains both the caller and the callee.

On arrival at the inter-link-unit entry point, ip must identify the static data of the link unit
containing the target function, or the target function must make neither direct nor indirect use
of static data.

(In practice this usually means the callee must be a leaf function making no direct use of
static data.)

The way in which sb identifies the static data of a link unit is not specified by the APCS.

If the call is by tail continuation, calling function means the function which will be returned to
if the tail continuation is converted to a return.

If code is not required to be re-entrant or shareable, sb may be used as v6, an additional
variable register. (See Table 5-1: ACPS registers on page 5-4.)

ARM Procedure Call Standard
5.2.8 Data representation and argument passing

Argument passing in the APCS is defined in terms of an ordered list of machine-level values
passed from the caller to the callee, and a single word or floating-point result passed back
5-9Reference Guide
ARM DUI 0041B

from the callee to the caller. Each value in the argument list is:

• a word-sized, integer value, or

• a floating-point value (of size one, two, or three words)

A callee may corrupt any of its arguments, however passed.

(The APCS does not define the layout in store of records, arrays and so forth, used by
ARM-targeted compilers for C, Pascal, Fortran-77, etc., nor does it prescribe the order in
which language-level arguments are mapped into their machine-level representations.
In other words, the mapping from language-level data types and arguments to APCS words
is defined by each language implementation, not by the APCS. There is no reason why two
ARM-targeted implementations of the same language cannot use different mappings and
not support cross-calling. Implementors are encouraged to adopt not just the APCS
standard, but to accommodate the natural mappings of source language objects into
argument words. Guidance about this is given in 5.4 C Language Calling Conventions on
page 5-13.

At the instant control arrives at the target function, the argument list must be allocated as
follows:

• in APCS, variants which support the passing of floating-point arguments in
floating-point registers (see 5.3 APCS Variants on page 5-11), the first four
floating-point arguments (or fewer if the number of floating-point arguments is less
than four) are in machine registers f0 through f3

• the first four remaining argument words (or fewer if there are fewer than four
argument words remaining in the argument list) are in machine registers
a1 through a4

• the remainder of the argument list (if any) is in memory, at the location addressed
by sp and higher-addressed words from this point on

A floating-point value not passed in a floating-point register is treated as one, two, or three
integer values, according to its precision.

ARM Procedure Call Standard
5.2.9 Control return

When the return link value for a function call is placed in the pc:
5-10 Reference Guide
ARM DUI 0041B

• sp, fp, sl/v7, sb/v6, v1–v5, and f4–f7 must contain the same values as they did at
the instant of control arrival.

• If the function returns a simple value of one word or less, the value must be in a1
(a language implementation is not obliged to consider all single-word values
simple. See 5.4 C Language Calling Conventions on page 5-13).

• If the function returns a simple floating-point value, the value must be in f0 for
hardfp. For softfp, the results are returned in r0, or r0 and r1.

(The values of ip, lr, a2–a4, f1–f3 and any stacked arguments are undefined.)

The definition of control return means that this is a callee saved standard.

In 32-bit ARM modes, the caller’s PSR flags are not preserved across a function call.
In 26-bit ARM modes, the caller’s PSR flags are naturally reinstated when the return link
pointer is placed in pc.

Note that the N, Z, C and V flags from lr at the instant of entry must be reinstated; it is not
sufficient merely to preserve the PSR across the call.

Consider a function ProcA which tail continues to ProcB as follows:

CMPS a1, #0
MOVLT a2, #255
MOVGE a2, #0
B ProcB

If ProcB just preserves the flags it sees on entry, rather than restoring flags from lr,
the wrong flags may be set when ProcB returns direct to ProcA ’s caller. See 5.3 APCS
Variants on page 5-11.

ARM Procedure Call Standard
5.3 APCS Variants

There are 16 APCS variants, derived from four independent choices (2 x 2 x 2 x 2). In each
case, code conforming to one variant is not compatible with code conforming to another.
5-11Reference Guide
ARM DUI 0041B

The only true user-level choice is between re-entrant versus non-re-entrant variants:

• 32-bit PC vs 26-bit PC. This is fixed by your ARM CPU.

• Implicit vs explicit stack-limit checking. This is fixed by a combination of
memory-management hardware and operating system software. Use implicit
stack-limit checking if your ARM-based environment supports it; otherwise use
explicit stack-limit checking.

• Passing floating-point arguments. This supports efficient argument passing where:

a) the floating-point instruction set is emulated by software, and floating-point
operations are dynamically very rare, or

b) the floating-point instruction set is supported by hardware, or floating-point
operations are dynamically common

As these alternatives are compatible, each may be used where appropriate.

5.3.1 32-bit PC vs 26-bit PC

Older ARM CPUs and the 26-bit compatibility mode of newer CPUs use a 24-bit,
word-address program counter, by packing:

• four status flags (NZCV) and two interrupt-enable flags (IF) into the top six bits of
r15

• two mode bits (m0, m1) into the least-significant bits of r15

Thus, r15 implements a combined PC + PSR.

Newer ARM CPUs use a 32-bit program counter (in r15) and a separate PSR.

In 26-bit CPU modes, the PC + PSR is written to r14 by an ARM branch with link instruction,
so it is natural for the APCS to require the reinstatement of the caller’s PSR at function exit
(a caller’s PSR is preserved across a function call).

In 32-bit CPU modes, this reinstatement is unacceptably expensive in comparison to the
gain from it, so the APCS does not require it, and a caller’s PSR flags may be corrupted by
a function call.

5.3.2 Implicit vs explicit stack-limit checking

ARM-based systems vary widely in the sophistication of their memory management
hardware. Some can easily support multiple, auto-extending stacks, while others have no
memory management hardware at all. However, the majority of ARM-based systems require
software stack-limit checking.

Safe programming practices demand that stack overflow be detected. The APCS defines
conventions for software stack-limit checking sufficient to support efficiently most
requirements (including those of multiple threads and chunked stacks).

ARM Procedure Call Standard
5.3.3 Floating-point arguments in floating-point registers

Many ARM-based systems have made no use of the floating-point instruction set, or have
used a software emulation of floating-point instructions.
5-12 Reference Guide
ARM DUI 0041B

Systems using a slow software emulation, which makes little use of floating-point, have
a small disadvantage in passing floating-point arguments in floating-point registers;
all variadic functions (such as printf) become slower, while only function calls which
actually take floating-point arguments become faster.

Note If your system has no floating-point hardware and is expected to make little use of
floating-point, it is better not to pass floating-point arguments in floating-point registers.

5.3.4 Re-entrant vs non-re-entrant code

The re-entrant variant of the APCS supports the generation of code that is free of relocation
directives. This is position-independent code which addresses all data indirectly via a static
base register. Such code is ideal for placement in ROM and can be shared between several
client processes.

In general, code to be placed in ROM or loaded into a shared library is expected to be
re-entrant, while applications are not expected to be re-entrant.

See also 5.4 C Language Calling Conventions on page 5-13.

ARM Procedure Call Standard
5.4 C Language Calling Conventions

5.4.1 Argument representation
5-13Reference Guide
ARM DUI 0041B

A floating-point value occupies one, two, or three words, as appropriate to its type.
Floating-point values are encoded in IEEE 754 format, with the most significant word of a
double having the lowest address. (See the Software Development Toolkit User Guide
(ARM DUI 0040) for more information.)

The C compiler widens arguments of type float to type double to support interworking
between ANSI C and classic C.

Char, short, pointer and other integral values occupy one word in an argument list.
Char and short values are widened by the C compiler during argument marshalling.

On the ARM, characters are naturally unsigned. In PCC mode (-pcc option), the C compiler
treats a plain char as signed, widening its value appropriately when used as an argument.
(Classic C lacks the signed char type, so plain chars are considered signed; ANSI C has
signed, unsigned and plain chars.)

A structured value occupies an integral number of integer words (even when it contains only
floating-point values).

5.4.2 Argument list marshalling

Argument values are marshalled in the order written in the source program.

If passing floating-point (FP) arguments in FP registers, the first four FP arguments are
loaded into FP registers.

The first four of the remaining argument words are loaded into a1 through a4, and the
remainder are pushed onto the stack in reverse order (so that arguments later in the
argument list have higher addresses than those earlier in the argument list). As a
consequence, an FP value can be passed in integer registers, or even split between
an integer register and the stack.

This follows from the need to support variadic functions (functions that have a variable
number of arguments, such as printf , scanf , etc.). Alternatives which avoid passing FP
values in integer registers require the caller to know that a variadic function is being called,
and use different argument marshalling conventions for variadic and non-variadic functions.

5.4.3 Non-simple value return

A non-simple type is any non floating-point type of size greater than one word in size
(including structures containing only floating-point fields), and certain one-word structured
types.

A structure is termed integer-like if its size is less than or equal to one word, and the offset
of each of its addressable sub-fields is zero. An integer-like structured result is considered
simple and is returned in a1.

ARM Procedure Call Standard
The following are both integer-like:

struct {int a:8, b:8, c:8, d:8;} and union {int i; char *p;}

The following is not integer-like:
5-14 Reference Guide
ARM DUI 0041B

struct {char a; char b; char c; char d;}

A multi-word or non integer-like result is returned to an address passed as an additional first
argument to the function call.

At machine level:

TT tt = f(x, ...);

is implemented as:

TT tt; f(&tt, x, ...);

ARM Procedure Call Standard
5.5 Function Entry

A complete discussion of function entry is complex; this section covers a few of the most
important issues and special cases.
5-15Reference Guide
ARM DUI 0041B

The important issues for function entry are:

• establishing the static base (if the function is to be re-entrant)

• creating the stack backtrace data structure (if needed)

• saving the floating-point variable registers (if required)

• checking for stack overflow (if the stack chunk limit is explicit)

Leaf functions

A function is termed leaf if its body contains no function calls.

A leaf function which makes no use of static data need not establish a static base.

Tail calls or tail continuations

If function F calls function G immediately before an exit from F, the call-exit sequence can
often be replaced instead by a return to G. After this transformation, the return to G is called
a tail call or tail continuation.

There are many subtle considerations when using tail continuations. If stacked arguments
are unstacked by callers (almost mandatory for variadic callees), G cannot be directly
tail-called if G itself takes stacked arguments. This is because there is no return to F to
unstack them.

If this call to G takes fewer arguments than the current call to F, some of F’s stacked
arguments can be replaced by G’s stacked arguments. However, this may not be easy to
assert if F is variadic. There may be no tail-call of G if the address of any of F’s arguments
or local variables has “leaked out” of F. This is because on return to G, the address may be
invalidated by adjustment of the stack pointer. In general, this precludes tail calls if any local
variable or argument has its address taken.

V-registers

A function does not need to create a stack backtrace structure if it uses no v-registers and:

• it is a leaf function, or

• all the function calls it makes from its body are tail calls

Such functions are termed frameless.

ARM Procedure Call Standard
5.5.1 Establishing the static base

The ARM shared library mechanism supports both:
5-16 Reference Guide
ARM DUI 0041B

• direct linking together of functions into a link unit

• indirect linking of functions with the stubs of other link units

Thus a re-entrant function can be entered directly via a call from the same link unit
(an intra-link-unit call), or indirectly via a function pointer or direct call from another link unit
(an inter-link-unit call).

The general scheme for establishing the static base in re-entrant code is:

intra MOV ip, sb ; intra link unit (LU) calls target here
inter ; inter-LU calls target here, having loaded

; ip via an inter-LU or fn-pointer veneer.

create backtrace structure, saving sb

 MOV sb, ip ; establish sb for this LU

rest of entry

Code which does not have to be re-entrant does not need to use a static base. Code which
is re-entrant is marked as such, allowing the linker to create the inter-link-unit veneers
needed between independent re-entrant link units, and between re-entrant and
non-re-entrant code.

5.5.2 Creating the stack backtrace structure

For non re-entrant, nonvariadic functions, the stack backtrace structure can be created using
three instructions:

MOV ip, sp ; save current sp, ready to save as old sp
STMFD sp!, {a1-a4, v1-v5, sb, fp, ip, lr, pc} ;as needed
SUB fp, ip, #4

Each argument register a through -a4 has to be saved only if a memory location is needed
for the corresponding parameter (either because it has been spilled by the register allocator
or because its address has been taken).

Each of the registers v1 through v7 has to be saved only if used by the called function.
The minimum set of registers to be saved is {fp, old-sp, lr, pc}.

A re-entrant function must avoid using ip in its entry sequence:

STMFD sp!, {sp, lr, pc}
STMFD sp!, {a1-a4, v1-v5, sb, fp} ; as needed
ADD fp, sp, #8+4*|{a1-a4, v1-v5, sb, fp}|; as used above

sb (also known as v6) must be saved by a re-entrant function if it calls any function from
another link unit (which would alter the value in sb). This means that, in general, sb must be
saved on entry to all non-leaf, re-entrant functions.

ARM Procedure Call Standard
For variadic functions the entry sequence is still more complicated. Usually, you have
to make a contiguous argument list on the stack. For non re-entrant variadic functions, use:

MOV ip, sp ; save current sp, ready to
5-17Reference Guide
ARM DUI 0041B

; save as old sp
STMFD sp!, {a1-a4} ; push arguments on stack
SFMFD f0, 4, [sp]! ; push FP arguments on
STMFD sp!, {v1-v6, fp, ip, lr, pc} ; stack...as needed
SUB fp, ip, #20 ; if all of a1-a4 pushed...

It is not necessary to push arguments corresponding to fixed parameters (though saving
a1–a4 is little more expensive than just saving, say, a3–a4).

If floating-point arguments are not being passed in floating-point registers, there is no need
for SFMFD. SFM is not supported by the Issue 1 floating-point instruction set and must be
simulated by four STFE instructions. See section 5.5.3 Saving and restoring
floating-point registers on page 5-17.

For re-entrant variadic functions, the requirements are more complex.

5.5.3 Saving and restoring floating-point registers

The Issue 2 floating-point instruction set defines two instructions for saving and restoring the
floating-point registers:

• Store Floating Multiple (SFM)

• Load Floating Multiple (LFM)

These are as follows:

• SFM and LFM are exact inverses

• SFM will never trap, whatever the IEEE trap mode and the value transferred
(unlike STFE which can trap on storing a signalling NaN)

• SFM and LFM transfer 3-word internal representations of floating-point values which
vary from implementation to implementation, and which, in general, are unrelated
to any of the supported IEEE representations

• any 1-4, cyclically contiguous floating-point registers can be transferred by
SFM/LFM (eg. {f4–f7}, {f6, f7, f0}, {f7, f0}, {f1})

In Issue 1 floating-point instruction set compatibility modes, SFM and LFM must be simulated
using sequences of STFEs and LDFEs.

Function entry

On function entry, a typical use of SFM might be as follows:

SFMFD f4, 4, [sp]! ; save f4-f7 on a Full Descending stack,
; adjusting sp as values are pushed.

ARM Procedure Call Standard
Function exit

On function exit, the corresponding sequence might be:

LFMEA f4, 4, [fp, #-N] ; restore f4-f7; fp-N points just
5-18 Reference Guide
ARM DUI 0041B

; above the floating-point save area.

On function exit, sp-relative addressing may be unavailable if the stack has been
discontiguously extended.

5.5.4 Checking for stack limit violations

In some environments, stack overflow detection will be implicit; an off-stack reference will
cause an address error or memory fault, which may in turn cause stack extension or program
termination.

In other environments, the validity of the stack must be checked on function entry, and at
other times if the function:

• uses 256 bytes or less of stack space

• uses more than 256 bytes of stack space, but the amount is known and bounded
at compile time

• uses an amount of stack space unknown until runtime. This does not arise in C,
apart from in stack-based implementations of the non-standard, BSD-UNIX
alloca() function. The APCS does not easily support alloca() .

In Modula-2, Pascal and other languages, arrays may be created on block entry or passed
as open array arguments, the size of which is unknown until runtime. These are located in
the callee’s stack frame, and so impact stack-limit checking. In practice this is not a
problem—see 5.5.7 Stack limit checking (vari-sized frames for Pascal-like languages)
on page 5-19.

The check for stack limit violation is made at the end of the function entry sequence, by which
time ip is available as a work register. If the check fails, a standard runtime support function
is called (__rt_stkovf_split_small or __rt_stkovf_split_big).

Any environment that supports explicit stack-limit checking must provide functions which can
do one of the following:

• terminate execution

• extend the existing stack chunk, and decrement sl

• allocate a new stack chunk, reset sp and sl to point into it, and guarantee that an
immediate repeat of the limit check will succeed

ARM Procedure Call Standard
5.5.5 Stack limit checking (small, fixed frames)

For frames of 256 bytes or less the limit check is as follows:
5-19Reference Guide
ARM DUI 0041B

create stack backtrace structure

CMPS sp, sl
BLLT |__rt_stkovf_split_small|
SUB sp, sp, #size of locals ; <= 256, by hypothesis

This adds two instructions and, in general, only two cycles to function entry.

After a call to __rt_stkovf_split_small , fp and sp do not necessarily point into
the same stack chunk: arguments passed on the stack must be addressed by offsets from
fp, not by offsets from sp.

5.5.6 Stack limit checking (large, fixed frames)

For frames bigger than 256 bytes, the limit check proceeds as follows:

SUB ip, sp, #FrameSizeBound ; can be done in 1 instr
CMPS ip, sl
BLLT |__rt_stkovf_split_big|
SUB sp, sp, #InitFrameSize ; may take more than 1 instr

Note Functions containing nested blocks may use different amounts of stack at different instants
during their execution.

FrameSizeBound can be any convenient constant at least as big as the
largest frame the function will use.

InitFrameSize is the initial stack frame size. Subsequent adjustments
within the called function require no limit check.

After a call to __rt_stkovf_split_big , fp and sp do not necessarily point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not by
offsets from sp.

5.5.7 Stack limit checking (vari-sized frames for Pascal-like languages)

The handling of frames whose size is unknown at compile time is identical to the handling
of large frames, with the following exceptions:

• the computation of the proposed new stack pointer is more complicated, involving
arguments to the function itself

• the addressing of vari-sized objects is more complicated than the addressing of
fixed size objects

• vari-sized objects have to be initialized by the called function

Stack layout

The general scheme for stack layout in this case is shown in Figure 5-1: Stack layout :

ARM Procedure Call Standard

Stack-based arguments
5-20 Reference Guide
ARM DUI 0041B

 Figure 5-1: Stack layout

Objects notionally passed by value are actually passed by reference and copied by
the callee.

The callee addresses the copied objects via pointers located in the fixed size part of
the stack frame, immediately above sp. These can be addressed relative to sp. The original
arguments are all addressable relative to fp.

After a call to __rt_stkovf_split_big , fp and sp do not necessarily point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not by
offsets from sp.

If a nested block extends the stack by an amount which cannot be known until runtime,
the block entry must include a stack limit check.

5.5.8 Function exit

Function exit can usually be implemented in a single instruction (this is not the case if
floating-point registers have to be restored). Typically, there are at least as many function
exits as entries, so it is always advantageous to move an instruction from an exit sequence
to an entry sequence. (Fortran may violate this rule by virtue of multiple entries.)

If exit is a single instruction, further instructions can be saved in multi-exit functions by
replacing branches to a single exit with the exit instructions themselves.

Saving and restoring floating-point registers is discussed in 5.5.3 Saving and restoring
floating-point registers on page 5-17.

To exit from functions that use no stack and save no floating-point registers, use:

MOV pc, lr

To exit from other functions which save no floating-point registers, use a pre-decrement
multiple load (LDMEA):

LDMEA fp, {v1-v5, sb, fp, sp, pc} ; as saved

Here, fp must point just below the save code pointer, as this value is not restored.

Stack backtrace data structure
... register save area...

<---- fp points here

Area for vari-sized objects, passed by value or
created on block entry

Fixed size remainder of frame <---- sp points here

ARM Procedure Call Standard
26-bit compatibility

Note These instructions must not be used in 32-bit mode.

To exit from functions that use no stack and save no floating-point registers, note that 26-bit
5-21Reference Guide
ARM DUI 0041B

compatibility demands the following instruction to reinstate the caller’s PSR flags:

MOVS pc, lr

To exit from other functions which save no floating-point registers, use a pre-decrement
multiple load (LDMEA) to reinstate the caller’s PSR flags:

LDMEA fp, {regs}^

5.5.9 Some examples

This section highlights some of the optimizations that are particularly relevant to the ARM
and to this standard.

In order to make effective use of the APCS, compilers must compile code one procedure at
a time; compiling one line at a time is insufficient.

In the case of leaf functions, much of the standard entry sequence can be omitted.
In very small functions, such as those that frequently occur implementing data abstractions,
the function-call overhead can be tiny.

Consider:

typedef struct {...; int a; ...} foo;
int foo_get_a(foo* f) {return(f-a);}

The function foo_get_a can compile to just:

LDR a1, [a1, #aOffset]
MOV pc, lr ; MOVS in 26-bit modes

In functions with a conditional as the top-level statement, in which one or other arm of
the conditional is leaf (calls no functions), the formation of a stack frame can be delayed.

For example, the C function:

int get(Stream *s)
{
 if (s->cnt > 0)
 {--s->cnt;
 return *(s->p++);
 }
 else
 {
 ...
 }
}

could be compiled (non-re-entrantly) into:

ARM Procedure Call Standard
get MOV a3, a1
; if (s->cnt > 0)
 LDR a2, [a3, #cntOffset]
 CMPS a2, #0
5-22 Reference Guide
ARM DUI 0041B

; try the fast case,frameless and heavily conditionalized
 SUBGT a2, a2, #1
 STRGT a2, [a3, #cntOffset]
 LDRGT a2, [a3, #pOffset]
 LDRBGT a1, [a2], #1
 STRGT a2, [a3, #pOffset]
 MOVGT pc, lr
; else, form a stack frame and handle the rest as normal code.
 MOV ip, sp
 STMDB sp!, {v1-v3, fp, ip, lr, pc}
 CMP sp, sl
 BLLT |__rt_stkovf_split_small|
 ...
 LDMEA fp, {v1-v3, fp, sp, pc}

This is only worthwhile if the test can be compiled using any spare of a1-a4 and ip as scratch
registers. This technique can significantly accelerate certain speed-critical functions, such
as read and write character.

Finally, it is often worth applying the tail call optimization, especially to procedures which
need to save no registers.

For example:

extern void *malloc(size_t n)
{
 return primitive_alloc(NOTGCABLEBIT, BYTESTOWORDS(n));
}

is compiled (non-re-entrantly) by the C compiler into:

malloc
 ADD a1, a1, #3 ; 1S
 MOV a2, a1, LSR #2 ; 1S - BITESTOWORDS(n)
 MOV a1, #1073741824 ; 1S - NOTGCABLEBIT
 B primitive_alloc ; 1N+2S = 4S

In this case, the optimization avoids saving and restoring the call-frame registers and saves
five instructions (and many cycles; 17 S cycles on an uncached ARM with N=2S).

ARM Procedure Call Standard
5.6 The APCS in Non-user ARM Modes

There are some consequences of the ARM’s architecture which need to be understood by
implementors of code intended to run in the ARM’s SVC and IRQ modes.
5-23Reference Guide
ARM DUI 0041B

• An IRQ corrupts r14_irq, so IRQ-mode code must run with IRQs off until r14_irq
has been saved. A general solution to this problem is to enter and exit IRQ
handlers written in high-level languages via hand-crafted wrappers, which:

on entry save r14_irq, change mode to SVC, and enable IRQs

on exit restore the saved r14_irq, IRQ mode and the IRQ-enable
state.

Thus the handlers themselves run in SVC mode, avoiding the problem in compiled
code.

• SWIs corrupt r14_svc, so care has to be taken when calling SWIs in SVC mode.

In high-level languages, SWIs are usually called out of line, so you only need
to save and restore r14 in the calling veneer around the SWI. If a compiler can
generate inline SWIs, it should also generate code to save and restore r14 inline
around the SW using the -fz option, unless you know that the code will not be
executed in SVC mode.

5.6.1 Aborts and pre-ARM6-based ARMs

With pre-ARM6-based ARMs (ARM2, ARM3), aborts corrupt r14_svc. This means that care
has to be taken when causing aborts in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error, or it may be caused by page
faulting in SVC mode. Page faulting can occur because an instruction needs to be fetched
from a missing page (causing a prefetch abort), or as a result of an attempted data access
to a missing page. The latter may occur even if the SVC-mode code is not itself paged
(consider an unpaged kernel accessing a paged user-space).

Data aborts

A data abort is recoverable provided r14 contains nothing of value at the instant of the abort.
This can be ensured by:

• saving R14 on entry to every function and restoring it on exit

• not using R14 as a temporary register in any function

• avoiding page faults (stack faults) in function entry sequences

You can use a software stack-limit check to avoid data-aborts early in function entry
sequences.

Prefetch aborts

A prefetch abort is harder to recover from, and an aborting BL instruction cannot be
recovered, so special action has to be taken to protect page faulting function calls.

ARM Procedure Call Standard
In code compiled from C, r14 is saved in the second or third instruction of an entry sequence.
Aligning all functions at addresses which are 0 or 4 modulo 16 ensures the critical part of
the entry sequence cannot prefetch-abort. A compiler can do this by padding code sections
to a multiple of 16 bytes, and being careful about the alignment of functions within code
5-24 Reference Guide
ARM DUI 0041B

sections.

A possible way to protect BL instructions from prefetch-aborts is to precede each BL by:

MOV ip, pc

If the BL faults, the prefetch abort handler can safely overwrite r14 with ip before resuming
execution at the target of the BL. If the prefetch abort is not caused by a BL, this action is
harmless, as r14 has been corrupted anyway (and, by design, contained nothing of value
when a prefetch abort could occur).

6-1Reference Guide
ARM DUI 0041B

This chapter describes the Thumb procedure call standard.

6.1 Introduction 6-2
6.2 Register Names 6-3
6.3 The Stack 6-4
6.4 Control Arrival and Return 6-5
6.5 C Language Calling Conventions 6-7
6.6 Function Entry 6-8
6.7 Function Exit 6-10

Thumb Procedure Call Standard6

Thumb Procedure Call Standard
6.1 Introduction

The Thumb Procedure Call Standard (TPCS) is a set of rules that govern inter-calling
between functions written in the Thumb subset of ARM.
6-2 Reference Guide
ARM DUI 0041B

The TPCS is heavily based on the APCS. If you are unfamiliar with the APCS and its
terminology, you will find it helpful to read Chapter 5, ARM Procedure Call Standard before
continuing with this chapter.

In essence, the TPCS is a cut-down version of the APCS. This reduction in versatility reflects
the different ways in which ARM and Thumb code is used, and also reflects the reduced
nature of the Thumb instruction set, which makes implementing the full APCS inappropriate.

Specifically, the TPCS does not allow:

• Disjoint stack extension (stack chunks).
Under TPCS, the stack must be contiguous. However, this does not necessarily
prohibit the use of co-routines. There are various methods for implementing
co-routines on a contiguous stack. For example, many C++ run-time library
co-routines are implemented in this way.

• Calling the same entry point with different sets of static data (multiple instantiation).
Multiple instantiation can still be implemented at a user level, by placing in a struct
all variables that need to be multiply instantiated, and passing each function
a pointer to the struct.

• Direct floating-point support.
Thumb cannot have access to floating-point (FP) instructions without switching to
ARM mode. Floating-point is supported indirectly by defining how FP values are
passed to and returned from Thumb functions in the Thumb registers.

Thumb Procedure Call Standard
6.2 Register Names

The Thumb register subset has:

• eight visible general-purpose registers (r0-r7)
6-3Reference Guide
ARM DUI 0041B

• a stack pointer (SP)

• a link register (LR)

• a program counter (PC)

In addition, the Thumb subset can access all of the ARM registers singly via a set of special
instructions. See the ARM Architecture Reference Manual for details.

In the context of the TPCS, each Thumb register has a special name and function:

Register TPCS Name TPCS Role

0 a1 argument 1 / scratch register / FP result / integer result

1 a2 argument 2 / scratch register / FP result

2 a3 argument 3 / scratch register / FP result

3 a4 argument 4 / scratch register

4 v1 register variable

5 v2 register variable

6 v3 register variable

7 v4/wr register variable/work register in function entry/exit

8 (v5) (ARM v5 register; no defined role in Thumb)

9 (v6) (ARM v6 register; no defined role in Thumb)

10 sl stack limit

11 fp frame pointer

12 (ip) (ARM ip register - no defined role in Thumb)

13 sp stack pointer (full descending)

14 lr link address

15 pc program counter

 Table 6-1: TPCS registers

Thumb Procedure Call Standard
6.3 The Stack

The stack contains a series of activation records allocated in descending order.
These activation records may be linked through a stack backtrace data structure.
6-4 Reference Guide
ARM DUI 0041B

Note There is no obligation for code under TPCS to create a stack backtrace data structure.
This facility is principally included for use by code compiled for debugging purposes.

A stack limit is said to be implicit if stack overflow is detected and handled by the execution
environment, otherwise it is explicit. Associated with sp is a possible implicit stack limit,
below which sp must not be decremented unless a suitable trapping mechanism is in place
to detect below-limit reads or writes.

At all instants of execution, the memory between sp and the stack limit must contain nothing
of value to the executing program: it may be modified unpredictably by the execution
environment.

If the stack limit is explicit, sl must point at least 256 bytes above it. The values of sl, fp and
sp are multiples of 4.

6.3.1 Implicit vs explicit stack limit checking

Stack limit checking may be implicit or explicit. This is fixed by a combination of memory-
management hardware and system software.

Safe programming practices demand the detection of stack overflow. Although the majority
of Thumb-based systems are expected to have hardware stack limit checking, the TPCS
defines conventions for software stack-limit checking sufficient to support most
requirements.

Thumb Procedure Call Standard
6.4 Control Arrival and Return

6.4.1 Control arrival
6-5Reference Guide
ARM DUI 0041B

At the instant when control arrives at the target function:

• pc contains the address of an entry point to the target function.

• lr contains the value to restore to pc on exit from the function (the return link
value ; see 5.2.5 The stack backtrace data structure on page 5-6).

• sp points at or above the current stack limit. If the limit is explicit, sp will point at
least 256 bytes above it (see 6.3 The Stack on page 6-4).

• fp contains 0 or points to the most recently created stack backtrace structure
(see 5.2.5 The stack backtrace data structure on page 5-6).

• The space between sp and the stack limit must be readable and writable memory
which the called function can use as temporary workspace, and overwrite with any
values before the function returns (see 6.3 The Stack on page 6-4).

• Arguments are marshalled as described below.

6.4.2 Data representation and argument passing

Argument passing in the TPCS is defined in terms of an ordered list of machine-level values
passed from the caller to the callee, and a single-word or floating-point result passed back
from the callee to the caller. Each value in the argument list must be a:

• word-sized integer value, or

• floating-point value (of size one, two, or three words)

A callee may corrupt any of its arguments, however passed.

At the instant control arrives at the target function, the argument list is allocated as follows:

• The first four argument words (or fewer if there are fewer than four argument words
remaining in the argument list) are in machine registers a1-a4.

• The remainder of the argument list (if any) is in memory, at the location addressed
by sp and higher-addressed words thereafter.

A floating-point value is treated as one, two, or three integer values, as appropriate to its
precision. (The TPCS does not support the passing or returning of floating-point values in
ARM floating-point registers.)

Thumb Procedure Call Standard
6.4.3 Control return

When the return link value for a function call is placed in the pc:
6-6 Reference Guide
ARM DUI 0041B

• sp, fp, sl and v1-v4 contain the same values as they did at the instant of control
arrival. If the function returns a simple value of size one word or less, the value is
contained in a1.

• If the function returns a simple value of size one word or less, then the value must
be in a1 (a language implementation is not obliged to consider all single-word
values simple. See 6.5 C Language Calling Conventions on page 6-7).

• If the function returns a simple floating-point value, the value is encoded in a1, a2
and a3.

Thumb Procedure Call Standard
6.5 C Language Calling Conventions

6.5.1 Argument representation
6-7Reference Guide
ARM DUI 0041B

A floating-point value occupies one, two, or three words, as appropriate to its type.
Floating-point values are encoded in IEEE 754 format, with the most significant word of a
double having the lowest address.

The C compiler widens arguments of type float to type double to support interworking
between ANSI C and classic C.

Char, short, pointer and other integral values occupy one word in an argument list. Char and
short values are widened by the C compiler during argument marshalling.

Characters are naturally unsigned: ANSI C has signed, unsigned and plain chars.

6.5.2 Argument list marshalling

Argument values are marshalled in the order written in the source program.

The first 4 argument words are loaded into a1-a4, and the remainder are pushed onto the
stack in reverse order (so that arguments later in the argument list have higher addresses
than those earlier in the argument list). As a consequence, a floating-point value can be
passed in integer registers, or even split between an integer register and the stack.

6.5.3 Non-simple value return

A non-simple type is any non-floating-point type of size greater than one word (including
structures containing only floating-point fields), and certain single-word structured types.

A structure is considered integer-like if its size is less than or equal to one word, and the
offset of each of its addressable sub-fields is zero. An integer-like structured result is
considered simple and is returned in register a1.

Integer-like structures:

struct {int a:8, b:8, c:8, d:8;}
union {int i; char *p;}

Non integer-like structures:

struct {char a; char b; char c; char d;}

A multi-word or non-integer-like result is returned to an address passed as an additional first
argument to the function call. At the machine level:

TT tt = f(x, ...);

is implemented as:

TT tt; f(&tt, x, ...);

Thumb Procedure Call Standard
6.6 Function Entry

6.6.1 Introduction
6-8 Reference Guide
ARM DUI 0041B

A complete discussion of function entry is complex. This section discusses a few of the most
important issues and special cases.

If function F calls function G immediately before an exit from F, the call-exit sequence can
often be replaced instead by a return to G. After this transformation, the return to G is called
a tail call or tail continuation.

Note In general, tail continuation is difficult with the Thumb instruction set because of the limited
range of the B instruction (+/-2048 bytes).

6.6.2 Simple function entry

The entry sequence for functions is:

PUSH { save-registers , lr} ; Save registers as needed.

The exit sequence is:

POP { save-registers , pc}

It is sometimes necessary to save {a1–a4} before {v1–v4}, if the arguments can be
addressed as a single array of arguments accessed from the address of one of the saved
argument registers.

In this case, the function entry sequence becomes:

PUSH {a1-a4}; as necessary
PUSH { save-registers , lr}

and the function exit sequence becomes:

POP { save-registers }
POP {a3}
ADD sp, sp, #16
MOV pc, a3

6.6.3 Function entry: checking for stack limit violations

In some environments, stack overflow detection is implicit: an off-stack reference causes an
address error or memory fault which may, in turn, cause stack extension or program
termination.

In other environments, the validity of the stack must be checked at least on function entry.
The stack must be checked when:

• the function uses 256 bytes or less of stack space

• the function uses more than 256 bytes of stack space, but the amount is known and
bounded at compile time

Thumb Procedure Call Standard
The TPCS does not support languages in which the amount of stack required for a function
is known only at runtime. This is not a requirement for languages that support open array
arguments (such as Modula-2 and Pascal), since the arguments can be placed in the callee
stack frame where the size is known.
6-9Reference Guide
ARM DUI 0041B

The check for stack limit violation is made at the end of the function entry sequence. Register
ip is available as a work register. If the check fails, one of the following standard runtime
support functions is called:

• __rt_stkovf_split_small

• __rt_stkovf_split_big)

Each environment that supports explicit stack limit checking must provide these functions,
which can:

• terminate execution, or

• extend the existing stack, decrementing sl

6.6.4 Stack limit checking: small, fixed frames

For frames of 256 bytes or less, the limit check may be implemented as follows:

CMP sp, sl
BGE no_ovf
BL |__16__rt_stkovf_split_small|

no_ovf

6.6.5 Stack limit checking: large, fixed frames

For frames larger than 256 bytes, the limit check may be implemented as follows:

LDR ip, framesize
ADD ip, sp
CMP ip, sl
BGE no_ovf
BL |__16__rt_stkovf_split_big|

no_ovf
...
ALIGN

framesize
DCD -Framesize

Note Functions containing nested blocks may use different amounts of stack at different times
during their execution. If this is the case, subsequent stack adjustments require no limit
check if the initial stack check examines the maximum stack depth.

Thumb Procedure Call Standard
6.7 Function Exit

To exit from functions, use:

MOV pc, lr
6-10 Reference Guide
ARM DUI 0041B

where lr has the same value as it had on entry to the function. lr does not need to be
preserved.

To exit from functions which create a stack backtrace structure, use:

LDR wr, [sp, # fp-offset] ; Restore fp
MOV fp, wr
LDR a4, [sp, # lr_offset] ; Get lr in a4
POP { saved-regs }
ADD sp, sp, #16+ pushed-args *4 ; push-args only valid

; if variadic
MOV pc, a4 ; Return

7-1Reference Guide
ARM DUI 0041B

This chapter describes the software utilities provided with the Toolkit.

7.1 Introduction 7-2
7.2 ARM Profiler 7-3
7.3 ARM Librarian 7-6
7.4 ARM Object Format Decoder 7-7
7.5 ARM Executable Format Decoder 7-8
7.6 ANSI to PCC C Translator 7-9

Toolkit Utilities7

Toolkit Utilities
7.1 Introduction

This chapter describes the software utilities provided with the Software Development
Toolkit:
7-2 Reference Guide
ARM DUI 0041B

ARM Profiler Displays an execution profile of a program from a
profile data file generated by either the windowed
debugger or by armsd.

ARM Librarian Allows sets of related AOF files to be collected
together and maintained in libraries. Such a library
can then be passed to the linker in place of several
AOF files.

ARM Object Format Decoder Decodes AOF files such as those produced by
armasm and armcc.

ARM Executable Format Decoder Decodes executable files such as those produced
by armasm and armcc.

ANSI to PCC C Translator Helps to translate C programs and headers from
ANSI C into PCC C, primarily by rewriting top-level
function prototypes.

Toolkit Utilities
7.2 ARM Profiler

The ARM Profiler, armprof, displays an execution profile of a program from a profile data file
generated by either the windowed debugger or by armsd. The profiler displays one of two
7-3Reference Guide
ARM DUI 0041B

types of execution profile depending on the amount of information present in the profile data:

• If only PC-sampling information is present, the profiler can display only a flat profile
giving the percentage time spent in each function itself, excluding the time spent in
any of its children.

• If function call count information is present, the profiler can display a call graph
profile which shows not only the percentage time spent in each function, but also
the percentage time accounted for by calls to all children of each function, and the
percentage time allocated to calls from different parents.

No special options are needed at compile time to allow profile data to be generated for
a program, nor is it necessary to take any special action at link time (other than ensuring that
the program image contains symbols, as is the linker default).

Profiling is available only for programs loaded into store by the debugger; function call
counting is not available for code in ROM. If function call counts are required, the debugger
must be informed when the program image is loaded (and it alters the program, diverting
calls to counting veneers).

The debuggers allow the collection of PC samples to be turned on and off at arbitrary times,
allowing data to be generated only for the part of a program on which attention is focused
(omitting initialization code, for example).

Notes Take care that the time between turning sampling on and off is long by comparison with
the sample interval, or the data generated may be meaningless.

Turning sampling on and off does not affect the gathering of call counts.

7.2.1 Profiler command-line options

A number of options are available to control the format and amount of detail present in
the profiler output.

-parent Displays information about the parents of each function in the
profile listing. This gives information about how much time is
spent in each function servicing calls from each of its parents.

-child Displays information about the children of each function.
The profiler displays the amount of time spent by each child
performing services on behalf of the parent.

-noparent Turns off the parent listing.

-nochild Turns off the child listing.

-sort cumulative Sorts the output by the total time spent in each function and all
of its children.

Toolkit Utilities
-sort self Sorts the output by the time spent in each function (excluding

the time spent in its children).

-sort descendants Sorts the output by the time spent in all of a function’s children
7-4 Reference Guide
ARM DUI 0041B

By default, child functions are listed, but not parent functions, and the output is sorted by
cumulative time.

Example

armprof -parent sort.prf

7.2.2 Profiler output

The profiler output is split into a number of sections, each section separated by a line.
Each section gives information on a single function. In a flat profile (one with no parent or
child function information) each section is just a single line.

The following shows example sections for functions called insert_sort and strcmp .

Name cum% self% desc% calls
--

main 17.69% 60.06% 1
insert_sort 77.76% 17.69% 60.06% 1

strcmp 60.06% 0.00% 243432
--

qs_string_compare 3.21% 0.00% 13021
shell_sort 3.46% 0.00% 14059
insert_sort 60.06% 0.00% 243432

strcmp 66.75% 66.75% 0.00% 270512
--

Functions listed before the current function are parents of that function, and functions listed
afterwards are child functions.

cum% Is only applicable to the current function and gives the percentage of the
total time accounted for by this function and all of its children.

The other columns have slightly different meanings depending on whether the line is a
parent function, a child function or the current function itself.

For the current function:

self% Gives the percentage time spent in this function itself.

desc% Gives the percentage time spent in the children of this function.

calls Gives the number of calls to this function.

but excluding time spent in the function itself.

-sort calls Sorts the output by the number of calls to each function in the
listing.

Toolkit Utilities
For a parent function:

self% Gives the percentage time spent in the current function itself on behalf of
this parent.
7-5Reference Guide
ARM DUI 0041B

desc% Gives the percentage time spent in the children of the current function of
behalf of this parent.

calls Gives the number of calls made by this parent to the current function.

For a child function:

self% Gives the percentage time spent in this child on behalf of the current
function.

desc% Gives the percentage time spent in this child’s children on behalf of the
current function.

calls Gives the number of times this child was called by the current function.

Toolkit Utilities
7.3 ARM Librarian

The ARM Librarian (armlib) allows sets of related AOF files to be collected together and
maintained in libraries. Such a library can then be passed to the linker in place of several
7-6 Reference Guide
ARM DUI 0041B

AOF files.

However, linking with an object library file does not necessarily produce the same results as
linking with all the object files collected into the object library file. This is because of the way
armlink processes its input files:

• each object file in the input list appears in the output unconditionally (although
unused areas will be eliminated if the output is AIF or if the -nounusedareas
option is specified)

• a module from a library file is only included in the output if an object file or
previously processed library file refers to it

For more information on how armlink processes its input files refer to 3.4 Area Placement
and Sorting Rules on page 3-13.

The full specification of ARM Object Library Format can be found in Chapter 13, ARM
Object Library Format .

7.3.1 Librarian command-line options

The format of the armlib command is:

armlib options library [file-list | member-list]

The wildcards * and ? may be used in file-list and member-list .

options can be any of the following:

-h or -help Gives online details of the armlib command.

-c Creates a new library containing files in file-list .

-i Inserts files in file-list into the library. Existing members of
the library are replaced by members of the same name.

-d Deletes members in member-list .

-e Extracts members in member-list , placing them in files of the
same name.

-o Adds an external symbol table to an object library.

-l Lists library. This may be specified together with any other
option.

-s Lists symbol table. This may be specified together with any other
option.

-v file Reads in additional arguments from a file, in the same way as
the armlink -via option, described on page 3-5.

Toolkit Utilities
7.4 ARM Object Format Decoder

The ARM Object Format (AOF) file decoder, decaof, is a tool which decodes AOF files such
as those produced by armasm and armcc. The full specification of AOF can be found in
7-7Reference Guide
ARM DUI 0041B

Chapter 14, ARM Object Format .

7.4.1 Object file decoder command-line options

The format of the decaof command is:

decaof [- options] file [file ...]

options consists of a string of letters, which have the following meaning:

a Prints area contents in hex (and implicitly includes -d).

b Prints only the area declarations (brief).

c Disassembles code areas (and implicitly includes -d).

d Prints area declarations.

g Prints debug areas formatted readably.

h or help Gives online details of the decaof command.

q Gives a quick report of the area sizes only.

r Prints relocation directives (and implicitly includes -d).

s Prints symbol tables.

t Prints string tables.

z Prints a one-line code and data size summary per file.

If no options are specified, the effect is of -dst .

Each file should be an AOF file, otherwise decaof will complain.

Example

decaof -q test.o
C$$code 4748
C$$data 152

Toolkit Utilities
7.5 ARM Executable Format Decoder

The ARM Executable Format (AXF) file decoder, decaxf, is a tool which decodes executable
files such as those produced by armlink.
7-8 Reference Guide
ARM DUI 0041B

7.5.1 Executable file decoder command-line options

The format of the decaxf command is:

decaxf [- options] file [file ...]

options consists of a string of letters, which have the following meaning:

c disassembles code

g prints debug areas

s prints the symbol table

The following options are for ELF files only:

t prints the string table

d displays the contents of the data section

r displays relocation information

Each file should be an executable file, otherwise decaxf will complain.

Examples

decaxf -gst my_elf.axf

decaxf -c test1.axf test2.axf test3.axf

Toolkit Utilities
7.6 ANSI to PCC C Translator

The topcc program helps to translate (suitable) C programs and headers from the ANSI
dialect of C into the PCC dialect of C, primarily by rewriting top-level function prototypes
7-9Reference Guide
ARM DUI 0041B

(whether declarations or definitions).

The topcc translator performs its translation prior to the C preprocessing phase of any
following compilation, and ignores preprocessor flag settings. It is therefore unable to help
with the translation of sources where function prototypes have been obscured, for example,
by preprocessor macros.

The translation performed is limited, and other differences between the ANSI and PCC
dialects must be dealt with in the source before translation, although some can be corrected
after translation.

7.6.1 ANSI to PCC C command-line options

The command format for topcc is:

topcc options [infile [outfile]]

where:

infile defaults to stdin

outfile defaults to stdout

The options are as follows:

-d describe what the program does

-c do not remove keyword const

-e do not remove #error... .

-p do not remove #pragma... .

-s do not remove keyword signed

-t do not remove 2nd argument to va_start()

-v do not remove keyword volatile

-l do not add #line directives

7.6.2 Translation details

Top-level function declarations are rewritten with their argument lists enclosed in /* and */ .
For example, declarations like:

type foo(argument-list);

are rewritten as:

type foo(/* argument-list */);

Any comment tokens /* or */ in the original argument list are removed.

Toolkit Utilities
Function definition prototypes are rewritten in PCC style. For example, definitions like:

type foo(type1 a1, type2 a2) {...}

are rewritten as:
7-10 Reference Guide
ARM DUI 0041B

type foo(a1, a2)
type1 a1;
type2 a2;
{...}

and:

type foo(void)
{...

is rewritten as:

type foo()
{...

Notes

1 The “...’’ declaration in a function definition (denoting a variable-length argument)
is replaced by int va_alist . The second argument to calls of the va_start
macro is removed, (varargs.h defines va_start as a macro taking one
argument; stdarg.h adds a second argument). However, topcc does not replace
#include <varargs.h> with #include <stdargs.h> .

2 ANSI keywords const , signed , and volatile are removed (with warnings), and
enums are warned of (stricter usage under PCC).

3 Type void * is converted to VoidStar , which should be typedef'd to ’char *’
to be compatible with PCC.

4 ANSI C’s unsigned and unsigned long constants are rewritten using the typecasts
(unsigned) and (unsigned long) . (For example, 300ul becomes
(unsigned long)300L .)

5 After rewrites that change the number of lines in the file, #line directives are
included that resynchronize line numbering. These quote the source filename, so
that debugging tools then refer to the ANSI form of sources.

7.6.3 Issues with topcc

1 topcc takes no account of the setting of conditional compilation options. This is
quite deliberate: it converts all conditionally compilable variants in parallel.
Braces must be nested reasonably within conditionally-compilable sections, or
topcc may lose track of the brace nesting depth. This is used to determine whether
it is within, or between, top-level definitions and declarations.
It is not possible, in practice, to track brace-nesting depth without regard to
reprocessing, as topcc uses heuristics to match conditionally-compiled braces.
If topcc cannot match braces, it gives the message:

mis-matched, conditionally included braces.

Toolkit Utilities
2 topcc cannot concatenate adjacent string literals. In practice, all important uses of

ANSI-style implicit concatenation involve some mix of literals and preprocessor
variables (of which topcc is oblivious). topcc could easily concatenate adjacent
string literals.You can eliminate these from the input program beforehand.
7-11Reference Guide
ARM DUI 0041B

3 If topcc finds an extra closing brace and starts processing text prematurely as if it
were at the top level, this can damage function calls and macro invocations.
In general, you should compare the output of topcc with its input (using a file
difference utility) to check that changes have been reasonably localized to function
headers and declarations. If necessary, most of topcc’s other transliterations can
be inhibited to make these principal changes more visible. (See 7.6.1 ANSI to PCC
C command-line options on page 7-9.)

Debug Reference

8-1Reference Guide
ARM DUI 0041B

This chapter contains information about Angel, the ARM Debug Monitor. To aid readability,
the term Angel is used to mean the Angel Debug Monitor throughout this chapter.

8.1 Introduction 8-2
8.2 Structure 8-2
8.3 Angel C Library Support (SWIs) 8-3
8.4 ROM Applications and Late Debugger Start-up 8-8
8.5 Breakpoints and Undefined Instructions 8-9
8.6 Communications Architecture for Angel 8-10
8.7 Reliability and Retransmission 8-12
8.8 Channels Layer and Buffer Management 8-16
8.9 Device Driver Layer 8-20
8.10 Support for user application devices 8-28
8.11 Fusion IP stack for Angel 8-34
8.12 Serialization, Stacks and Modes 8-38

Angel8

Angel
8.1 Introduction

Angel (the Angel Debug Monitor) is a program which allows rapid development and
debugging of applications running on ARM-based hardware. Angel can debug applications
8-2 Reference Guide
ARM DUI 0041B

running in both ARM and Thumb state on target hardware.

For an overview of Angel, and an introduction to the various components of an Angel
system, refer to the Software Development Toolkit User Guide (ARM DUI 0040).

8.2 Structure
The main components of Angel are shown in Figure 8-1: Structure of Angel .

 Figure 8-1: Structure of Angel

The C Library is split into:

• the C Library itself, which is linked with the application

• support for the semihosted parts of the C library which is linked with Angel

CLib in
App

ADP

suppor

Boot
support

Other
channel

CLib in
Angel

target
debug

Device driver Device driver

User Application
CLib in
App

Exceptions

Start-up
and

initialize

ADP

support

Boot
support

Other
channels

CLib in
Angel

Channels

Device driver framework

Target
debug

Angel
8.3 Angel C Library Support (SWIs)

Angel uses a SWI mechanism to allow user applications linked with the ARM C Library for
Angel to make semihosting requests, eg. requests such as ‘open a file on the host’, which
8-3Reference Guide
ARM DUI 0041B

have to be communicated to the host in order for them to be carried out.

Angel’s predecessor, the Debug Monitor (Demon), also supported SWIs for this purpose.
However, Demon used a fixed set of SWIs in the range 0 to 0x71, and sometimes this was
found to be inconvenient because it made it difficult for operating systems developers to
make use of SWIs in this range for their own purposes.

Therefore Angel uses only a single SWI, which can be configured (see angel_SWI_ * in
arm.h) to be any SWI, so that it need not clash with any SWIs that operating system
developers wish to make use of. However, this means that the operation type must be
passed in r0, rather than being encoded as part of the SWI number. All other parameters
are passed in a block which is pointed to by r1. The result is returned in r0 either as an
explicit return value or as a pointer to a data block. See the description of each operation
below.

This interface is different and incompatible with the Demon SWI interface, although many of
the SWIs still perform the same functions.

For users of the Angel C Library this does not matter—use of the new SWI mechanism will
be transparent. However, assembler programmers who have written code which makes use
of the Demon semihosting SWIs must recode the calls to the Demon SWIs to make use of
the new Angel SWI interface.

Assembler programmers should also note that r1–r3 are preserved by Angel when an Angel
system call is made. However, r0 is used to return a result: if no result is returned, it will have
been corrupted.

8.3.1 The semihosted operations

In the following descriptions, the number in parentheses after the operation’s name
(for example 0x01) is the value r0 should be set to for this operation. In general, it is best to
use the operation names which are defined in arm.h .

SYS_OPEN (0x01)

r1 addresses a pointer to an argument block. The first word is a pointer to a
NULL-terminated string containing a file or device name. The second word is a small integer
which specifies the file opening mode. The third word is an integer which gives the length of
the string (not including the NULL).

If the open succeeds, a non-zero handle is returned in r0, otherwize zero is returned in r0.

mode 0 1 2 3 4 5 6 7 8 9 10 11

ANSI C fopen mode r rb r+ r+b w wb w+ w+b a ab a+ a+b

Angel
SYS_CLOSE (0x02)

On entry, r1 must be a pointer to a handle for an open file, previously returned by
SYS_OPEN. If the close succeeds, zero is returned in r0; otherwise, a non-zero value is
8-4 Reference Guide
ARM DUI 0041B

returned.

SYS_WRITEC (0x03)

Writes a byte, pointed to by r1, to the debug channel. When executed under the symbolic
debugger, the character appears on the display device connected to the debugger.

SYS_WRITE0 (0x04)

Writes the null-terminated string to the debug channel. On entry, r1 contains a pointer to the
string. When executed under the symbolic debugger, the characters appear on the display
device connected to the debugger.

SYS_WRITE (0x05)

On entry, r1 contains a pointer to a data block, the first word of which must contain a handle
for a previously opened file. The second word points to a buffer, and the third word contains
the number of bytes to be written from the buffer to the file. SYS_WRITE returns, in r0, the
number of bytes not written (and so indicates success with a zero return value).

SYS_READC (0x06)

Reads a byte from the debug channel, returning it in r0. The read is notionally from the
keyboard attached to the debugger.

SYS_READ (0x07)

On entry, r1 contains a pointer to a data block, the first word of which must contain a handle
for a previously opened file. The second word points to a buffer, and the third word contains
the number of bytes to be read to the buffer from the file. SYS_READ returns, in r0, the
number of bytes not read, and so indicates the success of a read from a file with a zero
return value. If the handle is for an interactive device (SYS_ISTTY returns non-zero for this
handle), a non-zero return from SYS_READ indicates that the line read did not fill the buffer.

SYS_ISERROR (0x08)

On entry, r1 must contain a pointer to a data segment, the first word of which is the required
status word to check. If the status word in negative, SYS_ISERROR returns a non-zero
value in r0. If the word is positive, SYS_ISERROR returns a zero value.

SYS_ISTTY (0x09)

On entry, r1 must contain a pointer to a handle for a previously opened file or device object.
On exit, r0 contains -1 if the handle identifies an interactive device and 0 otherwise. Any
other value indicates an error condition.

Angel
SYS_SEEK (0x0A)

On entry, r1 is a pointer to a data block, the first word of which is a handle for a seekable file
object, the second word is the absolute byte position to be sought to. If the request can be
8-5Reference Guide
ARM DUI 0041B

honoured, SYS_SEEK returns 0 in r0; otherwise it returns a host-specific non-zero value.
Note that the effect of seeking outside of the current extent of the file object is undefined.

SYS_FLEN (0x0C)

On entry, r1 is a pointer to a data block, the first word of which is a handle for a previously
opened, seekable file object. SWI_FLEN returns, in r0, the current length of the file object,
otherwise it returns -1 to indicate an error.

SYS_TMPNAM (0x0D)

On entry, r1 points to an argument block, the first word is a pointer to a buffer, the second
word a target identifier for this filename. The third word contains the length of the buffer
(length should be at least the value of L_tmpnam on the host system). On successful return,
r0 returns 0 and the buffer contains the filename.

SYS_REMOVE (0x0E)

Deletes the file named by the nul-terminated string addressed by the first word of the
argument block pointed to by r1; the second word is the string’s length. Returns (in r0) a zero
if the removal succeeds, or a non-zero, host-specific error code if it fails.

SYS_RENAME (0xF)

r1 contains a pointer to a data block, the first word of which is a pointer to the name of the
old file. The second word is the length of the old filename. The third word is a pointer to the
name of the new file name and the fourth is the length of the new name. Both strings are
NUL terminated. If the rename succeeds, zero is returned in r0; otherwise, a non-zero,
host-specific error code is returned.

SYS_CLOCK (0x10)

Returns, in r0, the number of centiseconds since the support code started executing. Note
that by default, Angel will ask the host for this information, which can make it unreliable or
inaccurate for some benchmarking purposes.

SYS_TIME (0x11)

Returns, in r0, the number of seconds since the start of 1970.

SYS_SYSTEM (0x12)

Passes the string, pointed to by the first word of the argument block pointed to by r1, to the
host’s command line interpreter, the string’s length is contained in the second word of the
argument block. The return status is returned in r0.

Angel
SYS_ERRNO (0x13)

Returns, in r0, the value of the C library errno variable associated with the host support for
this debug monitor. errno may be set by a number of C library support SWIs, including
8-6 Reference Guide
ARM DUI 0041B

SYS_REMOVE, SYS_REMOVE, SYS_OPEN, SYS_CLOSE, SYS_READ, SYS_WRITE,
SYS_SEEK, and so on. Whether or not, and to what value errno is set is completely
host-specific, except where the ANSI C standard defines the behavior.

SYS_GET_CMDLINE (0x15)

Returns a string of the command line used to call the executable; this is returned in the
address pointed to by r1. On entry, r1 must contain a valid pointer. The returned NULL
terminated string can be any length up to the default buffer size (minus the transport
overhead); the buffer must be able to contain this. An error code may be returned in r0.

SYS_HEAPINFO (0x16)

The only parameter in the block pointed to by r1 is a pointer to a block of four words of data
in which this SWI will return the stack and heap base and limit as follows:

1st word: Heap Base

2nd word: Heap Limit

3rd word: Stack Base

4th word: Stack Limit

The values returned are typically used by the Angel C Library during initialization.
The values returned by this are those values set up in devconf.h . However, the C Library
can override these values, but will only do so if __heap_base is defined at link time, in
which case the values of the following symbols will be used: __heap_base ,
__heap_limit , __stack_base , __stack_limit .

Note that this call will return sensible answers if EmbeddedICE is being used—but the
values will be determined by the host debugger. For example, using EmbeddedICE versions
2.00 onwards, the variable $top_of_memory can be used to tell EmbeddedICE what to
return as the top of memory. If this is not flexible enough, the exact addresses of these four
items can be set by defining symbols as described above.

8.3.2 Other operations

There are three other operations which are intended for use by the user’s application:

angel_SWIreason_EnterSVC

The Angel SWI should be called with r0 set to angel_SWIreason_EnterSVC .

This will return in SVC mode with interrupts disabled. On return, r0 holds the address
of a routine which should be called to return to USR mode, Angel_ExitToUSR . This
is so that standalone programs can make use of this facility.

angel_SWIreason_LateStartup

Angel
The Angel SWI should be called with r0 set to angel_SWIreason_LateStartup ,
and with r1 set to AL_CONTINUE or AL_BLOCK as defined in support.h .

This is used to tell Angel that an application linked with a late-startup Angel library now
8-7Reference Guide
ARM DUI 0041B

requires debugger support.

angel_SWIreason_ReportException

The Angel SWI should be called with r0 set to
Angel_SWIreason_ReportException , and with r1 set to one of the values defined
in adp.h with names starting ADP_Stopped_ .

This SWI allows the application to report an exception to the debugger directly. The
most common use is for reporting that execution has completed, and the value to use
is ADP_Stopped_ApplicationExit .

Angel
8.4 ROM Applications and Late Debugger Start-up

This section describes how the debugger and the target interact, and describes how Angel
asks for a program to be started without handing control to the debugger.
8-8 Reference Guide
ARM DUI 0041B

8.4.1 Flow of control

The ARM debuggers assume they are in control of the target system. When they start up,
they work on the basis that the user application is not executing and has been halted.

The ARM debuggers then look around the target system to find out what is in the registers
and some regions of memory, before handing control directly to the user of the debugger.
The target stays ‘halted’ until the user of the debugger tells the debugger to restart
execution. When this is done the debugger relinquishes control.

The target then resumes (or starts) the target application until a breakpoint or semihosting
request is encountered. It is also possible for the user of the debugger to request that the
target stops by issuing an interrupt request, eg. by typing Ctrl C from armsd. When any of
these (except the semihosting request) happen, the debugger takes back control.

Control for applications in ROM

If the application has to be downloaded (as it is not in ROM), it is not important that the
debugger takes control on startup. If the application is already in ROM (in later stages of
development), it may not be desirable for the debugger to take control immediately.

8.4.2 Late debugger startup

A SWI operation allows the application to indicate that it is ready for a debugger to take
control. When this is called, the application stops executing and sets a flag to indicate that
a debugger may now attach itself.

A debugger can then attach to Angel and interrogate the state of the application. If a
debugger attempts to attach to the target before the target has called this SWI, Angel does
not allow the debug session to start, and refuses to service any requests made by the
debugger. This allows late debugger startup systems to be implemented, where the
application executes immediately after Angel has booted, and a debugger cannot interfere.
However, if an error condition is detected either by Angel or by the application, the debugger
start-up SWI can be called and the debugger can then take control and inspect the system.
You cannot make semi-hosting requests to the host before calling the debugger startup SWI,
because there is no debugger attached to service the request.

An alternative form of late debugger startup is supported, where the late debugger startup
SWI is called during application startup. The debugger then takes control, but the application
can be restarted by typing go. This is useful for systems which require semihosting support
and also have the application in ROM.

To make your application work like this, define this symbol in your application:

__do_late_debug_swi_on_startup

The Angel C library notices this and takes appropriate action.

Angel
8.5 Breakpoints and Undefined Instructions

8.5.1 ARM state
8-9Reference Guide
ARM DUI 0041B

In ARM state, there is one SWI, which can be reconfigured to any of the SWI numbers, so
that it need not clash with the system developer’s use of SWIs. This SWI is used for:

• system privilege

• semihosting requests

• reporting an exception to the debugger

In all cases, one or more registers are available to pass information to Angel.

There are also two undefined instructions:

0xE7FDDEFE for little-endian systems

0xE7FFDEFE for big-endian systems

When executed in Thumb state, the undefined instruction vector is still taken, whether
executing the instruction in the top or bottom half of the word (in both cases these
disassemble to a Thumb-undefined instruction and a branch to the Thumb-undefined
instruction).

These are used for normal, user interrupt, and vector hit breakpoints. In all cases, there are
no arguments in registers, but the breakpoint address itself is significant.

8.5.2 Thumb state

In Thumb state, there is one SWI, which can be reconfigured to any of the limited (256) SWIs
available in Thumb state, so that it does not clash with the SWIs being used in your system.
This SWI is used for semihosting requests; it may also be needed for gaining system
privilege and reporting exceptions to the debugger, but only if the parts of Angel which do
this are compiled into Thumb code, which is unlikely to be necessary.

There is also one undefined instruction; 0xDEFE. This is the same undefined instruction as
that used by EmbeddedICE.

Breakpoints
Note: Although ARM breakpoints are detected in Thumb state, Thumb breakpoints are not

detected in ARM state. It is not possible for a Thumb breakpoint to be detected if it is
executed in ARM state, because the rest of the ARM instruction is not easily determined.

The Thumb SWI is used for normal, user interrupt, and vector hit breakpoints. In all cases,
there are no arguments in registers, but the breakpoint address itself is significant.

Angel
8.6 Communications Architecture for Angel

8.6.1 Layers
8-10 Reference Guide
ARM DUI 0041B

Figure 8-2: Communication layers for Angel is a conceptual model of the communication
layers for Angel. (*ADP = HADP (host to target) or TADP (target to host), and so on).
In practice, some layers may be combined.

 Figure 8-2: Communication layers for Angel

At the top level on the target, the Angel agent communicates with the debugger host
(*ADP, *BOOT), and the user application may wish to make use of semihosting support
(CLIB) or extended debugger features (*UDBG). The user application may use the device
connected to the debugger host for its own communications (APPL) and/or may use other
devices.

All communications for debugging (*ADP, *BOOT, *TDCC, CLIB , *UDBG) require a reliable
channel between the target and the host. The Reliable comms and buffer management layer
is responsible for providing reliability, retransmissions and multiplexing/de-multiplexing for
these channels. Because achieving reliability after errors requires retransmission, this layer
must also handle buffer management.

Raw packet access to the device driver by the application is multiplexed with reliable packets
by the device driver. This minimizes the impact of removing Angel code, which can be
replaced with a small ‘shim’ layer to a raw device driver.

The device driver layer provides detection or rejection of bad packets but does not offer
reliability itself.

Devices

Device driver (with error detection)

Reliable comms and buffer management

*ADP *BOOT *TDCC CLIB *UDBG

APPL

Raw device driver

Angel User application

Angel
8.6.2 Channels

The channels used by Angel are described in Table 8-1: Angel communication channels .
8-11Reference Guide
ARM DUI 0041B

 Table 8-1: Angel communication channels

8.6.3 BOOT support

If there are two (or more) possible debug devices (eg. serial and serial/parallel), the boot
agent must be able to receive messages on any device and then ensure that further
messages which come through the channels layer are sent to the correct (new) device.

When the debug agent detects a Reboot or Reset message, it opens the other channels
using the device which received the message. All debug channels switch to use the newly
selected debug device.

During debugging, each channel is connected via the same device to one host. Initially,
Angel listens on all Angel-aware devices for an incoming boot packet, and when one is
received, the corresponding device is selected for further Angel use. To cope with host-end
problems or restarts, the ability to listen on all devices for a boot message is maintained
throughout a debugging session.

To support this, the channels layer provides a function to register a read callback across all
Angel-aware devices, and a function to set the default device for all other channel
operations.

Channel Type of data transmitted

HADP ADP, host originated

TADP ADP, target originated

HBOOT Boot agent channel, host originated

TBOOT Boot agent channel, target originated

CLIB Semi hosting C library support, target originated

HUDBG User Debug Support, host originated

TUDBG User Debug Support, target originated

HTDCC Thumb direct comms channel, host originated

TTDCC Thumb direct comms channel, target originated

TLOG Target logging to assist development, target originated

Angel
8.7 Reliability and Retransmission

This section describes the buffer management and reliable communications layer.
8-12 Reference Guide
ARM DUI 0041B

8.7.1 Packets

There are two types of packet:

• the data packet

• the renegotiation packet

In an ideal situation, only data packets are used because each data packet is replied to with
another data packet.

Renegotiation packets request resending of a previous data packet because of a lost or
corrupted packet. If a packet is corrupted, a resend message is sent out and the bad packet
is resent. If the resend itself is corrupted, another resend is sent and so on, until the link is
re-established. (Resent, duplicated data is harmless and can be thrown away but lost data
should be avoided as it is difficult to recover from.)

8.7.2 Transmission sequencing

If the two ends of the link get out of step, the sequence numbers are used to calculate which
packets need to be resent in order to resynchronize the ends. A missing message blocks the
protocol until another message is sent out. This causes another resend request because the
sequence numbers are wrong.

The protocol used in Angel uses two sequence numbers in each packet to indicate how
many messages each has transmitted:

• one sequence number for the host

• one sequence number for the target

The two sequence numbers are referred to as the home number for the node’s own number
and the opposing number for the number of the opposing node.

A two-letter convention describes the sequence numbers:

• the first letter is either:

N to indicate a generic node
M to indicate that the identifier originated in the message. This

indicates the sequence numbers contained in the message.
• the second letter is either:

h for the node’s home number
o for the opposing node’s home number

The h and o denominators are those of the originating node.

Retransmissions use the same number that they used the first time they were sent; all
subsequent messages will continue from this number. All messages must be stored until
they have been acknowledged, in case they need to be retransmitted.

Angel
8.7.3 Protocol

The rules for the protocol are:
8-13Reference Guide
ARM DUI 0041B

Sending a new message Increment Nh but leave No unmodified.
Send the message using these numbers.

Receiving a good message Check that:

Mh = No + 1 Sequence numbers ok;
increment No

Mh > No + 1 A message has been lost; ask
for a resend using existing Nh
and No

Mh < No + 1 Duplicate message already
received; discard, leaving
sequence numbers unchanged

Receiving a bad message Send a resend message with the node’s current
sequence numbers.

Receiving a resend message Mo and Mh indicate what the opposing node last
received and sent, so check the values to see what
went wrong:

If Nh != Mo The opposing node has missed
message Mo+1, so resend
messages Mo+1 onwards using
the messages’ original
sequence numbers. The node
numbers remain unmodified.

Else If No != Mh The node missed message
Mo+1 so send a resend
message using Nh and No.

Angel
8.7.4 State diagram for the protocol

Figure 8-3: State diagram shows the state diagram for the protocol.
8-14 Reference Guide
ARM DUI 0041B

 Figure 8-3: State diagram

As soon as Angel receives acknowledgement of a message, it can remove the message
from the buffer. Until this time, the message must be stored in case of retransmission. A
message is always acknowledged by another message.

A resend request is a special-purpose message and is identified as such, because it cannot
usefully carry any data. On receiving a ‘good message’, Angel does not send out an
acknowledgement immediately (because it can be acknowledged by the next data packet,
unless the message was a resend request. In this case, Angel sends out the requested
packet, or a renegotiation packet (a resend request) if the data is out of sequence.

Rx/Tx request wait loop

Tx Rx

Nh++
Send msg

Mh>No+1 Mh=No+1 Mh<No+1

No++
No!=Mo

resend
Mo+1
upwards

resend packet

good packet

bad packet

Send Resend
Message using
Nh and No

No!=Mh

Angel
8.7.5 Recovering from a lost packet

A lost packet causes a semideadlock situation which is resolved as soon as one of the ends
has to send out another packet. This packet forces a resend of the original message. If
8-15Reference Guide
ARM DUI 0041B

another message is never sent, the deadlock situation occurs.

In order to ‘kick start’ a deadlock, a message is sent every few seconds in a heartbeat
packet. This kick starts a deadlock which occurs if a missing packet is not followed by any
further packets on other channels. See 8.8.7 Heartbeat mechanism on page 8-18.

Angel
8.8 Channels Layer and Buffer Management

The channels layer is responsible for multiplexing the various Angel channels onto a single
device, and for providing reliable communications over those channels. The channels layer
8-16 Reference Guide
ARM DUI 0041B

is also responsible for managing the pool of buffers used for all transmission and reception
over channels.

Because there are several channels that could be in use independently (eg. CLIB and
HADP), the channel layer accepts only one transmission attempt at a time.

8.8.1 Channel restrictions

To simplify the design of the channels layer and to help ensure that the protocols operating
over each channel are free of deadlocks, the following restriction is placed on the use of
each channel.

For a particular channel, all messages must originate from either the Host or the Target, and
responses may be sent only in the opposite direction on that channel. Therefore two
channels are required to support ADP:

• one for host originated requests (Read Memory, Execute, Interrupt Request)

• one for target originated requests (Thread has stopped)

8.8.2 Buffer management

Managing retransmission means that the channels layer must keep hold of messages that
have been sent, until they are acknowledged. The channel layer supplies buffers to channel
users who want to transmit, and then marks transmitted buffers as busy until acknowledged.

One buffer could be required per channel for transmission in the single-threaded world.
In addition, to permit reception on the boot channel across all Angel-aware devices, one
buffer is required per device. The theoretical total buffer requirement is shown below, but in
practice, significantly fewer buffers than this are available because of memory constraints:

(number of channels C) + (number of Angel-aware devices D)

The buffers contain a header area sufficient to contain channel number and sequence IDs,
for use by the channels layer itself. Any spare bits in the channel number byte are reserved
as flags for future use.

To control buffer allocation, each buffer is marked according to its state. For example:

• free

• allocated to user

• awaiting acknowledgement

• allocated to device

Angel
8.8.3 Long buffers

Most messages and responses are short (typically around 40 bytes), although some may be
up to 200 bytes long. However, there are some situations where larger buffers would be
8-17Reference Guide
ARM DUI 0041B

useful. For example, if the host is downloading programs or configuration data to the target,
a larger buffer size reduces the overhead created by channel and device headers, by
acknowledgement packets and by the line turnaround time required to send each
acknowledgement (for serial links).

Limited RAM

When RAM is unlimited, the easiest solution is to make all buffers large. Because RAM in
an Angel system is not normally an unlimited resource, there is a mechanism which allows
a single large buffer to be shared.

When the device driver has read enough of a packet to determine the size of the packet
being received, it performs a callback asking for a suitably sized buffer. If a small buffer is
adequate, a small buffer is provided. However, if a large buffer is needed, and the special
large buffer is free, this one is allocated. If a large buffer is required, but is not available, the
packet is treated as a bad packet, and a resend request results.

8.8.4 Channel packet format

Figure 8-4: Channel packet format shows the channel packet format.

 Figure 8-4: Channel packet format

The home sequence number is Mh, the sequence number of this message for a normal
message. The opposing sequence number represents Mo, the highest in-sequence number
received from the opposing side by the sender of the message. In other words, it is the
acknowledgement sequence number. Note that this is a symmetrical approach independent
of whether the sender is host or target, unlike the sequence numbers described in the
existing channels.h header.

Initially three flags are defined:

CF_RELIABLE = 1<<0 reliable protocol in use

CF_RESEND = 1<<1 renegotiation (resend request) packet

CF_HEARTBEAT = 1<<2 heartbeat/keepalive packet (see 8.8.7
Heartbeat mechanism on page 8-18)

Remaining bits are reserved for future use.

Channel Home Opposing Flags d(0) d(1) d(x)sequence sequenceID

byte

Header Body

Angel
The length of the complete data packet is returned by the device driver layer. Since the
channel header is fixed length, an overall length field for the user data portion of the packet
it not required.
8-18 Reference Guide
ARM DUI 0041B

8.8.5 Channel buffer format

A word is reserved at the head of the buffer for internal use, specifically to permit the
construction of linked lists of unacknowledged buffers per device. This reduces the useful
buffer space by one word. If this is unacceptable, the default buffer size can be increased. It
is more efficient to steal space from the buffer than to maintain a separate list within the
channels layer.

 Figure 8-5: Channel buffer format

8.8.6 Buffer life cycle

The user of a channel must explicitly allocate a buffer before requesting a write. Buffers must
be explicitly released either by passing the buffer to one of the channel transmit functions or
by explicitly releasing it with the release function.

The channels layer supplies buffers containing received packets, and these too must be
explicitly released either by the release function or by filling the buffer and passing it back to
channels for transmission.

8.8.7 Heartbeat mechanism

Note The implementation of heartbeats has changed at revision 2.11. The ADP timer now writes
packets using at least the heartbeat rate, and uses heartbeat packets to ensure this.
It expects to see packets back using at least the packet timeout rate, and signals a timeout
error if this is violated. The new mechanism is only used when the revision 2.11 debugger,
Angel RDI and Monitor software are used.

In some circumstances—such as a lost packet in an Ethernet-based system—the target and
host can become live-locked. This problem can be solved by another packet arriving and
forcing a renegotiation sequence to take place.

A special heartbeat packet is sent, with a flag set to indicate it is a heartbeat packet. This
forces a renegotiation sequence to take place and reestablish the link. These packets are
sent out only by the host, and are never replied to: a resend request or a resend forms the

Link pointer Header Body

word

Data packet to/from devices layer

buffer pointer
supplied to channel user

Angel
reply, if needed. The target ignores the packet if the sequence numbers are correct. The
heartbeat packets themselves do not have their sequence numbers incremented and as
such are a special case.
8-19Reference Guide
ARM DUI 0041B

If the frequency of heartbeat messages is altered, it affects the speed of the link and, if set
to too short a period, prevents any real packets from being sent. If the heartbeat rate is too
slow, on a bad link the effect of lost packets is far greater. The heartbeat mechanism comes
into effect only once the boot sequence has completed, so, should any packets go astray
during this time, the boot fails and the debugger returns an error.

Angel
8.9 Device Driver Layer

Angel copes with polled and asynchronous devices, and with devices which start out in an
asynchronous mode and end up polling the rest of a packet. At the top boundary of the
8-20 Reference Guide
ARM DUI 0041B

device driver layer, the API need offer only asynchronous (by callback) read and write
interfaces to Angel or the user’s application. The Angel framework also makes use of the
serializer, described in 8.12 Serialization, Stacks and Modes on page 8-38.

8.9.1 Transmit and receive

Figure 8-6: Angel Framework structure shows the framework structure for receiving data:

 Figure 8-6: Angel Framework structure

Serializer

Device Specific
Packet Assembler

Callback for packet
dispatch

Callback to Channel
manager

Angel_Yield

Angel Packet
Decode Engine

Interrupt source Polled source

Generate IRQ handler

GETSOURCE
target-specific IRQ
source determination

IRQ handler for
device which caused
the interrupt

completed
packet assembly
and dispatch

return from
interrupt

interrupts
enabled

interrupts
disabled

Device/target
specific code

Generic
Angel code

Direct function

Call through the
Angel serializer

call

Angel
Consider first a device driver which is interrupt driven (or which is currently using interrupts
rather than polling). The sequence of events is described below:

1 When an interrupt occurs, the generic interrupt driver saves the state of the
8-21Reference Guide
ARM DUI 0041B

interrupted task and uses target-specific code to determine the source of the
interrupt.

2 This source id is used to look up and call the function to process an IRQ for this
device.

3 The interrupt handler for this device reads out any characters from the interrupting
device and can then do one of two things:
- return immediately
- if enough characters have arrived to make it worthwhile, or if a part-interrupt,

part-polled scheme is used, it can call the serializer with a request to execute
code to process the data and/or poll in more.

Note that interrupts are disabled up to this point. Therefore, the time taken to get
to this step must be kept to a minimum to keep interrupt latency low.

4 The serializer sets running the device-specific packet-assembly code with
interrupts enabled. This code can use the Angel packet-decoding engine to
perform packet-length checks and CRC checks.
Once a packet is fully assembled, a call is made to the serializer to dispatch to the
channel manager.

5 The channel manager then dispatches the packet to the packet handler for the
appropriate channel.

Polled devices

To handle polled devices, the device-specific packet assembler is called by the
AngelYield() function call. This must be placed in any tight loop, whether within
framework or device-specific code, in Angel, or in an application that coexists with Angel and
polled devices. If this is not done, it is possible for deadlocks to occur on polled devices. On
each call, the poll handler calls any enabled device driver that is in polling mode.

If a hardware timer is available, the polling operation can be performed on a clock tick. In this
way, the application need never explicitly yield control. Your application can share a
hardware timer with Angel; there is a modifiable set of functions which implement this, so
you can (statically) modify the use of a hardware timer.

For transmission, the situation will be very similar to that shown above for reception.

Note that raw (user-only) device drivers that are purely interrupt driven must fit in with the
interrupt scheme described above. If there are user-only polled devices, your application
must ensure that Angel or shared devices are also polled at appropriate intervals. To do this,
call the AngelYield() function from within the application’s own polling loop(s).

Angel
8.9.2 Angel packet decode engine

Character-oriented devices typically pass eight-bit characters one by one via some kind of
connection, for example via a serial line or parallel line. Angel needs to send packets
8-22 Reference Guide
ARM DUI 0041B

consisting of eight-bit characters. The start and end of a packet are marked with special
characters (STX and ETX). Whenever a character within a packet happens to be a special
character, it must be rewritten as a special escape character (ESC) followed by an encoded
version of the original character (char | 0x40). Furthermore, the device may interpret other
characters in a special way or use them for flow control. These characters must be
escape-encoded too.

On top of the STX and ETX packet markings, the type of data, length of data and a CRC
error check are added to the data. These fields are determined by their position in the
packet:

 Figure 8-7: Angel packets

where n is the 16-bit length represented by len0 and len1.

The interpretation of packet layout, framing (STX,ETX), error detection (CRC) and
transparency (ESC) is standard across all character-based devices, so support for this is
factored out into a reception engine and a transmission engine.

The reception engine

Incoming characters are pre-processed to handle special characters and transparency.
The results of this (events and clear 8-bit characters) are passed to a state machine which
keeps track of the components that make up a packet, and assembles the relevant
components into a buffer.

 Figure 8-8: Reception engine

The device driver passes each character to the engine, along with a buffer and some state
information which is manipulated by the engine. The engine assembles data into the buffer.
Each time it is called, the engine returns a code indicating its current status:

STX typ len0 len1 dat1 datn crc1 crc2 crc3 ETXdatn

pre-processor state machine

characters events and data good packets

Angel
• awaiting a packet

• processing a packet

• detected a bad packet
8-23Reference Guide
ARM DUI 0041B

• received a good packet

When the engine indicates a good packet, the device driver can pass the completed buffer
up to its client.

Transmission engine

There are four components to the transmission engine:

framer responsible for writing type, length, data and CRC fields in
correct order

escaper escape-encodes any characters from the framer that need it

encapsulator places STX and ETX around the output of the escaper

flow control slips XON and XOFF characters into the output stream

 Figure 8-9: Transmission engine

Unfortunately, this has to be done character by character. One function is called by the
device driver to set up the transmission engine with a new packet for transmission. A second
function is called every time the device wants a new character to transmit.

The insertion of flow control characters into the outgoing character stream is carried out
within the device-specific code, otherwise the transmission engine cannot easily initiate the
transmission of a flow control character if it is in its idle state (ie. not in the middle of a
packet).

8.9.3 Support for callback across all devices

This is primarily a channels layer issue, but to support the need of the BOOT channel to
listen on all Angel-compatible devices, the channels layer needs to find out how many
devices it should listen to for boot messages, and it needs to know which devices those are.

To provide this statically, the devices layer exports the appropriate device table or tables,
together with the size of the tables.

framer escaper

data packet framed

character

encapsulator

encoded
packetpacket

stream
flow control

Angel
8.9.4 Transmit queueing

As the core operating mode is asynchronous and more than one thread may be using a
device, Angel rejects all but the first request, returning a ‘busy’ error message, and leaves
8-24 Reference Guide
ARM DUI 0041B

the user (channels or the user application) to retry later.

8.9.5 Angel Interrupt handlers

Angel Interrupt handlers are installed statically (ie. at link time). The Angel Interrupt handler
has been written to run off either IRQ or FIQ, although it is recommended that it should be
run off IRQ. However, the ARM60 PIE board is configured by default to run using FIQs—and
requires resoldering to make it run off IRQs—so the ARM60 ROM image runs off FIQ by
default.

In order to change whether IRQ or FIQ is used, change the settings of
HANDLE_INTERRUPTS_ON_IRQ and HANDLE_INTERRUPTS_ON_FIQ: it can work with
both of these enabled.

The main difficulty with FIQs is that, on entry to the SWI handler and the Undefined
instruction handler, FIQs are enabled, but should a FIQ happen at that point and end up
calling SerialiseTask , the system fails. Therefore the interrupt handler, when built for use
with FIQs, has special code to see if it is interrupting either of these handlers, and if this is
so it postpones the FIQ.

Another piece of code which will need to be changed when adding a new device to the
interrupt handlers is GETSOURCE in target.s . This needs to recognize the interrupt from
the device. On a board such as the PID7T, where there is an interrupt controller, this needs
to be queried (possibly for both FIQs and IRQs) before accessing the device's interrupt
registers themselves.

For additional information about porting Angel, refer the Software Development Toolkit User
Guide (ARM DUI 0040).

8.9.6 Booting and parameter negotiation

The host and target attempt to establish contact following each power-up or hard reset.
Initially the device drivers use default settings to communicate. If this first stage is successful
the host and target negotiate the value of parameters (eg. baud rate) using the HBOOT and
TBOOT channels, in the following stages:

1 The host sends a list of parameter settings that it can support to the target, using
the default parameter setting for communication.

2 The target examines the list, selects appropriate settings, and returns these values
to the host. If it cannot use the settings suggested by the host, it returns an error
message.

3 The host switches to these new settings and sends a test message to the target, to
which the target replies.

Angel
Parameter negotiation supports an arbitrary number of parameters. Initially there will be just
one: serial baud rate. Negotiation is carried out by the host debugger and the target debug
monitor via the HBOOT channel, so is not the responsibility of the device driver. However
the device driver knows which parameters and options it supports, and is able switch to a
8-25Reference Guide
ARM DUI 0041B

parameter setting and reset to the defaults.

It is assumed that, for any device, there is a default configuration which will be selected by
all hosts and targets on power-up or on a hard reset. This is essential for establishing initial
contact.

Negotiation is always controlled by the host, which sends a ParamNegotiate request. This
consists of a set of blocks, one block per parameter being negotiated. Within each block, the
host lists the values it can operate at, starting with its preferred value. For serial baud rate,
it might list 38400, 19200, 9600.

The target examines the list and chooses the best combination of parameters it can use, and
sends a reply containing the same number of blocks as the request, but with a single value
per parameter. Immediately after sending the reply, the target switches to the configuration
it has chosen.

On receipt of a valid reply, the host switches to the configuration chosen by the target.
To ensure that all is well, a LinkCheck message is then sent to the target, and the target
replies. The link is now successfully established at the new settings.

If the target cannot select a configuration from the set offered by the host, it replies to the
ParamNegotiate message with an error status, and the link remains at the default
settings. The host can either continue at default settings or try another negotiation.

Figure 8-10: Parameter negotiation shows the details of the negotiation:

 Figure 8-10: Parameter negotiation

ParamNegotiate

ParamNegotiate

LinkCheck

LinkCheck

Send message
Receive message

Select acceptable config

Send reply
Switch to accepted config

Receive message

Send reply

Receive reply

Receive reply

Switch to accepted config

Send message

Angel
8.9.7 Control calls

Angel-only or shared device drivers in an Angel-cooperating system provide a control entry
point which supports the enable/disable transmit/receive commands, so that Angel can
8-26 Reference Guide
ARM DUI 0041B

control application devices at critical times.

Angel device drivers provide control calls for:

• disabling and enabling the reception of data

• initializing the device

• resetting the device to its default state

• setting the device config to a set of specified parameters

These are implemented in a manner similar to the UNIX ioctl call. That is, there is a single
entry point for these operations. The operation is determined by the value of the first
parameter. This allows extra device-specific functions to be added without changing the
device driver description.

8.9.8 The APPL device channel

Device drivers may perform multiplexing so that the device can be shared between the
reliable channels layer and the user application. When Angel support is finally removed from
the user system, changes to the application are minimal. The API for the APPL channel
makes it easy for the developer to replace the Angel-specific drivers with a raw driver that
services only the APPL API.

Although it can support a number of different device drivers, the host-side channels interface
only has one device driver active at any given point in time. This interface's main purpose is
to multiplex packets from the various ADP channels through the currently active device
driver, both for transmit and receive.

A channel packet consists of four octets of channel header, followed by an indeterminate
amount of opaque data. When a packet is passed down to the channels interface, the upper
layers leave the first four octets free for the channel header to be written into them; similarly,
received packets passed up from the channels interface preserve the channel header in the
first four octets.

Angel
Angel supports multiplexed communications channels for user programs over the debug
communications link. In other words, user applications also have direct access to the device
drivers, rather than via the channels interface. This is achieved via a “device switching”
veneer between the channels layer and the device drivers:
8-27Reference Guide
ARM DUI 0041B

 Figure 8-11: Host channel driver interface

Channels interface

Device switcher

Channels

User application

channels interface

switcher interface

driver interface

Drivers

Angel
8.10 Support for user application devices

The Angel framework provides user applications with a simple, unified interface to devices.
This interface is specified in devappl.h , which provides blocking reads and writes, an
8-28 Reference Guide
ARM DUI 0041B

ioctl() -like control call, and a yield call.

devappl.h hides the details of device driver access for three different cases:

A Full Angel, device shared with Angel for debugging communications and
user application communications.

B Full Angel, device exclusively for use by applications (raw device). This
case is possible only in systems with more than one device, because
Angel requires shared use of at least one device.

C Minimal Angel, raw device.

It is relatively easy to migrate from case B to case C, because the raw device driver already
exists and the Angel device can be removed once debugging is complete.

Moving from case A to case C requires changing from an Angel/shared device driver to a
raw device driver. To ease this process, a framework is provided for character-oriented
devices such as serial ports. The framework provides a packet-based skeleton for
Angel/shared devices and a character-based skeleton for raw devices, both of which
interface to the same low-level hardware-specific driver. Only this lower layer needs to be
ported to new hardware, and it is used unchanged in all three cases.

8.10.1 Full Angel with one shared and one raw serial port

Figure 8-12: Full Angel with one shared and one raw serial port illustrates case B, where
there are two ports (devices) provided by the same low-level device driver code, one of which
is used as an Angel/shared device and the other as a raw device—for example, a PID card
with two serial ports.

For case A, ignore the right-hand flow through devraw.c and serraw.c .

Case B is desrcibed in Figure 8-13: Minimal Angel with one raw serial port on page 8-31.

Angel

User application

devappl.h

user level
8-29Reference Guide
ARM DUI 0041B

 Figure 8-12: Full Angel with one shared and one raw serial port

Note that there can be other devices below devclnt.c and/or devraw.c (eg. PID
Ethernet).

devappl.c provides a SWI veneer to permit the rest of the framework to reside either in an
Angel ROM or in an Angel library linked with the application.

devshare.c switches requests according to whether the underlying device is shared with
Angel or is a raw device.

For shared devices, devshare.c also converts the blocking character-oriented application
requests into asynchronous packet-oriented requests.

devappl.c
(SWI veneer)

devshare.c

sync
async

(Angel/raw)

SWI

devclnt.h
(DC_APPL)

devclnt.h
(DC_DBUG)

devclnt.c
(async switcher)

Channels
layer

devdriv.h
(rw.angel)

serpkt.c
(packets)

serial.c
(HW specific)

serring.h

device
framework
level

device
driver
level

devraw.h

devraw.c
(raw switcher)

devdriv.h
(rw.raw)

serraw.c
(num. bytes)

Hardware port A
(Angel/shared)

Hardware port B
(Raw)

level
hardware

Angel

Angel
devclnt.c multiplexes in two directions: it accepts asynchronous requests from the
application (DC_APPL) or from the Angel channels layer (DC_DBUG), and directs them to
the appropriate device driver.
8-30 Reference Guide
ARM DUI 0041B

devraw.c simply switches requests between raw devices.

If the device driver has been built using the serring.h / serpkt.c / serraw.c
framework, serpkt.c provides the framework for Angel/shared devices, based on the
Receive and Transmit engines and the serializer. Similarly, serraw.c provides the
framework for raw devices, supporting blocking requests for reading or writing a given
number of characters.

serring.h defines the control structure used to glue the hardware-specific driver layer to
serpkt.c and serring.c . The interface is based on two ring buffers. One is filled by the
upper layers with characters requiring transmission, which are extracted by the lower layer
and sent. The other is filled with received characters by the lower layer and emptied by the
relevant upper layer.

The device-specific lower layer must provide the actual ring buffers and control structures
required by serpkt.c and serring.c , since one of each is required for each physical
device or port. It must implement an IRQ handler and/or poll handlers to fill the receive buffer
and empty the transmit buffer, together with control routines and a putchar() function for
kicking new transmissions into life.

Additional devices can choose whether or not to use serring.h / serpkt.c / serraw.c
as appropriate.

Angel
8.10.2 Minimal Angel with one raw serial port

Figure 8-13: Minimal Angel with one raw serial port illustrates case B.
8-31Reference Guide
ARM DUI 0041B

 Figure 8-13: Minimal Angel with one raw serial port

In this case, devappl.h is simply a macro interface directly onto devraw.c . The remaining
modules are identical to the right-hand flow in the full Angel case.

To move from case A to case C, substitute serraw.c for serpkt.c , and change the control
structures appropriately.

In both examples, devmisc.c is not shown. This provides the core functionality for
..Yield() calls.

8.10.3 User hooks for ADP communications in the host debugger

The ADP implementation for host debuggers provides two hooks for users:

• install a handler for incoming shared-device application packets

• install a handler for arbitrary asynchronous processing during target execution

The hooks are provided via angsd/hostchan.h. See also angsd/devsw.h .

User application

devappl.h

serial.c
(HW specific)

serring.h

user level

device
framework
level

device
driver
level

devraw.c
(raw switcher)

devdriv.h
(rw.raw)

serraw.c
(num. bytes)

Hardware port
(Raw)

level
hardware

Angel
Adp_Install_DC_Appl_Handler()

This routine installs a callback to handle packets which arrive from the application over a
shared device (DC_APPL packets). A callback of NULL can be specified, in which case
8-32 Reference Guide
ARM DUI 0041B

DC_APPL packets are simply dropped. The return value of the routine is the previously
installed callback, if any.

When a packet arrives, it is passed to the callback along with the descriptor of the device.
This descriptor can be used in the callback to send a reply, via DevSW_Write() .

Adp_Install_Async_Callback()

This routine installs a callback which will be called repeatedly whenever the debugger is
waiting for a reply from the target. This includes the time when the target is executing. Up to
eight async callbacks can be installed. Once installed, a callback cannot be removed.

Each callback is passed the descriptor of the active device (the one connected to the target)
and the current time. The descriptor can be used if the callback needs to send a packet to
the target. The time can be used to decide whether a periodic activity should take place.

Note It is vitally important that any IO performed in an async callback is non-blocking. If a callback
blocks, the whole debugger will be blocked. Similarly, a callback should not perform large
amounts of time-consuming processing, otherwise the response time of the debugger will
be adversely affected.

Example

angsd/unix/hostappl.c is the default built-in processor for shared device
communications between the application, and files or named pipes on the host.

In hostappl_Init() , hostappl_async_cb() is registered as an async callback. It is
used to handle comms from the host to the target. Every time it is called, it attempts to read
from read_fd , and if successful, it sends the data to the target via a call to
DevSW_Write() . Note that when read_fd is opened in hostappl_In() , care is taken
to ensure that it is marked non-blocking.

In hostappl_Out() , hostappl_rx_handler() is registered as the callback for
DC_APPL packets. Whenever a packet arrives from the application, the contents are written
out to write_fd .

Communications when target is idle

The hooks described above are necessary only for asynchronous processing while the
target is executing. Extensions to the debugger which make use of new ADP channels can
be implemented by following the pattern used throughout angsd/ardi.c :

int reason; register_debug_message_handler();

msgsend(<channel>, <format>, <reason> | HtoT, [<args>[...]]);

reason = <reason> | TtoH;

wait_for_debug_message(&reason, ...);

/* process response... */

Angel
This results in a synchronous transaction where a request is sent to the target and a
response is awaited.

Note Any async callbacks will get called during wait_for_debug_message() , whilst the host
8-33Reference Guide
ARM DUI 0041B

waits for the reply from the target.

8.10.4 Error detection and reporting

The device driver is capable of either detecting errors in bad packets or of rejecting bad
packets outright. Only correct packets are presented via callback. However, if the driver can
detect errors or bad packets, a reception error should be presented to the next layer up via
callback. This allows the channels layer to take appropriate action, such as requesting
retransmission of a bad packet.

Angel
8.11 Fusion IP stack for Angel

8.11.1 How Angel, Fusion and the PID hardware fit together
8-34 Reference Guide
ARM DUI 0041B

The Ethernet interface for the PID card is provided by an Olicom EtherCom PCMCIA
Ethernet card installed in either PCMCIA slot. The Olicom card uses an Intel i82595 Ethernet
controller.

The UDP/IP stack is Pacific Software’s Fusion product, ported to ARM and the Angel
environment. The drivers for PCMCIA and the Ethernet card have been implemented by the
Angel team, as has the Angel device driver to make the whole stack appear as an Angel
device.

Figure 8-14: Angel, Fusion, and PID hardware shows how the components fit together.

 Figure 8-14: Angel, Fusion, and PID hardware

Angel

Angel driver framework

Angel
Ethernet driver

Fusion
sockets library

Fusion
UDP

Fusion
IP

i82595
controller

Olicom
card

pcmcia
manager

Ethernet

Angel
Directories and Files

angel/ipstack/
Root of the IP stack
8-35Reference Guide
ARM DUI 0041B

angel/ipstack/ipconfig.c
IP address and netmask

angel/ipstack/fusion/
Fusion source distribution

angel/ipstack/fusion/arm/
ARM-specific Fusion build directory

angel/ipstack/fusion/arm/config.h
ARM-specific Fusion configuration

angel/ipstack/fusion/arm/os_arm.c
ARM-specific Fusion support funcs

angel/ipstack/fusion/arm/Makefile
ARM-specific Fusion makefile

angel/ipstack/fusion/incl/
Fusion header files

angel/pid/82595.c
Low-level driver for i82595 controller

angel/pid/ethernet.c
Angel driver for UDP over Ethernet

angel/pid/olicom.c
Driver for Olicom EtherCom card

angel/pid/pcmcia.c
Driver for PCMCIA controller

Initialization

The stack is initialized in the following sequence:

1 devclnt.c:angel_InitialiseDevices() calls:

2 ethernet.c:ethernet_init() which opens a socket.

3 fusion:socket() notices that the fusion stack has not been initialized.

4 Fusion stack initialization calls:

5 olicom.c:olicom_init() calls:

6 pcmcia.c:pcmcia_setup() detects Olicom card and calls:

7 olicom.c:olicom_card_handler() with a card insertion event, thus:

8 olicom.c:read_card_params() which registers olicom_isr() with
pcmcia.c.

9 Fusion stack initialization calls:

10 olicom.c:olicom_updown() and, via olicom_state() :

11 82595.c:i595_bringup() to complete the initialization sequence.

Angel
Angel Ethernet device driver

After initialization, the Angel side of the driver is implemented as a polling device. At every
call to Angel_Yield() , angel_EthernetPoll() is invoked, and non-blocking recv()
8-36 Reference Guide
ARM DUI 0041B

calls are made to the Fusion stack to see if data is waiting on any of the sockets.

Outgoing packets are passed to the Fusion stack in a single step by calling sendto() .

Interrupt handling

The bottom of the Fusion stack is driven by interrupts from the Olicom card. Interrupts are
handled in the following sequence:

1 suppasm.s :angel_DeviceInterruptHandler() calls the GETSOURCE()
macro in pid/target.s to identify the PCMCIA controller as the source.

2 pcmcia.c:angel_PCMCIAIntHandler() establishes that it is an I/O interrupt
and calls the routine registered during initialization.

3 olicom.c:olicom_isr() checks the interrupt, switches off interrupts from the
Olicom card, and serializes olcom_process() to do the processing with all other
interrupts enabled.

4 olicom.c:olicom_process() identifies the reason for the interrupt and
passes it as an event to olicom_state() .

5 olicom.c:olicom_state() calls an appropriate routine in 82595.c to handle
packet reception and transmission.

6 82595.c routines control the i82595 chip and transfer packets in both directions
between Fusion buffers and the chip. Calls are made to Fusion functions as
appropriate.

7 olicom.c:olicom_process() checks to see whether all interrupt events have
been serviced. If so, Olicom interrupts are re-enabled. If not, olicom_process()
re-queues itself and then exits in case another device is waiting for the serializer
lock.

Additionally, the Fusion stack can make calls to olicom_start() (to queue a new packet
for transmission), olicom_ioctl() , and olicom_updown() in response to socket calls
from the Angel Ethernet driver or as a result of packet processing.

Port numbering scheme

When a debugger is connected to an Angel target via UDP, two connections are used to two
ports on the target. One carries DC_DBUG (Angel channels) packets and the other carries
DC_APPL (application) packets.

To avoid having two reserved port numbers at the target, a single control port is opened at
a well-known (hard-wired) address, and the two comms ports are dynamically allocated.
When a host wishes to communicate with Angel, it sends a request to the well-known port,
and the target replies with a message containing the dynamic port numbers allocated for the
DC_DBUG and DC_APPL channels.

Angel
The target grabs the IP address and port of the host from the initial port request message,
and uses them to send all subsequent replies to the host. The host uses recvfrom() to
receive packets together with the details of the target’s IP address and port number, and can
then decide whether the packet is from the DC_DBUG or DC_APPL port.
8-37Reference Guide
ARM DUI 0041B

Angel
8.12 Serialization, Stacks and Modes

This section gives an example of processing a simple packet from start to finish, and
describes in more detail how serialization affects the receipt of data via interrupt.
8-38 Reference Guide
ARM DUI 0041B

Figure 8-15: Serialization shows the application running, when an interrupt request (IRQ)
is processed. SerialiseTask is called (S). From point S execution is in SVC mode. The
rest of the packet is then polled in, and enough of it interpreted to know which callback it is
intended for. QueueCallback is then called (Q) which queues processing this packet.

Finally the packet assembly code returns, which is intercepted by NextTask code (N), which
executes the queued callback. When this callback has finished, it returns. This is again
intercepted by NextTask and then execution finally returns to the application where it left
off for the initial IRQ.

 Figure 8-15: Serialization

The rest of this section describes in detail how this works, including more complex cases
such as nested packets, hitting breakpoints, and so on.

8.12.1 Serialization

The lock being acquired is the mutually exclusive right to assemble a packet or to do initial
processing when a breakpoint (undefined instruction) or special ReportException SWI
(similar to a breakpoint) happens. It also allows mutually exclusive access to the Angel SVC
mode stack, which is always empty when the lock is acquired and which must be empty
when the lock is released. This ensures that it is never necessary to have more than:

• one user mode Angel stack area, which may be used simultaneously by a number
of callbacks

• one application stack (per thread)

• one Angel SVC mode stack for use by code which has acquired the lock

• small, temporary IRQ, FIQ and UND stacks

Note See serlock.h and the implementation in serlock.c and serlasm.s for full details of
the functions described in the following sections.

Application

IRQ S

Callback

Q

N

execution with interrupts enabled

execution with interrupts disabled

N

Angel
SerialiseTask

SerialiseTask can be called from IRQ, FIQ, SVC, or UND mode, but never USR mode.
The calling mode depends on why it is being called. For example:
8-39Reference Guide
ARM DUI 0041B

IRQ mode if being called due to an IRQ from an IRQ driven device

UND if due to a breakpoint being hit

SVC if due to a SWI needing to call SerialiseTask and so on

SerialiseTask is passed a pointer to a register block (the state of the CPU when
interrupted), the function which is to be called when serialization is successful, and a word
of data to be passed to that function.

SerialiseTask sets up a register block for the task to be started with the mutual exclusion
lock, and then determines whether the lock is already taken. The serialization module must
also keep track of the priority of the task executing at all times (see QueueTask for
the priorities). This is possible because the serialization module knows the priority of any
task it allows to execute.

• If the lock is not taken:
SerialiseTask sets the lock and calls QueueTask with the register block for the
interrupted task, using its former priority level. SerialiseLTask then sets up the
registers to the values in desired_regblock with interrupts enabled and LR
modified to ensure that execution returns to NextTask when the task that is given
the lock finishes.

• If the lock is taken:
SerialiseTask calls QueueTask with the register block of the new function
wanting the lock, and with the priority of AngelWantLock . It then restarts
execution using the register block for the interrupted task, which must be the one
with the lock.

Task priorities

These priorities are shown from lowest to highest:

IdleLoop

AngelInitialisation

Application The user’s application

ApplicationCallBack Callbacks for the user’s application

AngelCallBack Callbacks with Angel

AngelWantLock Code needing the serialization lock

This function executes with interrupts disabled.

Angel
QueueCallback

This function is intended to be called by:

• device drivers
8-40 Reference Guide
ARM DUI 0041B

• breakpoint handlers

• SWI handlers

• or the Angel_Yield code, which is executing in SVC mode with the lock

It is used to queue a callback, specify its priority and also specify up to four arguments to
that function. The callback does not execute immediately, but will start when all tasks of a
higher priority have completed.

BlockApplication

This function is called in order to allow or disallow any application tasks being executed.
While suspended they remain queued, but are not executed.

NextTask

This is not a function, in that it is not called directly. NextTask is executed by code which
has been set running by either SerialiseTask or NextTask itself. This is done by setting
up LR to point to NextTask before a task is run.

When the NextTask code is executed, the processor will either be in:

SVC mode for code with the lock

User mode for callback code

Interrupts are enabled when NextTask is entered.

The operation of NextTask can be summarized as follows:

1 NextTask must get into SVC mode and disable interrupts.

2 NextTask looks at the queue of requested tasks, and selects a task which has not
been blocked. Of these it chooses the one with the highest priority, and if there are
several with the same priority it chooses the one which was requested first.

3 NextTask removes the task from the queue of tasks and sets up the registers as
specified in the register block for that task. NextTask sets up LR so that
NextTask is executed once again when this task returns.

If the task to be executed was queued with the flag set, NextTask must set up a suitable
environment for it, as follows:

Application callback: For an application callback, the environment must be set by:

• searching for the logical parent of the callback (the application task) in the list of
queued tasks, and

• inheriting sl and sp from the parent

The task executes in user mode with interrupts enabled.

Angel
Angel CallBack: For an Angel callback, the environment is set by searching the queue of
tasks for Angel callbacks and noting the lowest value of sp amongst these tasks. Sp is set
by a fixed amount below this value and sl for the queued task is reset to this new value. Sl
for the new callback is set to the old value of the selected queued task.
8-41Reference Guide
ARM DUI 0041B

The task executes in user mode with interrupts enabled.

AngelWantLock: If the task being started has priority AngelWantLock , it is given
the empty Angel SVC stack, and executes with interrupts enabled in SVC mode.

Note that the Application is treated just like any other task in that it is queued up and
resumed. The differences between this and non-application tasks are:

• it has a lower priority than all Angel tasks except initialization and the idle loop

• it can be blocked

The idle loop: If there are no unblocked tasks to execute, interrupts should be enabled, and
an idle loop entered. The current task is now an idle loop. When the last task executing was
an idle loop, the next request to queue a task will be from SerialiseTask to queue the
idle loop itself. This request is ignored. The idle loop repeatedly calls Angel_Yield and
executes with interrupts enabled.

while (1) { Angel_Yield(); }

AccessApplicationRegBlock

This function returns a pointer to the register block for the Application task in the queue.
Angel code uses this to read and modify the application’s registers, when requested to do
so by the debugger.

NULL is returned if the Application is not blocked (it is not legal to access the Application’s
registers while it is still running— it must have been stopped first).

Note that this only covers those registers saved in the Application register block. It does not
provide a way for the debugger to modify banked registers being used by the Device Driver
Architecture. Attempting to modify such registers while Angel is executing is not advisable.
However, the banked registers are readable. This is managed in debugos.c .

FlushApplicationCallbacks

This function removes from the task queue any tasks with priority ApplCallBack . This
needs to be done only if a new application is loaded or the old one is reloaded. In either case,
any packets waiting to be processed by the old application are clearly no longer relevant and
should be discarded.

Angel
8.12.2 Processor modes and stacks

Angel makes use of SWIs and Undefined Instructions as well dealing with IRQ and FIQ
driven devices. It also has to deal with packet processing code, callback code and
8-42 Reference Guide
ARM DUI 0041B

application code. However, the serialization mechanism described in 8.12.1 Serialization
on page 8-38 ensures that only one task ever executes with the lock. Therefore, all tasks
which execute with the lock may share a single stack, on the basis that:

• it is always empty when a task starts

• once that task has finished (ie. it returns), all information which was on that stack
is lost

This mechanism allows very efficient usage of stack space, because only one stack block is
required for all packet assembly and initial breakpoint-processing code.

The application itself uses a different stack, and executes in either User or SVC mode.
Application callbacks (ie. callbacks due to application requests to read or write from devices
under control of the Device Driver Architecture) also execute in User mode and with the
application stack.

8.12.3 Overview of Angel stacks for each mode

The following stacks within Angel are simple stacks exclusively used by one task. This is
ensured by disabling interrupts in these modes:

• IRQ stack

• FIQ stack (if used)

• UND stack

The Angel SVC stack is also only ever used by one task at once, and this is ensured by the
serializer. If the application uses the SVC stack, Angel ensures that this is kept separate
from the Angel SVC stack.

The USR mode stack is also split into two cases, as the Application’s stack and Angel’s stack
are kept entirely separate.

The Application stack

The Application stack is a simple single block. The application is assumed to be a single
threaded application, with the single exception of Application Device Callbacks. Angel
allocates these a “temporary” stack, below the current stack pointer for the Application, but
in the same stack block. This is acceptable because the Application cannot resume until the
Application callback has completed. Note that the application can run in either USR or SVC
mode. However, if it runs in USR mode, it should only enter SVC mode using
Angel_EnterSVC . If it is running in SVC mode, it should not drop down to USR mode
without saving away the SVC mode context if it needs to.

The Angel USR mode stack is similar to the Application USR mode stack in that it is a single
block. However, its management is considerably more complex.

Angel
The Angel USR mode stack

The Angel USR mode stack is used only by tasks of priority AngelCallback (ie. Angel
callback tasks).
8-43Reference Guide
ARM DUI 0041B

The following set of rules are used to set up the Angel USR mode stack when starting up a
new task of priority AngelCallback:

Is there already a task of priority AngelCallback?

No sp = AngelStack
sl = AngelStackLimit

Yes Search through all such tasks and find the task with the lowest sp. Modify
sl for that task to be sp-val, where val is a carefully chosen constant. The
new task is then set up with:
sp = other task’s modified sl
sl = AngelStackLimit

Note that this limits the stack available to the old task, but it should be possible to choose a
value of val such that no stack overflow occurs. This value needs to be chosen with care to
ensure that no stack overflow happens. Also, RAM may be scarce, in which case large
amounts of stack space may not be available.

Stack overflow

Overflow on any of the stacks apart from the Application USR stack is considered a fatal
error, and Angel makes no attempt to report back to the debugger. Instead, it simply loops
forever at a point which allows investigation to show what has happened.

However, Application stack overflow is reported to the debugger, so that the application
programmer can allow the application more stack.

If the application needs to execute in SVC mode for a while (for example, to access protected
IO space), it may do so if it adheres to the rules described in Get into SVC mode on
page 8-47.

IRQ/FIQ interrupt handling

On entry to IRQ and FIQ, further interrupts are disabled. They must not be re-enabled before
SerialiseTask is called, or if the interrupt completes (if it is an interrupt for a peripheral
which is not a packet receiver device).

There are some circumstances in which it would be safe to leave FIQs enabled. This is
discussed in 8.12.8 Reducing FIQ latency on page 8-51.

The IRQ/FIQ code may use the IRQ/FIQ stack, but before calling SerialiseTask ,
everything on the stack should no longer be required, and the stack pointer returned to
where it was when the interrupt happened (the stack must be left empty after use).

The interrupt handler saved the state of the processor at the time the interrupt handler was
entered, because this data is required by SerialiseTask .

SerialiseTask is then called and the device driver task will execute at some point.
For example, a serial device could then poll in the rest of the packet.

Angel
When a complete packet has arrived and been decoded, it can be passed to a distribution
function which determines which packet-handling callback is called. However, it will not
actually call the distribution function, but calls QueueCallback , specifying the priority to be
that of a callback routine of the appropriate type (AngelCallBack or ApplCallBack).
8-44 Reference Guide
ARM DUI 0041B

The packet assembler and despatcher can return, which causes NextTask to execute, and
the callback to process this packet executes in User mode, without the lock. When this has
finished processing it can return, and at this point the packet indicated by the initial interrupt
has been completely processed.

 Figure 8-16: IRQ/FIQ interrupt handling

Undefined instruction (breakpoint)

A breakpoint can be considered another source of callback requests. In order to protect
against other breakpoints happening while one breakpoint is being processed (in
a multi-threaded system), or another packet arriving and being processed in the middle of
processing a breakpoint, the serializer must be used by the breakpoint mechanism in a
similar way to that used for an IRQ.

On entry to the undefined instruction handler, IRQs and FIQs are disabled until
SerialiseTask is called. (In some circumstances FIQs need not be disabled; this is
described in 8.12.8 Reducing FIQ latency on page 8-51.)

The undefined instruction handler saves the state of the processor at the time the undefined
instruction happened, because this data is required by SerialiseTask . The undefined
instruction handler may use the UND mode stack, provided that it leaves the stack empty
when it calls SerialiseTask .

SerialiseTask is called, and at some point the process breakpoint code executes. This
calls QueueCallback , specifying Angel callback function to process the breakpoint.
(Minimizing the time the lock is held enables other packets to be processed quickly.)

Application

IRQ S

Callback

Q N

N

execution with interrupts enabled

execution with interrupts disabled

(USR)

(USR)

(SVC)(IRQ)

(USR)

Angel
The User mode callback then executes, and sends a packet to the host, indicating that a
breakpoint has been hit. It also calls BlockApplication to ensure that the application
does not restart until an execute request has been received.
8-45Reference Guide
ARM DUI 0041B

To wait for an acknowledgement of the packet sent to the host, register a temporary handler
with the channel manager and then finish. To do this safely, the register call should be made
before the packet is sent. At some later point, this temporary callback will in turn be called
and the acknowledgement can be checked. Finally this callback can also finish.

At this point, NextTask has only the Application task (and possibly an application callback
task) on its queue, but both of these will be blocked. Therefore, NextTask enables
interrupts and sits in an idle loop; the system is waiting for more requests from the debugger
at this point.

 Figure 8-17: Breakpoint callback (1)

As an alternative, the breakpoint callback may choose to perform a blocking read to receive
the acknowledgement. This is translated by the channels layer, which registers an internal
handler and enters a yield loop. The acknowledgement is then processed as a nested
callback which unblocks the read occurring in the original callback.

Note that this is permitted by the serializer architecture, and that other interrupts and
callbacks are free to happen during the blocking read. Only the thread and the channel
involved in the “blocking read” are actually blocked.

Application

UND S

Bpt Callback

Q N

BN

execution with interrupts enabled

execution with interrupts disabled

(USR)

(USR)

(SVC)(UND)

Idle
(SVC)

IRQ S Q N
(SVC)(IRQ)

Ack Callback N(USR)

Idle
(SVC)

B indicates a call to BlockApplication
to block the application.

Angel

Ack Callback (nested) N(USR)
8-46 Reference Guide
ARM DUI 0041B

 Figure 8-18: Breakpoint callback (2)

Software interrupts (SWIs)

Angel uses a single SWI, but r0 is used as a reasoncode to determine what that SWI should
do. These reasoncodes fall into the following categories:

• ReportException, which is used by the semihosting support code as a way to report
an exception to the debugger. It can be considered as a breakpoint which starts off
in SVC mode rather than UND mode.

• Calling veneer only, eg. semihosting support and device driver access

• Get into SVC mode

These are considered in detail in turn below.

ReportException: This is effectively a breakpoint, but one which is implemented via a SWI
rather than via an undefined instruction, as distinguished from a normal breakpoint. It also
has to pass a parameter to the debugger, showing the type of the exception that occurred.

Because ReportException is used only by the application (while executing part of the
semihosted C Library), and the application is executing only when there are no tasks with
the lock running (or indeed any callbacks running), it is clear that the Angel SVC stack used
by tasks with the lock is empty, and not in use at this point. Furthermore, as interrupts must
be kept disabled until SerialiseTask is called, at which point any stack used must be
empty, no task can use the SVC stack when the ReportException code would want to
use it.

Therefore, the ReportException code may make use of the Angel SVC stack as temporary
workspace with the standard restrictions which SerialiseTask imposes.

Application

UND S

Bpt Callback

Q N

BY

execution with interrupts enabled

execution with interrupts disabled

(USR)

(USR)

(SVC)(UND)

IRQ S Q N
(SVC)(IRQ)

R N

the yield loop during the breakpoint callback

R indicates the breakpoint callback resuming
after its blocking read has been completed.

Angel
Calling veneer SWIs: In this case, all that is required is that a SWI is used to get into Angel.
The code which is called indirectly is executed using the application’s stack. Like
ReportException it is only called from the application, and therefore the argument that
the Angel SVC stack can be used as temporary workspace while interrupts are disabled still
8-47Reference Guide
ARM DUI 0041B

applies.

What this does mean is that the Angel SVC stack cannot be used to save the return address
into the application while the indirectly-called function executes. This data must be held on
the application’s own stack.

Get into SVC mode: This SWI:

• switches into SVC mode

• disables IRQs and FIQs. There are some circumstances in which FIQs need not
be disabled; these are described in 8.12.8 Reducing FIQ latency on page 8-51.

• switches the caller’s stack pointer into the SVC stack pointer (to keep the code
APCS-compliant)

• leaves the caller’s CPSR in SPSR_SVC

The caller must not re-enable interrupts before switching back into user mode.

When the caller no longer needs SVC privilege, Angel_ToUSR should be called. For
convenience, the address of this function is returned in r0 by Angel_EnterSVC , which is
a C veneer on this SWI.

8.12.4 Continuing execution after a breakpoint

When the application has hit a breakpoint, and is therefore not running (see Undefined
instruction (breakpoint) on page 8-44), the Application task and possibly some application
callbacks are queued, but all are marked as blocked.

The debugger makes the application continue execution by sending an execute packet to
Angel. This is processed in the same way as any other packet; see IRQ/FIQ interrupt
handling on page 8-43 for details.

The only difference is that, as well as sending a reply to the execute packet,
BlockApplication is called to unblock the application. When the execute packet
processing callback finishes (and any other outstanding packet processing requests or
callbacks are also completed), NextTask automatically restarts the application, because it
is on the task queue and is unblocked.

Angel

N

(USR)

U

8-48 Reference Guide
ARM DUI 0041B

 Figure 8-19: Continuing after a breakpoint

8.12.5 User interrupt requests

When the application is running there are no tasks queued.

The debugger makes the application halt execution by sending an interrupt execution packet
to Angel. This is processed in the same way as any other packet; see IRQ/FIQ interrupt
handling on page 8-43 for details.

The only difference is that, as well as sending a reply to the interrupt execution packet,
BlockApplication is called to block the application. When the interrupt execution packet
processing callback finishes (and any other outstanding packet-processing requests or
callbacks are also completed), NextTask automatically sees that the application is now
blocked, because it is on the task queue and is blocked. It therefore sits in an idle loop
awaiting further requests from the debugger.

Idle

execution with interrupts enabled

execution with interrupts disabled

(SVC) (USR)

IRQ S Q N
(SVC)(IRQ)

Callback

Application

Execute packet

U indicates a call to BlockApplication to
unblock the application.

Angel

(SVC)
Idle
8-49Reference Guide
ARM DUI 0041B

 Figure 8-20: User interrupt requests

8.12.6 The yield function: Angel_Yield

A yield function for polled devices can be called both by the application and by Angel, while
sitting and waiting for something to arrive on a polled device, or within cpu-bound loops (eg.
the Idle Loop).

Angel_Yield can be considered as another form of interrupt: it is just one which you
explicitly allow to happen rather than it being forced to happen.

Therefore, the same serialization mechanism can be used for Angel_Yield as is used for
IRQ interrupts. As with an IRQ it can be called from either USR or SVC mode, and so must
be able to return cleanly to either mode.

Angel_Yield may use whatever stack it was called with, but it must appear to be an
APCS-conformant function from its caller’s point of view, and so must leave the appropriate
registers unaltered and the stack as it was when it returns. It will need to get into SVC mode
if not called in that mode, so that it can disable interrupts.

Once Angel_Yield has acquired the lock, it should call each of the registered polling
routines, and each can then queue a callback if there is data ready to be processed. It should
go around this loop once.

Application

execution with interrupts enabled

execution with interrupts disabled

(USR)

IRQ S Q N
(SVC)(IRQ)

Callback
N

(USR)
B

Interrupt request

B indicates a call to BlockApplication to
block the application.

Angel

N
(USR)
8-50 Reference Guide
ARM DUI 0041B

 Figure 8-21: Angel_Yield

Note that sometimes the Yield code may not find any work which needs to be done, in which
case no callback will be queued.

8.12.7 Allocation and deallocation of register block structures

Two shared register blocks: angel_MutexSharedTempRegBlocks

There are two statically allocated, but global, register blocks, which are used to hold:

• the registers at the time of an interrupt/SWI/undefined instruction

• the registers required by a new task to be executed

These are used to pass this data into SerialiseTask . SerialiseTask then ensures that
any data which is needed in the future is copied out of them.

It is possible to share these two structures because all of the above handlers must keep
interrupts (IRQ and FIQ) disabled until SerialiseTask is called; these structures are
protected by mutual exclusion.

A pool of centrally managed register blocks

There is a configurable pool of register blocks, which are private to the serializer module.

Whenever a task is queued, a free register block is taken from the pool, and the data from
the temporary register block is copied into the register block chosen from the pool.

When a task is unqueued by NextTask , the register block from the pool for that task is
marked as free.

If these is no free register block when queuing a task, this is a fatal error.

Application

execution with interrupts enabled

execution with interrupts disabled

(USR/SVC) (USR/SVC)

S Q N
(SVC)(SVC)

Callback

or Angel

Angel
8.12.8 Reducing FIQ latency

In practice, many systems could be less restrictive with FIQs than stated here, enabling them
in some places where they have been disabled by default. The following are defined and are
8-51Reference Guide
ARM DUI 0041B

modifiable to suit your system.

The #define FIQ_SAFETYLEVEL can be used to reduce FIQ latency in the following ways:

• In the IRQ-handling code which runs in IRQ mode, FIQs can be kept enabled if:
FIQ_SAFETYLEVEL >= FIQ_NeverUsesSerialiser

• Within the SWI handler, Yield function, and also within code which has entered
SVC mode by using the “Get into SVC mode SWI”, FIQ can be kept enabled if:
FIQ_SAFETYLEVEL >= FIQ_NeverUsesSerialiser_DoesNotReschedule

• Within the undefined instruction (breakpoint) handler, code which runs in UND
mode can keep FIQs enabled if:
FIQ_SAFETYLEVEL >= FIQ_NeverUsesSerialiser_DoesNotReschedule_HasNoBreakpoints

where:

FIQ_CannotBeOptimised

means that FIQ is always disabled whenever IRQ is disabled.

FIQ_NeverUsesSerialiser

means that FIQs never need to use the serializer to gain the lock. For example,
FIQs might be used by the serial device (as in the ARM60 PIE card default
configuration).

FIQ_NeverUsesSerialiser_DoesNotReschedule

adds to the limitation of FIQ_NeverUsesSerialiser , in that FIQs must not be
used as a means for a third-party operating system to reschedule tasks.

FIQ_NeverUsesSerialiser_DoesNotReschedule_HasNoBreakpoints

adds to the limitations of FIQ_NeverUsesSerialiser_DoesNotReschedule ,
in that breakpoints must never be set in code which is executed in FIQ code.

The default is the “safest” setting:

#define FIQ_SAFETYLEVEL FIQ_CannotBeOptimised

8.12.9 Checking for “impossible” cases

To speed up debugging, you need to include runtime assertion code to check that the state
of Angel is as expected. Such assertions should be within the protection of:

#if ASSERTIONS_ENABLED

so that you can disable them in a final version if required.

Such assertions have been made wherever possible; for example, when it is assumed that
a stack is empty, there are no items in a queue, and so on.

Angel
8.12.10 The device driver’s view

Both Angel callbacks and Application callbacks run in USR mode, without the lock. Angel
callbacks can make direct calls to functions described in devclnt.h , but Application
8-52 Reference Guide
ARM DUI 0041B

callbacks have to do so indirectly through the SWI veneer.

Two pseudo-functions (in serlock.h) are needed to enter SVC mode and disable IRQ and
FIQs, and also to keep the caller’s stack accessible. These two functions are used to get
mutually exclusive supervisor access to data structures and IO space:

void Angel_EnterSVC(void)
void Angel_ExitToUSR(void)

The device driver function called by Angel or the Application does almost no work itself;
it just asks for the request to happen, or at most only does tasks which cannot block and
which do not require a period of waiting.

Then either an interrupt-driven or polled handler does the bulk of the processing.

The following sections show how this works for fully interrupt-driven, partially-polled and
fully-polled devices.

Note that the polling routine is not unregistered; it is a permanently installed read poller.

Fully IRQ-driven write request

In the function called by devclnt.c the following happens:

1 Angel_EnterSVC()

2 Note the user callback

3 Send first byte

4 Enable “write byte complete” interrupts on device

5 Angel_ExitToUSR()

Every time the device has written a byte, an interrupt grabs the lock. The driver then writes
another byte. When the entire packet has been written, the callback is queued and the
device has its ‘write byte complete’ interrupts disabled.

Fully IRQ-driven read request

In the function called by devclnt.c the following happens:

1 Angel_EnterSVC()

2 Note the user callback

3 Enable “byte read” interrupts on device

4 Angel_ExitToUSR()

Every time the device has read a byte, an interrupt happens and grabs the lock. The driver
then puts this byte into the buffer. When the entire packet has been read, the callback is
queued. Note that read interrupts for this device are left enabled.

Angel
Half-IRQ, half-polled read request (no equivalent for write requests)

The function called by devclnt.c to set this up is identical to the fully IRQ-driven function.

On receiving a read interrupt, the driver:
8-53Reference Guide
ARM DUI 0041B

1 gets the first character which arrived and caused an interrupt

2 disables read interrupts from happening from before getting the lock
(before re-enabling IRQ and FIQ)

3 gets the lock (by calling SerialiseTask) until the packet is complete

4 calls QueueCallback for the packet

5 return, giving back the lock

Polled write

In the function called by devclnt.c the following happens:

1 Angel_EnterSVC()

2 note the user callback

3 send first byte

4 register polling routine to be called by Angel_Yield

5 Angel_ExitToUSR()

6 Angel_Yield() ; this gives an immediate chance for the write to go ahead

There is no interrupt routine, but there is a polling routine which was registered to be called
by Angel_Yield . This does the following:

Ask if the device ready to write another byte.
If not, return
Repeat {

Write another byte
If that was the last byte in the packet, break
Wait until device is ready to write another byte

}
Queue Callback
Unregister polling routine
Return

Polled read

In function called by devclnt.c the following happens:

1 Angel_EnterSVC()

2 note the user callback

3 register polling routine to be called by Angel_Yield

4 Angel_ExitToUSR()

5 Angel_Yield() gives an immediate chance for the read to happen

Angel
There is no interrupt routine, but there is a polling routine which was registered to be called
by Angel_Yield . This does the following:

Has the device read a byte yet?
8-54 Reference Guide
ARM DUI 0041B

If not then return
Repeat {

Put the byte in the buffer
If that was the last byte in the packet, then break
for (i=0; i<chosen_value; i++) {

Has device read another byte ?
If yes, then continue from top of repeat loop

}
return - out of time and not got a whole packet

}
Queue Callback
Return

9-1Reference Guide
ARM DUI 0041B

This chapter describes the ARMulator, ARM’s instruction set simulator.

9.1 About the ARMulator 9-2
9.2 Modelling an ARM-based System 9-2
9.3 Basic Model Interface 9-4
9.4 Memory Model Interface 9-5
9.5 Coprocessor Model Interface 9-10
9.6 Operating System or Low-level Monitor Interface 9-13
9.7 Accessing the ARMulator’s State 9-15
9.8 Accessing the Debugger 9-26
9.9 Events 9-28

ARMulator9

ARMulator
9.1 About the ARMulator

The ARMulator is a collection of programs that emulate the instruction sets and architecture
of various ARM processors. It provides an environment for the development of ARM-
9-2 Reference Guide
ARM DUI 0041B

targeted software on the supported workstation and PC host systems.

The ARMulator is instruction-accurate: it models the instruction set without regard to the
precise timing characteristics of the processor. As a result, it is well suited to software
development and benchmarking of ARM-targeted software, though its performance is
slower than real hardware. ARMulator also supports a full ANSI C library to allow complete
C programs to run on the emulated system.

ARMulator is transparently connected to the ARM symbolic debugger to provide a hardware-
independent ARM software development environment. Communication takes place across
the Remote Debug Interface (RDI). You can supply models written in C or C++ which
interface to the ARMulator's external interface.

Note The ARMulator’s interfaces have been extended at Version 2.1, and are now different from
the Version 2.0 interfaces.

For additional information about the ARMulator, refer to the Software Development Toolkit
User Guide (ARM DUI 0040).

9.2 Modelling an ARM-based System
An ARMulator environment consists of five parts:

• Remote Debug Interface
the interface between the ARMulator and its host debugger

• ARM Core Model
the model of the ARM processor itself (eg. ARM6, ARM710, StrongARM)

• Memory Model
the model of the memory system outside the ARM, typically just RAM. ARMulator
models are more dynamic than mapfiles used in armsd , allowing, for example,
memory-mapped I/O.

• Coprocessor Models
these model ARM coprocessors directly

• Operating System or Debug Monitor model
a virtual interface between the host and the modelled ARM

In addition there may be “basic” models. These do not form part of the ARMulator, but may
exist around it providing extra functionality.

The Remote Debug Interface and ARM Core models are built into ARMulator, but you can
add basic, memory, coprocessor, and operating system models.

ARMulator
9.2.1 Model stubs

Basic models, memory models, coprocessor models, and operating system models all
attach to the ARMulator through a small stub. This stub consists of an initialization function
9-3Reference Guide
ARM DUI 0041B

and a textual name for the model, which ARMulator uses to locate it. Some example
implementations exist to help with implementing new models. Any number of models can be
attached to an ARMulator without the need to modify existing models—which model is used
can be set when the ARMulator is run without need for recompilation.

At startup, the ARMulator locates the model, then calls the initialization function, passing in
a list of pointers that the model should fill in with implementation functions. The model should
also register an ExitUpcall (see ExitUpcall on page 9-17) during initialization, to free
any state it may set up.

9.2.2 Configuration

ARMulator provides a method of configuring models called ToolConf . The ToolConf is a
simple database of tags and values, which are read by ARMulator during initialization from
a configuration file (armul.cnf).

A number of functions are provided for looking up values from this database. The full set of
functions is defined in toolconf.h . All the functions take an opaque handle of type, called
toolconf .

The most useful functions are:

const char *ToolConf_Lookup(toolconf db, const char *tag)

This looks up tag in the configuration database db, returning the value associated with
it, or NULL if the tag is not used in the database. (The tag is case-independent.)

int ToolConf_Cmp(const char *value, const char *reference)

This function compares a looked-up tag with an expected value, ignoring case. Returns
TRUE if value matches reference.

Although documented in toolconf.h , the format of the armul.cnf file is not fixed, and is
not guaranteed to remain the same in future releases.

9.2.3 ARMul_State

The ARMul_State is an opaque datatype which is a handle onto the ARMulator for the
access functions. See 9.7 Accessing the ARMulator’s State on page 9-15.

ARMulator
9.3 Basic Model Interface

The simplest model interface is the Basic interface. This provides a mechanism for calling a
user-supplied function during initialization. This function can then install callbacks, and so
9-4 Reference Guide
ARM DUI 0041B

on, to add functionality.

9.3.1 Initialization function

The basic model exports a function which is called during initialization. The ARMulator calls
the function only if an entry is found for it in the configuration file.

ARMul_Error init(ARMul_State *state,
toolconf config)

This function returns zero (equivalent to ARMulErr_NoError) to indicate success, or an
ARMul_Error value (from those defined in errors.h), via ARMul_RaiseError .
Returning an error indicates a failure to initialize, and the ARMulator reports this failure back
to the debugger.

ARMulator
9.4 Memory Model Interface

The memory model interface is defined in the file armmem.h (which is included from
armdefs.h).
9-5Reference Guide
ARM DUI 0041B

All memory accesses are performed through a single function pointer, passed in a flags word
to determine which type of access is being performed. This flags word consists of a bitfield
corresponding to the signals on the outside of the ARM.

As there are many core processor types, there are many variants of the memory interface.
The memory initialization function is told which variant it should provide. A model must
refuse to initialize for a variant it does not understand.

9.4.1 Initialization and other functions

The memory model is initialized through the initialization function declared in its stub. This
is passed the ARMul_State , a pointer to the table of functions to be filled in, the variant of
the memory model being requested and the model’s toolconf .

ARMul_Error init(ARMul_State *state,
ARMul_MemInterface *interf,
ARMul_MemType variant,
toolconf your_config)

The function returns zero to indicate success, or an error number.

The initialization should set the handle for the model, by assigning to
interf->handle . This handle, usually a pointer to the state representing this
instantiation of the model, is passed to all the access functions called by the ARMulator.
(This single handle replaces the following four pointers used in previous ARMulators:
MemDataPtr , MemInPtr , MemOutPtr , and MemSparePtr .)

This function should also be used:

• to register any upcalls (in particular an exit upcall if necessary)

• to announce itself to the user (using ARMul_PrettyPrint ; see 9.8.1
Input/output functions on page 9-26)

• to attach any associated coprocessor models (a memory-management unit, for
example) and to set up its state

Which functions should be written into the function table depends on which variant is being
requested. The table consists of some functions common to all models, and a union of
functions which are specific to each type.

The common functions are:

unsigned long read_clock(void *handle)

read_clock is called whenever the ARMulator needs to know the elapsed time.
The value returned should be the number of emulated microseconds since the model
was initialized. A model can supply NULL as this function, if it does not support this
functionality.

ARMulator
typedef struct {

unsigned long NumNcycles,
NumScycles,
NumIcycles,
9-6 Reference Guide
ARM DUI 0041B

NumCcycles,
NumFcycles;
} ARMul_Cycles;

const ARMul_Cycles *read_cycles(void *handle)

A model may keep count of the accesses made to it from the ARMulator. These
counters are used to supply the $statistics variable inside armsd or the ARM
Debugger for Windows.

read_cycles is called each time the counters are read.

9.4.2 Basic memory interface

There are three kinds of basic memory interface, but all three use the same function
interface to the core:

ARMul_MemType_Basic supports byte and word loads and stores.

ARMul_MemType_16Bit is the same as ARMul_MemType_Basic but with the
addition of halfword loads and stores.

ARMul_MemType_Thumb is the same as ARMul_MemType_16Bit but with
halfword instruction fetches (which may be sequential).
This may indicate to a memory model that most
accesses will be halfword-instruction-sequential rather
than the usual word-instruction-sequential.

Memory models which do not support halfword accesses should refuse to initialize for
ARMul_MemType_16Bit and ARMul_MemType_Thumb.

For all three types, the model should fill in the interf->x.basic function pointers.

int mem_access(void *handle,
ARMword address,
ARMword *data,
ARMul_acc access_type)

On each ARM core cycle, mem_access is called, where:

handle is the value assigned to interf->handle in the initialization
function

address is the value on the ARM’s address bus

data is a pointer to the data to be stored (write), or a pointer to where a
value should be written (read), or may be NULL in the case of a non-
memory (idle) cycle

access_type determines the cycle type

ARMulator

The function returns one of the following codes:

1 indicates successful completion of the cycle
9-7Reference Guide
ARM DUI 0041B

Note In previous versions of the ARMulator, memory models used ARMul_DATAABORT and
ARMul_PREFETCHABORT macros to return aborts. This is not necessary with the current
release.

Access type

The access_type encodes the type of cycle. On some processors (for example, cached
processors) the signals will not be valid. The macros for determining this are:

0 indicates that the processor should busy-wait and try the access
again next cycle

-1 returns an abort

For reads the function should write the value to be read to the word pointed to
by data ; for a byte load it should write the byte value, for a halfword
load the halfword value and so on. The model does not need to worry
about the alignment of the address passed to it, because this is
handled by the ARMulator. However, it does need to present the
bytes of the word in the correct order for the endianness of the
processor. This can be ascertained by using either a ConfigChange
upcall or ARMul_SetConfig (see 9.7 Accessing the ARMulator’s
State on page 9-15).

armdefs.h provides a flag variable/macro, HostEndian , which is
TRUE if ARMulator is running on a big-endian machine. See the
armflat.c sample file for how to handle endianness.

For writes data points to the datum to be stored. This value may need to be
shortened for a byte or halfword store, however. As with loads,
endianness must be handled correctly.

acc_MREQ(acc) choose between memory and non-memory accesses.

acc_WRITE(acc)
acc_READ(acc)

for memory cycles, determine whether this is a read or write
cycle (not acc_READ implies acc_WRITE, and vice versa).

acc_SEQ(acc) for a memory cycle, true if the address is the same as, or
sequentially follows from the address of the preceding cycle.
For a non-memory cycle distinguishes between coprocessor
(acc_SEQ) and idle (not acc_SEQ) cycles.

acc_OPC(acc) for memory cycles, true if the data being read is an instruction.
(It is never true for writes.)

ARMulator

acc_LOCK(acc) distinguishes a read-lock-write memory cycle.

acc_ACCOUNT(acc) true if the cycle is coming from the ARM core, rather than the
9-8 Reference Guide
ARM DUI 0041B

The nTRANS signal from the processor is not passed to the memory interface. As this signal
changes infrequently and may well not be used by a memory model, a model should use the
TransChange upcall (see TransChangeUpcall on page 9-18) to track nTRANS .

unsigned long get_cycle_length(void *handle)

get_cycle_length may be called by the ARMulator to return the length of a single
cycle, in units of one tenth of a nanosecond. For example, it would return 300 for a
33.3MHz clock.

Cached versions

Three variants of this interface exist for cached processors (such as ARM610, ARM710):

ARMul_MemType_BasicCached

ARMul_MemType_16BitCached

ARMul_MemType_ThumbCached

These differ from the basic equivalents in that there are only two types of cycle:

Memory cycle where acc_MREQ(acc) is TRUE

Idle cycle where acc_MREQ(acc) is FALSE

A non-sequential access consists of an Idle cycle followed by a Memory cycle, with the same
address supplied for both. A sequential access is just a Memory cycle, with address
incremented from the previous access.

Cached processors do not export the processor mode and nTRANS signals.

However, models can still register ModeChange and TransChange upcalls (and would still
be called when the processor core changes these signals), so memory models which use
this information should take MemType_*Cached as a signal to not register the upcall.

9.4.3 Byte-lane memory interface

For StrongARM (which externally can use a byte-lane memory interface), there is a variant
of the basic memory interface. All the function types are the same, and the model should still
fill in the basic part of the ARMul_MemInterface structure, but the meaning of the
ARMul_acc word passed to the access function is different.

remote-debug-interface.

acc_WIDTH(acc) returns BITS_8 , BITS_16 or BITS_32 depending on
whether a byte, halfword or word is being fetched/written on a
data access.

ARMulator
In place of acc_WIDTH, there is instead:

acc_BYTELANE(acc)

This returns a four-bit mask of which bytes in the word passed to the access function are
9-9Reference Guide
ARM DUI 0041B

valid. There is no endianness problem with this method of access; the model can ignore
endianness. Bit 0 of this word corresponds to bits 0–7 of the data, bit 1 to bits 8–15, and so
on. armflat.c contains an example function that implements this model.

In bytelane.c , a model of an ASIC that converts the basic memory interfaces into the
Byte-Lane version is provided as an example.

9.4.4 Other interfaces

There are other Memory Interface types defined, which are used internally by the ARM8 and
StrongARM core models for communicating with their cache models.

9.4.5 Memory map handling

ARMulator does not directly support the armsd.map files. However, a memory model can
intercept the RDIMemory_Access , RDIMemory_Map and RDIInfo_Memory_Stats RDI
messages, and implement this functionality directly.

The example model armmap.c does this, and implements a basic memory system that
inserts wait-states according to the memory speeds specified in the armsd.map file.

ARMulator
9.5 Coprocessor Model Interface

The coprocessor model interface is defined in armdefs.h . Coprocessors are either
initialized directly by the ARMulator as appropriate, or can be attached directly by another
9-10 Reference Guide
ARM DUI 0041B

model by calling ARMul_CoProAttach :

ARMul_Error ARMul_CoProAttach(ARMul_State *state, unsigned number,
const ARMul_CPInit *init, toolconf config, void *handle)

init is a pointer to a coprocessor initialization function

handle is a mechanism to allow the caller and the coprocessor to share state, and
is passed into the coprocessor's initialization function

void *init(ARMul_State *state, unsigned num,
ARMul_CPInterface *interf, toolconf config, void *handle)

As with memory models, the coprocessor init function must fill its handle and a table
of access functions in interf . The handle argument is the value passed into
ARMul_CoProAttach , if the coprocessor was initialized in that way. This function
should either return zero or an error value.

unsigned ldc(void *handle, unsigned type, ARMword instr,
ARMword value)

The ldc function is called whenever the ARMulator encounters an LDC instruction
destined for this coprocessor. The value argument is the data loaded from memory.
This function is called first with type set to ARMul_FIRST, is then called with type set to
ARMul_TRANSFER, and finally with type set to ARMul_DATA, at which point value
becomes valid. The function may request further data by returning ARMul_INC , in
which case subsequent calls have type set to ARMul_DATA and value is valid.

unsigned stc(void *handle, unsigned type, ARMword instr,
ARMword *value)

The stc function is called whenever the ARMulator encounters an STC instruction
destined for this coprocessor. The value argument should be set to the value to be
stored to memory. This location should be considered write-only.

This function is called first with type set to ARMul_FIRST, the function is then called with
type set to ARMul_TRANSFER, and finally with type set to ARMul_DATA, at which point
value becomes valid. The function may request further data by returning ARMul_INC
, in which case subsequent calls have type set to ARMul_DATA and value is valid.

unsigned mrc(void *handle, unsigned type, ARMword instr,
ARMword *value)

The mrc function is called whenever the ARMulator encounters an MRC instruction
destined for this coprocessor. The value argument is a pointer to (the model of) an
ARM register where the result of the transfer should be stored (if successful). This
location should be considered as write-only. Unless it returns the value ARMul_BUSY, it
will only be called once, with type set to ARMul_FIRST.

unsigned mcr(void *handle, unsigned type, ARMword instr,
ARMword value)

ARMulator
The mcr function is called whenever the ARMulator encounters an MCR instruction
destined for this coprocessor. The value argument is the value of the ARM register to
transfer (if successful). Unless it returns the value ARMul_BUSY, it will only be called
once with type set to ARMul_FIRST.
9-11Reference Guide
ARM DUI 0041B

unsigned cdp(void *handle, unsigned type, ARMword instr)

The cdp function is called whenever the ARMulator encounters a CDP instruction
destined for this coprocessor. Unless it returns the value ARMul_BUSY, it will only be
called once with type set to ARMul_FIRST.

If a coprocessor does not handle one or more of these functions, it should leave their entries
in the function table unchanged.

9.5.1 Function parameters

The argument type in the above functions can have one of five values:

ARMul_FIRST indicates that this is the first time the coprocessor model has
been called for this instruction

ARMul_TRANSFER indicates that this is the load cycle of an LDC instruction (the data
is being loaded from memory)

ARMul_DATA indicates that the coprocessor is being called with valid data
(LDC/MCR), or is expected to return valid data (STC/MRC)

ARMul_INTERRUPT warns the coprocessor that the ARM is about to service an
interrupt, so the coprocessor should discard the current
instruction. Usually, the instruction will be retried later, in which
case the type will be reset to ARMul_FIRST

ARMul_BUSY is used as the reply to a previous call that returned ARMul_BUSY

The instr parameter is the coprocessor instruction itself.

The functions must return one of four values:

ARMul_BUSY indicates that the coprocessor is busy, and the ARMulator
should busy-wait, calling the routine continuously

ARMul_CANT indicates that the coprocessor cannot execute this particular
instruction

ARMul_INC indicates that the ARMulator should produce the next address
for an LDC/STC instruction, and then call the model again

ARMul_DONE indicates successful completion of the instruction

ARMulator
9.5.2 Debug functions

Two functions are provided that allow a debugger to read and write coprocessor registers via
the Remote Debug Interface.
9-12 Reference Guide
ARM DUI 0041B

unsigned read(void *handle, unsigned reg, ARMword *value)

The read function reads the coprocessor register numbered reg and transfers its value
to the location addressed by value .

unsigned write(void *handle, unsigned reg, ARMword const *value)

The write function sets the value of the coprocessor register numbered reg to the
value addressed by value .

The function table also contains the entry reg_bytes , which describes to the ARMulator
the configuration of the coprocessor’s registers. It consists of an array of words:

• the first gives the number of registers

• the remaining vector gives the minimum number of words required to contain each
register

For an example, see the definition of a minimal MMU system in the file dummymmu.c.

ARMulator
9.6 Operating System or Low-level Monitor Interface

Rapid prototyping of low-level operating system code is supported by ARMulator through an
interface which allows a model to intercept SWIs and exceptions and model them on the
9-13Reference Guide
ARM DUI 0041B

host. As with other models, the operating-system model is called through an initialization
function exported in a stub. The full interface is defined in armdefs.h .

ARMul_Error init(ARMul_State *state,
ARMul_OSInterface *interf,
toolconf config)

The initialization function is passed a vector of functions to fill in. It should also fill in its
handle, and return an error code. The memory system is guaranteed to be operating at
this time, and hence the operating system can read and write to the emulated memory
using the routines in 9.7.6 Memory Access Functions on page 9-21. It can also run
initialization code (for example, the supplied Demon model will load and then initialize
the floating-point emulation code), but for that initialization code to be able to use the
operating system model, the model must have filled in the handle entry in the
ARMul_OSInterface with a handle onto its state.

unsigned handle_swi(void *handle, ARMword number)

This function is passed in the SWI number (in number) of each SWI instruction
executed by ARMulator, as it is executed, allowing support code to simulate operating
system operations. This code can model as much of your operating system as you
choose. This model can communicate with the emulated application by reading and
writing the emulated ARM state using the routines described in 9.7 Accessing the
ARMulator’s State on page 9-15.

The function may refuse to handle the SWI by returning FALSE, or the model may
choose not to handle SWIs by setting NULL as the handle_swi function. In either
case, the SWI exception vector is taken by ARMulator. If the function returns TRUE the
ARMulator continues from the next instruction after the SWI.

unsigned exception(void *handle, ARMword vector, ARMword pc)

This function is called whenever a hardware exception occurs. The CPU state is frozen
immediately after the exception has occurred, but before the CPU has switched
processor state or taken the appropriate exception vector.

vector contains the address of the vector about to be executed:

0x00 Reset
0x04 Undefined Instruction
0x1C Fast Interrupt (FIQ), and so on

pc contains the program counter (including the effect of pipelining) at the
time the exception occurred

The function may choose to ignore the exception by returning TRUE, and ARMulator will
continue from the instruction following the aborted instruction. A return value of FALSE
causes the exception to occur normally.

ARMulator
9.6.1 Using the UnkRDIInfoUpcall

The demon.c model supplied with ARMulator uses the UnkRDIInfoUpcall in several
places, to interact with the debugger:
9-14 Reference Guide
ARM DUI 0041B

RDIErrorP returns errors raised by the program running under the
ARMulator to the debugger

RDISet_Cmdline finds the command-line set for the program by the debugger

RDIVector_Catch intercepts the hardware vectors

9.6.2 Using the floating-point emulator (FPE)

The ARMulator is supplied with the floating-point emulator (FPE) in object form.
The Angel/Demon debug monitor model (angel.c) loads and starts executing the FPE on
initialization. Note, however, that the supplied FPE requires the following SWIs to be
supported by the debug monitor (Angel does not support these SWIs):

SWI_Exit (0x11)

SWI_GenerateError (0x71)

To load and initialize the FPE, call:

int ARMul_FPEInstall(ARMul_State *state)

This writes the FPE into memory (below 0x8000), and starts it running.

Note Because this involves running code, it must only be done after the ARMulator is fully
initialized. Before calling ARMul_FPEInstall , Demon completely initializes itself.

int ARMul_FPEVersion(ARMul_State *state)

Returns the FPE version number. Demon uses this for unwinding aborts inside the
emulator (see the demon.c source code for details).

int ARMul_FPEAddressInEmulator(ARMul_State *state, ARMword addr)

Returns TRUE if the stated address lies inside the FPE source.

ARMulator
9.7 Accessing the ARMulator’s State

All the models have passed in a state variable which is an opaque handle onto the
ARMulator’s internal state. ARMulator exports a number of functions which allow models to
9-15Reference Guide
ARM DUI 0041B

access this state through this handle.

It is not sensible to access some parts of the state from certain parts of a model. For
example, it is not sensible to set the contents of an ARM register from a memory access
function, because this may be called midway through emulation of an instruction, whereas
it would be sensible (and in fact necessary) to do so from a SWI handler function.

9.7.1 Accessing ARM registers

ARMword ARMul_GetReg(ARMul_State *state,
unsigned mode,
unsigned reg)

void ARMul_SetReg(ARMul_State *state,
unsigned mode,
unsigned reg,
ARMword value)

These functions allow a register from a given mode to be read and written. Register 15
should not be accessed with these functions. Use ARMul_GetPC, ARMul_SetPC ,
ARMul_GetR15 , and ARMul_SetR15 described in this section.
The mode numbers are defined in armdefs.h as follows:

USER26MODE USER32MODE

FIQ26MODE FIQ32MODE

IRQ26MODE IRQ32MODE

SVC26MODE SVC32MODE

ABORT32MODE

UNDEF32MODE

SYSTEM32MODE

In addition, the special value CURRENTMODE is defined. The function ARMul_GetMode
returns the current mode number.

ARMword ARMul_GetPC(ARMul_State *state)
void ARMul_SetPC(ARMul_State *state,

ARMword value)

ARMword ARMul_GetR15(ARMul_State *state)
void ARMul_SetR15(ARMul_State *state,

ARMword value)

These functions allow access to Register 15. (If the processor is in a 26-bit mode, the
PC variants strip the condition code and mode bits from register 15.)

ARMulator
ARMword ARMul_GetCPSR(ARMul_State *state)
void ARMul_SetCPSR(ARMul_State *state,

ARMword value)

These functions allow the CPSR to be read or written (a valid value is faked if the
9-16 Reference Guide
ARM DUI 0041B

processor is in a 26-bit mode, so these functions can still be used).

Note For more information about 26-bit modes, see the ARM Architecture Reference Manual
(ARM DDI 0100), and also refer to Application Note 11: Differences Between ARM6 and
Earlier ARM Processors and Application Note 37: Startup configuration of ARM Processors
with MMUs.

ARMword ARMul_GetSPSR(ARMul_State *state,
ARMword mode)

void ARMul_SetSPSR(ARMul_State *state,
ARMword mode,
ARMword value)

Similarly, these functions allow a specific mode’s SPSR to be read/written.

9.7.2 Accessing coprocessor registers

The state of coprocessor registers can be accessed using three functions.

unsigned int const *ARMul_CPRegWords(ARMul_State *state,
unsigned cp)

This returns the reg_words array for the numbered coprocessor (see 9.5
Coprocessor Model Interface on page 9-10 for details).

int ARMul_CPRead(ARMul_State *state,
unsigned cp,
unsigned reg,
ARMword *value)

int ARMul_CPWrite(ARMul_State *state,
unsigned cp,
unsigned reg,
ARMword const *value)

These functions call the read and write methods for a coprocessor. They also
intercept calls to read/write the FPE’s “emulated” registers. (See 9.6.2 Using the
floating-point emulator (FPE) on page 9-14.)

9.7.3 Interrupts

unsigned ARMul_SetNirq(ARMul_State *state,
unsigned value)

unsigned ARMul_SetNfiq(ARMul_State *state,
unsigned value)

unsigned ARMul_SetNreset(ARMul_State *state,
unsigned value)

These three functions allow models to raise interrupts and cause a reset. They return
the old settings of the signals. All three signals are reverse logic.

ARMulator
9.7.4 Configuration

ARMword ARMul_SetConfig(ARMul_State *state,
ARMword changed,
9-17Reference Guide
ARM DUI 0041B

ARMword config)

This function allows a model to change the Configuration pins (see
ConfigChangeUpcall on page 9-18 for a description of these pins and the bits
assigned to each). Two bitfields are passed in:

• the first (changed) has bits set for each bit you wish to change

• the second (config) has the new values.

(A bit should not be clear in changed but set in config .) The ConfigChange upcalls
will be called.

9.7.5 Upcalls

The ARMulator can be made to call back your model when some state values change. This
can be used to avoid having to check these state values on every access. For example, a
memory model is expected to present the ARM core with data in the correct endianness for
the value of the ARM’s bigend signal, so a memory model would attach to the
ConfigChange upcall to be informed when this changes.

All the upcalls are defined in armdefs.h .

All the upcalls are called when the ARMulator resets and after ARMulator initialization is
complete, regardless of whether the signals have changed, with the exception of
UnkRDIInfoUpcall .

ExitUpcall

typedef void armul_ExitUpcall(void *handle)

All the exit upcalls are called when the ARMulator exits, and should be used to release
any store used. Note that the ANSI free function is a valid ExitUpcall .

If no exit upcall is registered and a model uses some store, that memory will be lost.

typedef armul_InstallExitHandler(ARMul_State *state,
armul_ExitUpcall *new,
void *handle)

int ARMul_RemoveExitHandler(ARMul_State *state,
void *node)

An upcall is installed using armul_InstallExitHandler . The new argument is the
function to be called, and handle is the handle to be passed to it. It returns a handle
to the callback, which can be passed to ARMul_RemoveExitHandler (as node) to
remove the upcall.

ARMulator
ModeChangeUpcall

typedef void armul_ModeChangeUpcall(void *handle,
ARMword old,
ARMword new)
9-18 Reference Guide
ARM DUI 0041B

The mode change upcall is called whenever the ARMulator changes mode. The upcall
is passed both the old and new modes. An enumeration of valid mode numbers is
provided in armdefs.h .

An upcall is installed using:

void *ARMul_InstallModeChangeHandler(ARMul_State *state,
armul_ModeChangeUpcall *new,
void *handle)

in the same way as an ExitUpcall, and removed using:

int ARMul_RemoveModeChangeHandler(ARMul_State *state,
void *node)

TransChangeUpcall

typedef void armul_TransChangeUpcall(void *handle,
unsigned old,
unsigned new)

The nTRANS change upcall is called when the nTRANS signal on the ARM core
changes. nTRANS is the Not Memory Translate signal. When LOW, it indicates that the
processor is in user mode, or that the processor is doing an LDRT/STRT instruction from
a non-user mode. It may be used to tell memory management models when translation
of the addresses should be turned on, or as an indicator of non-user mode activity (for
example, to provide different levels of access in non-user modes).

An upcall is installed using:

void *ARMul_InstallTransChangeHandler(ARMul_State *state,
armul_TransChangeUpcall *new,
void *handle)

and can be removed using:

int ARMul_RemoveTransChangeHandler(ARMul_State *state,
void *node)

ConfigChangeUpcall

typedef void armul_ConfigChangeUpcall(void *handle,
ARMword old,
ARMword new)

The Config bits are those signals which are configuration pins on the ARM core. The
words passed into the ConfigChange upcall are a bitfield of these signals, where each
bit corresponds to a signal.

ARMulator
The bits are allocated as the bits in the System Coprocessor (coprocessor 15) Control
Register:

ARMul_Prog32 (bit 4)
9-19Reference Guide
ARM DUI 0041B

An upcall is installed using:

void *ARMul_InstallConfigChangeHandler(ARMul_State *state,
armul_ConfigChangeUpcall *new,
void *handle)

and can be removed using:

int ARMul_RemoveConfigChangeHandler(ARMul_State *state,
void *node)

InterruptUpcall

typedef unsigned int armul_InterruptUpcall(void *handle,
unsigned int which)

This upcall is called whenever the ARM core notices an interrupt (not when it takes an
interrupt) or reset. For example, this can be used by a memory model to reset its state,
implement a wake-up, and so on. It is called at the start of the instruction or cycle
(depending on the core being emulated) when the interrupt is noticed.

The which value is a bitfield encoding which interrupt(s) have been noticed.

bit 0 Fast interrupt (FIQ)

bit 1 Interrupt request (IRQ)

bit 2 Reset

The interrupt responsible may be removed using ARMul_SetNirq or
ARMul_SetNfiq , in which case the ARM will not notice the interrupt. Reset cannot be
removed.

An upcall is installed using:

void *ARMul_InstallInterruptHandler(ARMul_State *state,
armul_InterruptUpcall *new,
void *handle)

and can be removed using:

int ARMul_RemoveInterruptHandler(ARMul_State *state, void *node)

ARMul_Data32 (bit 5)

ARMul_LateAbt (bit 6) (not on ARM7, ARM8, StrongARM)

ARMul_BigEnd (bit 7)

ARMul_BranchPredict (bit 11) (ARM8 only)

ARMulator
ExceptionUpcall

typedef unsigned int armul_ExceptionUpcall(void *handle,
ARMword vector,ARMword pc, ARMword instr)
9-20 Reference Guide
ARM DUI 0041B

This upcall is called whenever the ARM processor takes an exception; for example, a
data abort or a SWI. As an example, this can be used by an operating-system model to
intercept and emulate SWIs. If an installed upcall returns non-zero, the ARM does not
take the exception (the exception is essentially ignored).

The arguments identify:

• the exception to be taken (as the address of the appropriate hardware vector)

• the PC value at the time the exception occurs

• the instruction that caused the exception

Note In this release of the ARMulator, this occurs in addition to the calling of the installed
operating-system model's handle_swi function. Future releases may not support the
operating-system interface, and you should use this upcall in preference. The model can be
installed as a "basic" model (see "Basic Model Interface" [9.3]).

The sample models shipped with this release of ARMulator can be built either as a "Basic"
model or as an "Operating-System" model.

An upcall is installed using:

void *ARMul_InstallExceptionHandler(ARMul_State *state,
armul_ExceptionUpcall *new,

void *handle)

and can be removed using:

int ARMul_RemoveExceptionHandler(ARMul_State *state,void *node)

UnkRDIInfoUpcall

typedef int armul_UnkRDIInfoUpcall(void *handle,
unsigned type
ARMword *arg1,
ARMword *arg2)

The UnkRDIInfoUpcall can be used by a model extending the ARMulator's RDI
interface with the debugger. An example of such a model is the profiler module (in
profiler.c) which provides the RDIProfile info calls.

UnkRDIInfoUpcall functions are called if the ARMulator cannot handle an RDIInfo
request itself. They return an RDIError value. The ARMulator will stop calling
UnkRDIInfoUpcall functions once one returns a value other than
RDIError_UnimplementedMessage .

Upcalls can be added using:

void *ARMul_InstallUnkRDIInfoHandler(ARMul_State *state,
armul_UnkRDIInfoUpcall *proc,
void *handle)

ARMulator
and can be removed using:

int ARMul_RemoveUnkRDIInfoHandler(ARMul_State *state,
void *node)
9-21Reference Guide
ARM DUI 0041B

In addition, the following UnkRDIInfo upcalls are called for the RDI Info calls:

Because these three calls have already been dealt with by the ARMulator, and are being
passed around merely for information, or for all models to add information to the reply,
models should always respond with RDIError_UnimplementedMessage , so that the
message is passed on, even if they have responded in some way.

9.7.6 Memory Access Functions

The memory model may be probed by another model using a set of functions for reading
and writing memory. These functions access memory without inserting cycles on the bus.
If your model needs to insert cycles on the bus, it should install itself as a memory model,
possibly between the core and the real memory model.

ARMword ARMul_ReadWord(ARMul_State *state,
ARMword address)

ARMword ARMul_ReadHalfWord(ARMul_State *state,
ARMword address)

ARMword ARMul_ReadByte(ARMul_State *state,
ARMword address)

Returns the word/halfword/byte at the given address.

void ARMul_WriteWord(ARMul_State *state,
ARMword address,
ARMword data)

void ARMul_WriteHalfWord(ARMul_State *state,
ARMword address,
ARMword data)

void ARMul_WriteByte(ARMul_State *state,
ARMword address,
ARMword data)

Writes the specified word/halfword/byte at the specified address.

RDIInfo_Target This allows models to declare how to extend the functionality
of the target. For example, profiler.c intercepts this call to
set the RDITarget_CanProfile flag.

RDIInfo_Points watchpnt.c intercepts RDIInfo_Points to tell the
debugger that the ARMulator supports watchpoints (similar to
the use of RDIInfo_Target in profiler.c)

RDIInfo_SetLog This is passed around so that models can switch logging
information on and off. For example, tracer.c uses this call
to switch tracing on and off from bit 4 of the rdi_log value.

ARMulator
unsigned long ARMul_ReadClock(ARMul_State *state)

Returns a microsecond counter since start of emulation. (For example, this function
might be used by an operating system model to provide a model of a system timer.)
9-22 Reference Guide
ARM DUI 0041B

This calls the read_clock method of the installed memory model.

9.7.7 Event handling

The ARMulator has two types of events

• instructions

• cycles

Instructions

The ARMulator provides a mechanism for calling a function every instruction, or every n
instructions (for a configurable value of n).

typedef void armul_Hourglass(void *handle,
ARMword pc,
ARMword instr)

The hourglass function is passed in the pc and instruction about to be executed. It is
installed in the same way as upcalls, using:

void *ARMul_InstallHourglass(ARMul_State *state,
armul_Hourglass *proc,
void *handle)

There is a corresponding remove function:

int ARMul_RemoveHourglass(ARMul_State *state, void *node)

By default the function is called every instruction. However, you can change this by calling:

unsigned long ARMul_HourglassSetRate(ARMul_State *state,
void *node,
unsigned long rate)

which returns the old rate. The rate parameter passed in defines the rate at which the
function should be called. For example, a value of 1 calls the function every instruction. A
value of 100 calls it every 100 instructions.

The node parameter is the handle returned from InstallHourglass .

Cycles

This event relies on the memory model accurately providing cycle counts.

The ARMulator has two routines to assist with scheduling cycle-based events:

unsigned long ARMul_Time(ARMul_State *state)

This function returns the number of core cycles executed since system reset.

ARMulator
typedef unsigned armul_EventProc(void *handle)
void ARMul_ScheduleEvent(ARMul_State *state,

unsigned long delay,
armul_EventProc *proc,
9-23Reference Guide
ARM DUI 0041B

void *handle)

This function allows a function (passed in the argument proc) to be called delay core
cycles into the future, therefore allowing code such as multicycle FPU instructions to
produce results sometime in the future. The function is called with the handle passed
in. Note, however, that the function may only be called on the first instruction boundary
following the specified cycle.

Because this works on core cycles, the results may not be as expected for cached
processors. For example, core cycles may be a mix of cycles on a high-speed internal
and a slower external clock. It is recommended that designs use their own cycle
counting for scheduling events.

9.7.8 Miscellaneous functions

void ARMul_SWIHandler(ARMul_State *state, ARMword address)

This function should be called from a handle_swi function to enter a SWI handler at
a given address. It causes the processor to act as if it had taken the SWI vector,
decoded the SWI number, and then branched to this address. When the handle_swi
function returns (with the value TRUE to indicate the SWI has been handled) execution
continues from the instruction at address in supervisor mode.

For an example of its use, see the code for handling SWI_GenerateError in
demon.c .

ARMword ARMul_SetMemSize(ARMul_State *state, ARMword size)

This function should be called from memory initialization to specify where the top of
memory is. (This value will eventually be used by the emulated ARM C runtime system
to set up an application stack. Its value should not exceed 0x80000000 .)

ARMword ARMul_GetMemSize(ARMul_State *state)

This function is used by, for example, a debug monitor model to tell an application where
the top of usable memory is, to set up application memory.

ARMword ARMul_GetMode(ARMul_State *state)

Return the current mode. If this is to be done frequently, a model should install a
ModeChange upcall instead (see ModeChangeUpcall on page 9-18).

ARMword ARMul_Properties(ARMul_State *state)

Returns the properties word associated with the processor being emulated. This is a
bitfield of properties, defined in armdefs.h .

ARMulator
unsigned ARMul_CondCheckInstr(ARMul_State *state, ARMword instr)

Given an instruction, this function returns TRUE if it would execute given the current
state of the PSR flags.
9-24 Reference Guide
ARM DUI 0041B

9.7.9 Initialization errors

The model initialization functions return an ARMul_Error value. This can be one of the
following:

ARMulErr_NoError (zero) indicates a successful initialization

an RDIError value from those in dbg_rdi.h

an ARMulErr value from those in errors.h

The errors.h file can be extended by adding more errors. However, new errors must
added at the end of the file.

Entries in this file are of the form:

ERROR(ARMulErr_OutOfMemory, "Out of memory.")

This declares an error message, ARMulErr_OutOfMemory , with the textual form Out of
memory.

Errors returned from initialization functions should be passed via ARMul_RaiseError .
For example:

interf->handle = (model_state *)malloc(sizeof(model_state));
if (interf->handle == NULL)

return ARMul_RaiseHandle(state, ARMulErr_OutOfMemory);

ARMul_RaiseError is a printf-style variadic function, and the “textual form” can be a printf-
style format string. For example, the ARMulErr_MemTypeUnhandled error message, used
by memory models to reject an interface type that they do not understand, is declared:

ERROR(ARMulErr_MemTypeUnhandled, "Memory model '%s' incompatible
with bus interface.")

and called:

return ARMul_RaiseError(state,
ARMulErr_MemTypeUnhandled,
ModelName);

In this case, the debugger returns an error message such as Memory model 'Flat'
incompatible with bus interface .

The prototype of the RaiseError function is:

ARMul_Error ARMul_RaiseError(ARMul_State *state,
ARMul_Error errcode, ...)

It returns the error code passed in, after formatting the error message.

ARMulator
9.7.10 Running code

ARMword ARMul_DoProg(ARMul_State *state)

This starts running the emulator at the current PC value.
9-25Reference Guide
ARM DUI 0041B

ARMword ARMul_DoInstr(ARMul_State *state)

This single-steps the emulator for one instruction (steps into branches, exceptions,
etc.).

void ARMul_HaltEmulation(ARMul_State *state,
unsigned end_condition)

This function makes the emulator stop execution at the end of the current instruction,
giving a reason code. The debugger interprets this end condition and gives a suitable
message. The end_condition should be one of the RDIError error values defined
in dbg_rdi.h , though not all of these errors are valid.

unsigned ARMul_EndCondition(ARMul_State *state)

This function returns the end_condition passed to HaltEmulation .

ARMulator
9.8 Accessing the Debugger

9.8.1 Input/output functions
9-26 Reference Guide
ARM DUI 0041B

Several functions are provided to display messages in the host debugger. Under armsd
these print messages to the console; under the ARM Debugger for Windows these display
messages to the relevant window.

void ARMul_DebugPrint(ARMul_State *state, const char *format, ...)

This function displays a message, in the RDI logging window under the ARM Debugger
for Windows, or to the console under armsd.

void ARMul_DebugPause(ARMul_State *state)

This function waits for the user to press any key.

void ARMul_ConsolePrint(ARMul_State *state, const char *format, ...)
void ARMul_PrettyPrint(ARMul_State *state, const char *format, ...)

These functions display a message to the console window under the ARM Debugger
for Windows, or to the console or output file (when using the -o option) under armsd.
The PrettyPrint function formats the text and should be used for displaying startup
messages.

const Dbg_HostosInterface *ARMul_HostIf(ARMul_State *state)

This function returns the channel back to the debugger, as defined in dbg_hif.h . An
operating system model can make use of this to efficiently access the console window
(under the ARM Debugger for Windows) or console (under armsd) without going
through ARMul_ConsolePrint , and to receive user input.

void *dbgarg

This is an argument to be passed to the dbg functions.

void dbgprint(void *arg, const char *format, va_list ap)

This is a vfprintf equivalent (as used by ARMul_DebugPrint).

void dbgpause(void *arg)

Waits for the user to press any key.

void *hostosarg

This is an argument to be passed to the following functions.

void writec(void *arg, int c)

Writes a single character to the console window under the ARM Debugger for Windows,
or to the console under armsd. (This is used by ARMul_ConsolePrint , and by the
emulation of SWI_WriteC in demon.c , SYS_WriteC in angel.c .)

int readc(void *arg)

Reads a single character of input from the host debugger.

int write(void *arg, char const *buffer, int len)

ARMulator
Writes a stream of data to the console window under the ARM Debugger for Windows,
or to the console under armsd.

char *gets(void *arg, char *buffer, int len)
9-27Reference Guide
ARM DUI 0041B

Reads a string from the host debugger.

9.8.2 Miscellaneous functions

ARMword ARMul_RDILog(ARMul_State *state)

This function returns the value of the RDI logging level.

ARMulator
9.9 Events

The ARMulator has a mechanism for broadcasting and handling events. These events are
merely an event number and a pair of words. The number is used to identify the event, and
9-28 Reference Guide
ARM DUI 0041B

the semantics of the words depends on the precise event.

The core ARMulator generates some example events, defined in armdefs.h , which are
listed below:

Event name Word 1 Word 2

CoreEvent_Reset - -

CoreEvent_UndefinedInstr PC value instruction

CoreEvent_SWI PC value swi number

CoreEvent_PrefetchAbort PC value -

CoreEvent_DataAbort PC value aborting address

CoreEvent_AddrExceptn PC value aborting address

CoreEvent_IRQ PC value -

CoreEvent_FIQ PC value -

CoreEvent_IRQSpotted PC value -

CoreEvent_FIQSpotted PC value -

CoreEvent_ModeChange PC value new mode

 Table 9-1: Events from ARM processor core

Event name Word 1 Word 2

MMUEvent_DLineFetch miss address victim address

MMUEvent_ILineFetch miss address victim address

MMUEvent_DTLBWalk miss address victim address

MMUEvent_ITLBWalk miss address victim address

MMUEvent_LineWB line address -

MMUEvent_DCacheStall address causing stall address fetching

 Table 9-2: Events from MMU and cache (not on StrongARM-110)

ARMulator

Event name Word 1 Word 2

PUEvent_Full next PC value -
9-29Reference Guide
ARM DUI 0041B

Additional modules can provide new event types, and they will be handled in the same way.

Events are caught by installing an Event upcall:

typedef void armul_EventUpcall(void *handle,
unsigned int event,
ARMword addr1,
ARMword addr2)

void *ARMul_InstallEventUpcall(ARMul_State *state,
armul_EventUpcall *trace,
void *handle)

which, like other upcalls, can be removed:

int ARMul_RemoveEventUpcall(ARMul_State *state, void *node)

ARMul_RaiseEvent is used to invoke events, which are then passed to the user-supplied
event upcalls:

void ARMul_RaiseEvent(ARMul_State *state,
unsigned int event,
ARMword word1,
ARMword word2)

PUEvent_Mispredict address of branch -

PUEvent_Empty next PC value -

 Table 9-3: Events from pre-fetch unit (ARM8-based processors only)

10-1Reference Guide
ARM DUI 0041B

The ARM symbolic debugger can be used to debug programs assembled or compiled using
the ARM assembler, and the ARM C compiler, if those programs have been produced with
debugging enabled. A limited amount of debugging information can be produced at link time,
even if the object code being linked was not compiled with debugging enabled. The symbolic
debugger is normally used to run ARM Image Format images.

10.1 Command Language 10-2
10.2 Command-line Options 10-4
10.3 Commands Overview 10-6
10.4 Commands List 10-10
10.5 Specifying Source-level Objects 10-25
10.6 Variables 10-29
10.7 Low-level Debugging 10-33
10.8 armsd commands for EmbeddedICE 10-35
10.9 Angel and armsd 10-36

ARM Debugger10

ARM Debugger
10.1 Command Language

The following sections describe the commands available under the command-line based
version of the debugger. For details of how to produce images with suitable debugging data,
10-2 Reference Guide
ARM DUI 0041B

see Chapter 1, C Compilers and Chapter 2, Assembler . Examples that demonstrate
running programs under the command-line-based armsd are given in the Software
Development Toolkit User Guide (ARM DUI 0040).

typewriter Shows command elements that you should type at the keyboard.

typewriter Underlined text shows the permitted abbreviation of
a command.

typewriter Represents an item such as a filename or variable name; you
should replace this with the name of your file, variable etc.

{} Items in braces are optional; the braces are used for clarity and
should not be typed.

* A star (*) following a set of braces means that the items in those
braces can be repeated as many times as required. Note that
many command names can be abbreviated; the braces here
show what can be left out. There is one case where braces are
required by the debugger; these are enclosed in quote marks in
the syntax pattern.

10.1.1 Names used in syntax descriptions

These terms are used in the following sections for the command syntax descriptions.

context The program’s activation state. See 10.5.1 Variable names and
context on page 10-25.

expression An arbitrary expression using the constants, variables and
operators described in 10.5.3 Expressions on page 10-26. It is
either a low-level or a high-level expression, depending on the
command.

Low-level are arbitrary expressions using constants,
low-level symbols and operators. High-level
variables may be included in low-level expressions
if their specification starts with # or $, or if they are
preceded by ^ .

High-level are arbitrary expressions using constants,
variables and operators. Low-level symbols may
be included in high-level expressions by preceding
them with @.

list , find , examine , putfile , and getfile require
low-level expressions as arguments; all others require high-level
expressions.

location A location within the program (see 10.5.2 Program locations on
page 10-26).

ARM Debugger
variable A reference to one of the program’s variables. Use the simple

variable name to look at a variable in the current context, or add
more information as described in 10.5.1 Variable names and
context on page 10-25 to see the variable elsewhere in the
10-3Reference Guide
ARM DUI 0041B

program.

format is one of:

• hex

• ascii

• string
This is a sequence of characters enclosed in double
quotes ("). A backslash (\) may be used as an escape
character within a string.

• A C printf function format descriptor. Table 10-1:
Format descriptors shows some common
descriptors.

Type Format Description

int
%d
%u
%x

Only use this if the expression being printed yields an integer:
Signed decimal integer (default for integers)
Unsigned integer
Hexadecimal (lowercase letters); same as hex

char %c Character (same as ascii)
Only use this if the expression being printed yields an integer.

char * %s Pointer to character (same as string)
Only use this for expressions which yield a pointer to a
zero-terminated string.

void * %p Pointer (same as %.8x), eg. 00018abc
This can be used with any kind of pointer.

float
%e
%f
%g

Only use this for floating-point results:
Exponent notation, eg. 9.999999e+00
Fixed point notation, eg. 9.999999
General floating-point notation, eg. 1.1, 1.2e+06

 Table 10-1: Format descriptors

ARM Debugger
10.2 Command-line Options

armsd is an interactive source-level debugger providing high-level debugging support for
languages such as C, and low-level support for assembly language.
10-4 Reference Guide
ARM DUI 0041B

To invoke armsd, use the command:

armsd { options } image-name { arguments }

The options are listed below. Underlining is used to show the permitted abbreviations.
The options must go before the image name. Anything after the image name is treated as
a program argument.

- help gives a summary of the armsd command-line options

- little specifies that memory should be little-endian

- big specifies that memory should be big-endian

- processor name specifies the cpu type

- nofpe or - fpe specifies whether the ARMulator should load the FPE on
startup. When testing code compiled using the floating-point
library, you may wish not to load the FPE.

- symbols loads an image file containing debug information but does not
download the image

- o name writes output from the debuggee to the named file

- script name takes commands from the named file (reverts to stdin on
reaching EOF)

- exec asks the debugger to execute immediately and then quit when
execution stops

- i name adds name to the set of paths to be searched to find source files

10.2.1 Debuggee selection

This image supports: -REMote, -ARMUL, -RDP, -ADP

- remote selects remote debugging; by default this will be ADP

- adp selects remote debugging using ADP. Use this with the Angel
Debug Monitor or EmbeddedICE version 2.0 onwards

- armul select the software ARM Emulator (ARMulator)

- rdp select remote debugging using RDP. Use this with the Demon
Debug Monitor or EmbeddedICE, prior to version 2.0.

Using -rdp

If -rdp is chosen, the following device drivers are supported:

-SERIAL

-SERPAR

ARM Debugger
Port specification with RDP

- port p selects the serial port. p may be 1,2, or a device name

- sport p selects the serial port. p may be 1,2, or a device name
10-5Reference Guide
ARM DUI 0041B

- pport p selects the parallel port. p may be 1,2, or a device name

Port specification with ADP

- port expr selects serial comms. expr can be any of:

1
2
device_name
s=1
s=2
s=device_name

 To select serial and parallel comms, expr can be:

s=n,p= m

where n and m can be 1, 2 or a device name

To select ethernet comms, expr can be:

e=id

where id is the ethernet address of the target board

In the case of serial and/or parallel comms, the following" may
be prefixed to the port expression. This switches off the
heartbeat feature of ADP.

h=0

- linespeed n sets the line speed to n (ADP and RDP)

- loadconfig name specifies the file containing configuration data to be loaded

- selectconfig name version
specifies the target configuration to be used

- reset resets the target processor immediately (if supported for target)

- clock n specifies the clock speed in Hz (suffixed with K or M) for the
ARMulator (see the Software Development Toolkit User Guide
(ARM DUI 0040)). This is only valid with an armsd.map file.

Automatic command execution on startup

The symbolic debugger obeys commands from an initialization file, if one exists, before it
reads commands from the standard input. The initialization file is called armsd.ini .

The current directory is searched first, and then the directory specified by the environment
variable HOME.

ARM Debugger
10.3 Commands Overview

This section lists all armsd commands. They are first briefly listed in functional groups, and
then are explained more fully in an alphabetical list.
10-6 Reference Guide
ARM DUI 0041B

The functional groups are:

• Accessing and executing programs

• Symbols

• Controlling execution

• Program context

• Low-level debugging

• Coprocessor support

• Profiling commands

• Miscellaneous

The semicolon character (;) separates two commands on a single line. Note that armsd
queues commands in the order it receives them, so that any commands attached to
a breakpoint are not executed until all previously queued commands have been executed.

10.3.1 Accessing and executing programs

Specifying the source directory

The variable $sourcedir is used to specify the directory which contains the program
source files. It can be set using the command:

{let} $sourcedir = string

The string should be a valid directory name.

Command-line arguments

Command-line arguments for the debuggee can be specified using the let command with
the root-level variable $cmdline . The syntax in this case is:

{let} $cmdline = string

The program name is automatically passed as the first argument, and thus should not be
included in the string. The setting of $cmdline can be examined using print .

go starts execution of the program.

getfile reads the contents of an area of memory from a file.

load loads an image for debugging.

putfile writes the contents of an area of memory to a file.

reload reloads the object file specified on the armsd command line, or the last
load command.

type types the contents of a source file, or any text file, between a specified
pair of line numbers.

ARM Debugger
10.3.2 Symbols

symbols lists all symbols (variables) defined in the given or current context, along
with their type information.
10-7Reference Guide
ARM DUI 0041B

10.3.3 Controlling execution

10.3.4 Program context

variable provides type and context information on the specified variable
(or structure field).

arguments shows the arguments that were passed to the current procedure,
or another active procedure.

break adds breakpoints.

call calls a procedure.

istep steps through one or more instructions.

return returns to the caller of the current procedure (passing back a result).

step steps execution through one or more statements.

unbreak removes a breakpoint.

unwatch clears a watchpoint.

watch sets a watchpoint.

where prints the current context as a procedure name, line number in the file,
filename and the line of code.

backtrace prints information about all currently active procedures.

context sets the context in which the variable lookup occurs.

out sets the context to be the same as that of the current context’s caller.

in sets the context to that called from the current level.

ARM Debugger
10.3.5 Low-level debugging

language sets up low-level debugging if you are already using high-level
debugging.
10-8 Reference Guide
ARM DUI 0041B

10.3.6 Coprocessor support

The symbolic debugger’s coprocessor support allows access to registers of a coprocessor
through a debug monitor which is ignorant of the coprocessor. This is only possible if the
registers of the coprocessor are read (if readable) and written (if writable) by a single
coprocessor data transfer (CPDT) or a coprocessor register transfer (CPRT) instruction in a
non-user mode. For coprocessors with more unusual registers, there must be support code
in a debug monitor.

registers displays the contents of ARM registers 0 to 14, the program counter
(PC) and the status flags contained in the processor status register
(PSR).

fpregisters displays the contents of the eight floating-point registers f0 to f7 and the
floating-point processor status register FPSR.

examine allows you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with
16 bytes per line.

list displays the contents of the memory between a specified pair of
addresses in hexadecimal, ASCII and instruction format, with four bytes
(one instruction) per line.

find finds all occurrences in memory of a given integer value or character
string.

lsym displays low-level symbols and their values.

coproc describes the register set of a coprocessor and specifies how the
contents of the registers are formatted for display.

cregisters displays the contents of all readable registers of a coprocessor, in the
format specified by an earlier coproc command.

cwrite writes to a coprocessor register.

ARM Debugger
10.3.7 Profiling commands

pause prompts you to press a key to continue.
10-9Reference Guide
ARM DUI 0041B

10.3.8 Miscellaneous commands

profclear resets profiling counts.

profon starts collecting profiling data.

profoff stops collecting profiling data.

profwrite writes profiling information to a file.

! passes the following command to the host operating system.

| introduces a comment line.

alias defines, undefines or lists aliases. It allows you to define your own
symbolic debugger commands.

comment writes a message to stderr .

help displays a list of available commands, or help on a particular command.

log sends the output of subsequent commands to a file as well as the screen.

obey executes a set of debugger commands which have previously been
stored in a file, as if they were being typed at the keyboard.

print examines the contents of the debugged program’s variables.

while is part of a multi-statement line.

quit terminates the current symbolic debugger session and closes any open
log or obey files.

ARM Debugger
10.4 Commands List

!

10-10 Reference Guide
ARM DUI 0041B

Any command whose first character is ! is passed to the host operating system for execution.
This gives access to the command line of the host system without quitting the debugger.

|

Introduces a comment line.

alias

Defines, undefines or lists aliases. It allows you to define symbolic debugger commands:

alias { name { expansion }}

If no arguments are given, all currently defined aliases are displayed. If expansion is not
specified, the alias named is deleted. Otherwise expansion is assigned to the alias name:

alias n step
alias s step in

The expansion may be enclosed in double quotes (") to allow the inclusion of characters not
normally permitted or with special meanings, such as the alias expansion character (‘) and
the statement separator (;).

Aliases are expanded whenever a command line or the command list in a do clause is about
to be executed.

Words consisting of alphanumeric characters enclosed in backquotes (`) are expanded.
If no corresponding alias is found they are replaced by null strings. If the character following
the closing backquote is non-alphanumeric, the closing backquote may be omitted.
If the word is the first word of a command, the opening backquote may be omitted.
To use a backquote in a command, precede it with another backquote.

arguments

Shows the arguments that were passed to the current, or other active procedure.

arguments { context }

If context is not specified, the current context is used (normally the procedure active when
the program was suspended). Each argument’s name and current value is displayed.

backtrace

Prints information about all currently active procedures, starting with the most recent, or for
a given number of levels, specified using count :

backtrace { count }

ARM Debugger
break

Specifies breakpoints at:

• procedure entry and exit
10-11Reference Guide
ARM DUI 0041B

• lines

• statements within a line

The syntax of the break command is:

break{/size} { loc { count } {do '{' command{; command}'}'} {if expr }}

where:

size specifies which code type to break:

/16 breaks Thumb code

/32 breaks ARM code

With no size specifier, break tries to determine the size of breakpoint to
use by extracting information from the nearest symbol at or below the
address to be broken. This usually chooses the correct size, but you can
set the size explicitly.

loc specifies where the breakpoint is to be inserted. For more information on
locations, see 10.5.2 Program locations on page 10-26.

count specifies the number of times the statement there must be executed
before the program is suspended. It defaults to 1, so if count is not
specified, the program will be suspended the first time the breakpoint is
encountered.

do specifies commands to be executed when the breakpoint is reached.
Note that these commands must be enclosed in braces, represented in
the pattern above by braces within quotes. Each command must be
separated by semicolons.

break displays the program and source line at the breakpoint, unless a
do clause is specified. If you want the source line displayed in conjunction
with the do clause, use where as the first command in the do clause to
display the line.

expr makes the breakpoint conditional upon the value of expr .

Each breakpoint is given a number prefixed by #; a list of current breakpoints and their
numbers is displayed if break is used without any arguments. If a breakpoint is set at
a procedure exit, several breakpoints may be set, with one for each possible exit.

Note Use unbreak to delete any unwanted breakpoints, referring to them by:

#breakpoint_number

All breakpoints can also be deleted by referring to them by location.

ARM Debugger
call

Calls a procedure:

call{/size} location {(expression - list)}
10-12 Reference Guide
ARM DUI 0041B

where:

size specifies which code type to break:

/16 breaks Thumb code

/32 breaks ARM code

With no size specifier, call tries to determine the instruction set
of the destination code by extracting information from
the nearest symbol at or below the address to call. This usually
chooses the correct size, but you can set the size explicitly.
The command correctly sets the PSR T-bit before the call and
restores it on exit.

location is a function or low-level address.

expression_list is a list of arguments to the procedure. String literals are not
permitted as arguments. If you specify more than one
expression, separate the expressions with commas.
If the procedure (or function) returns a value, examine it using:

print $result for integer variables
print $fpresult for floating-point variables

comment

Writes a message to stderr :

comment message

coproc

Describes the register set of a coprocessor and specifies how the contents of the registers
are formatted for display. The syntax is:

coproc cpnum { regdesc }*

regdesc may describe one register, or a range of registers that are accessed and are to
be formatted uniformly:

rno{:rno1} size access-specifiers access-values { displaydesc }*

where:

size is the register size (in bytes).

access -specifiers may comprise the letters:

R the register is readable

W the register is writable

D the register is accessed through CPDT
instructions (if this is not present, the register is
accessed through CPRT instructions).

ARM Debugger
access -values the format of this option depends on whether the register is to be

accessed through CPRT instructions.
If so, it comprises four integer values separated by a space or
comma. These values form bits 0 to 7 and 16 to 23 of a MRC
10-13Reference Guide
ARM DUI 0041B

instruction to read the register, and bits 0 to 7 and 16 to 23 of a
MCR instruction to write the register.

r0_7, r16_23, w0_7, w16_23

If not, it comprises two integer values to form bits 12 to 15 and
bit 22 of CPDT instructions to read and write the register.

b12_15, b22

displaydesc is one of the items listed in the following table.

For example, the floating-point coprocessor might be described by the command:

copro 1 0:7 16 RWD 1,8
 8 4 RW 0x10,0x30,0x10,0x20 w0[16:20] 'izoux' "_" w0[0:4] 'izoux'
 9 4 RW 0x10,0x50,0x10,0x40

Item Definition

string is printed as is.

field string string is to be used as a printf format string to display the
value of field.

field is one of the forms:

wn the whole of the nth word of the
register value

wn[bit] bit bit of the nth word of the
register value

wn[bit1 :bit2] bits bit1 to bit2 inclusive of the
nth word of the register value. bit1
and bit2 may be given in either
order.

field '{' string {string}* '}' field must take one of the forms wn[bit] or wn[bit1 :bit2]
above. There must be one string for each possible
value of field . The string in the appropriate position
for the value of field is displayed (the first string for
value 0, and so on).

field 'letters' field must take one of the forms wn[bit] or wn[bit1 :bit2]
above. There must be one character in letters for
each bit of field . The letters are displayed in
uppercase if the corresponding bit of the field is set,
and in lowercase if it is clear. The first letter represents
the lowest bit if bit1 < bit2 . Otherwise it represents
the highest bit.

ARM Debugger
context

Sets the context in which the variable lookup occurs. It affects the default context used by
commands which take a context as an argument. When program execution is suspended,
10-14 Reference Guide
ARM DUI 0041B

the search context is set to the active procedure. If context is not specified, the context is
reset to the active procedure:

context context

cregisters

Displays the contents of all readable registers of a coprocessor, in the format specified by
an earlier coproc command:

cregisters cpnum

cregdef

Describes how the contents of a coprocessor are formatted for display.

cregdef cpnum rno displaydesc

cwrite

Writes to a coprocessor register. The syntax is:

cwrite cpnum rno val { val }*

Register rno of coprocessor cpnum must have been specified as writable; each val is
an integer value and there must be one val item for each word of the coprocessor register.

examine

Allows you to examine the contents of the memory between a pair of addresses, displaying
it in both hexadecimal and ASCII formats, with 16 bytes per line. Low-level symbols are
accepted by default:

examine { expression1 } {, {+} expression2 }

The start address is given by expression1 . The default address used is either:

• the address associated with the current context, minus 64, if the context has
changed since the last examine command was executed

• the address following the last address displayed by the last examine command, if
the context has not changed since the last examine command was executed

The end address is specified in expression2 , which may take three forms:

• if omitted, the end address is the value of the start address +128

• if expression2 is preceded by +, the end address is given by the value of the start
line + expression2

• if there is no +, the end line is the value of expression2

The $examine_lines variable can be used to alter the default number of lines displayed
from its initial value of 8 (128 bytes).

ARM Debugger
find

Finds all occurrences in memory of a given integer value or character string:

find expression1 {, expression2 {, expression3 }} or
10-15Reference Guide
ARM DUI 0041B

find string {, expression2 {, expression3 }}

Low-level symbols are accepted by default.

expression2 and expression3 specify the lower and upper bounds for the search.
If expression2 is absent, the base of the currently loaded image is used. If expression3
is absent, the top (R/W limit) of the currently loaded image is used.

If the first form is used, the search is for words in memory whose contents match the value
of expression1 . If the second form is used, the search is for a sequence of bytes in
memory (starting at any byte boundary) whose contents match those of string .

fpregisters

Displays the contents of the eight floating-point registers f0 to f7 and the floating-point
processor status register (FPSR):

fpregisters [/ format]

There are two formats for the display of floating-point registers, selected using the format
switch.

The simpler form displays the registers and FPSR, and the full version includes detailed
information on the floating-point numbers in the registers. The command:

fpregisters

produces the following display:

f0 = 0 f1 = 3.1415926535
f2 = Inf f3 = 0
f4 = 3.1415926535 f5 = 1
f6 = 0 f7 = 0
fpsr = %IZOux_izoux

The alternative command:

fpregisters/full

produces a more detailed display:

f0 = I + 0x3fff 1 0x0000000000000000
f1 = I + 0x4000 1 0x490fdaa208ba2000
f2 = I +u0x43ff 1 0x0000000000000000
f3 = I - 0x0000 0 0x0000000000000000
f4 = I + 0x4000 1 0x490fdaa208ba2000
f5 = I + 0x3fff 1 0x0000000000000000
f6 = I + 0x0000 0 0x0000000000000000
f7 = I + 0x0000 1 0x0000000000000000
fpsr = 0x01070000

(Note that fpregisters/full does not output both sets of values.)

ARM Debugger
The format of this display is (for example):

F S Exp J Mantissa

I +u0x43ff 1 0x0000000000000000
10-16 Reference Guide
ARM DUI 0041B

where:

F is a precision/format specifier:

F single
D double
E extended
I internal format
P packed decimal

S is the sign

Exp is the exponent

J is the bit to the left of the binary point

Mantissa are the digits to the right of the binary point

The u between the sign and the exponent indicates that the number is flagged as
uncommon, in this example infinity. This applies only to internal format numbers.

In the FPSR description, the first set of letters indicates the floating-point mask and the
second the floating-point flags. The status of the floating-point mask and flag bits is indicated
by their case; uppercase means the flag is set and lowercase means that it is cleared.

go

Starts execution of the program. The first time go is executed, the program starts from its
normal entry point. Subsequent go commands resume execution from the point at which it
was suspended:

go {while expression }

If while is used, expression is evaluated when a breakpoint is reached. If expression
evaluates to true (ie. non-zero), the breakpoint is not reported and execution continues.

getfile

Reads the contents of an area of memory from a file. The contents of the file are written to
memory as a sequence of bytes, starting at the address which is the value of expression .
Low-level symbols are accepted by default:

getfile filename expression

The flags are: I Invalid operation

Z Divide by zero

O Overflow

U Underflow

X Inexact

ARM Debugger
help

Displays a list of available commands, or help on a particular command. The help displayed
includes syntax and a brief description of the purpose of each command. If you need
10-17Reference Guide
ARM DUI 0041B

information about all commands, as well as their names, type help * :

help { command}

in

Changes the current context by one activation level. The in command sets the context to
that called from the current level. It is an error to issue an in command when no further
movement in that direction is possible.

istep

Steps execution through one or more instructions. This command is analogous to the step
command except that it steps through one instruction at a time, rather than one high-level
language statement at a time:

istep {in} {count|w{hile} expression }
istep out

language

Sets the high-level language. The symbolic debugger uses any high-level debugging tables
generated by a compiler to set the default language to the appropriate one for that compiler,
whether it is Pascal, Fortran or C. If it does not find high-level tables, it sets the default
language to none, and modifies the behavior of where and step . In this case, where
reports the current program counter and instruction; step steps by one instruction. If your
program contains high-level debugging information and you wish to use low-level
debugging, use:

language {none|C|F77|PASCAL|ASM}

let

Allows you to change the value of a variable or contents of a memory location:

{let} variable = expression {{,} expression }*
{let} memory- location = expression {{,} expression }*

An equals sign (=) or a colon (:) can separate the variable or location from the expression.
If multiple expressions are used, they must be separated by commas or spaces.

Variables can only be changed to compatible types of expression. However, the debugger
converts integers to floating-point and vice versa, rounding to zero. The value of an array
can be changed, but not its address, since array names are constants. If the subscript is
omitted, it defaults to zero. If multiple expressions are specified, each expression is assigned
to variable[n- 1] , where n is the nth expression.
The let command is used in low-level debugging to change memory. If the left-side
expression is a constant or a true expression (and not a variable), it is treated as a word
address, and memory at that location (and if necessary the following locations) is changed
to the values in the following expression(s).

ARM Debugger
list

Displays the contents of the memory between a specified pair of addresses in hexadecimal,
ASCII and instruction format, with four bytes (one instruction) per line:
10-18 Reference Guide
ARM DUI 0041B

list{/size} { expression1 }{, {+} expression2 }

where:

size distinguishes between ARM and Thumb code:

/16 lists Thumb code

/32 lists ARM code

With no size specifier, list tries to determine the instruction
set of the destination code by extracting information from the
nearest symbol at or below the address to start the listing.

expression1 gives the start address. If unspecified, this defaults to either:

• the address associated with the current context minus 32, if
the context has changed since the last list command

• the address following the last address displayed by the last
list command, if the context has not changed since the
last list command was issued

expression2 gives the end address. It may take three forms:

• if expression2 is omitted, the end address is the value of
the start address + 64

• if it is preceded by +, the end address is the start line +
expression2

• if there is no +, the end line is the value of expression2

The $list_lines variable can alter the default number of lines
displayed from its initial value of 16 (64 bytes).

Low-level symbols are accepted by default.

load

Loads an image for debugging:

load{/ profile-option } image-file { arguments }

where:

profile-option specifies which profiling option to use:

/callgraph directs the debugger to provide the
image being loaded with counts which
enable the dynamic call-graph to be
constructed (for use with profiling)

/profile directs the debugger to prepare the
image being loaded for flat profiling

image-file is the name of the program to be debugged.

arguments are the command-line arguments the program normally takes.

ARM Debugger
image-file and any necessary arguments may also be specified on the command-line
when the debugger is invoked. If no arguments are supplied, the arguments used in the most
recent load or reload, setting of $cmdline , or command-line invocation are used again.
The load command clears all breakpoints and watchpoints.
10-19Reference Guide
ARM DUI 0041B

log

Sends the output of subsequent commands to a file as well as to the screen:

log filename

where filename is the name of the file where the record of activity is being stored.
To terminate logging, type log without an argument. The file can then be examined using
a text editor or the type command.

Note The debugger prompt and the debug program input/output is not logged.

lsym

Displays low-level symbols and their values:

lsym pattern

where pattern is a symbol name or part of a symbol name. The wildcard (*) can be used
at the beginning and/or end of the pattern to match any number of characters:

lsym *fred displays information about fred, alfred

lsym fred* displays information about fred, frederick

lsym *fred* displays information about alfred, alfreda, fred, frederick

The wildcard ? matches one character:

lsym ??fred matches Alfred

lsym Jo? matches Joe, Joy, and Jon

obey

Executes a set of debugger commands which have previously been stored in a file, as if they
were being typed at the keyboard:

obey command-file

where command-file is the name of the file containing the list of commands for execution.

out

Changes the current context by one activation level. The out command sets the context to
be that of the caller of the current context.

Note It is an error to issue an out command when no further movement in that direction is
possible.

ARM Debugger
pause

Prompts you to press a key to continue:

pause prompt-string
10-20 Reference Guide
ARM DUI 0041B

The prompt string is written to stderr , and execution continues only when a key is pressed.
If you press ESC while commands are being read from a file, the file is closed before
execution continues.

print

Examines the contents of the debugged program’s variables, or displays the result of
arbitrary calculations involving variables and constants:

p{rint}{/ format } expression

The following example prints field next of structure listp :

print/%x listp->next

If no format string is entered, integer values default to the format described by the variable
$format . Floating-point values use the default format string %g. Pointer values are treated
as integers, using a default fixed format %.8x , for example, 000100e4.

profclear

Resets profiling counts:

profclear

profoff

Stops collecting profiling data:

profoff

profon

Starts collecting profiling data:

profon { interval }

The time between PC-sampling in microseconds is set by interval . Lower values have
a higher performance overhead, and slow down execution, but higher values are not as
accurate.

profwrite

Writes profiling information to a file:

profwrite { filename }

The generated information can be viewed using the armprof utility.

ARM Debugger
putfile

Writes the contents of an area of memory to a file which is written as a sequence of bytes:

putfile filename expression1 , {+} expression2
10-21Reference Guide
ARM DUI 0041B

The lower bound of the area of memory to be written is the value of expression1 .
The upper bound is the value of:

expression2 - 1 if expression2 is not preceded by “+”

expression1 + expression2 - 1 if expression2 is preceded by “+”

Low-level symbols are accepted by default.

quit

Terminates the current symbolic debugger session and closes any open log or obey files:

readsyms

Loads debug information from a specified file (like the symbols option). The corresponding
code must be present in another way (for example, via a getfile, or by being in ROM).

registers

Displays the contents of ARM registers 0 to 14, the program counter (PC) and the status
flags contained in the processor status register (PSR):

registers { mode}

If used with no arguments, or if mode is the current mode, the contents of all registers of
the current mode are displayed. If the mode argument is specified, but is not the current
mode, the contents of the banked registers for that mode are displayed.

A sample display produced by registers might look like this:

R0 = 0x00000000 R1 = 0x00000001 R2 = 0x00000002 R3 = 0x00000003

R4 = 0x00000004 R5 = 0x00000005 R6 = 0x00000006 R7 = 0x00000007

R8 = 0x00000008 R9 = 0x00000009 R10= 0x0000000a R11= 0x0000000b

R12= 0x0000000c R13= 0x0000000d R14= 0x0000000e

PC = 0x00008000 PSR= %NzcVIF_SVC26

In addition to the mode names listed in 10.7.1 Low-level symbols on page 10-33, mode
may take the value all , where the contents of all registers of the current mode are
displayed, together with all banked registers for other modes with the same address width.

ARM Debugger
reload

Reloads the object file specified on the armsd command line, or the last load command:

reload{/ profile-option } { arguments }
10-22 Reference Guide
ARM DUI 0041B

where:

profile-option specifies which profiling option to use:

/callgraph tells the debugger to provide the image being
loaded with counts to enable the dynamic
call-graph to be constructed (for use with profiling)

/profile directs the debugger to prepare the image being
loaded for flat profiling

arguments are the command-line arguments the program normally takes.
If no arguments are specified, the arguments used in the most
recent load or reload setting of $cmdline or command-line
invocation are used again.

Breakpoints (but not watchpoints) remain set after a reload command.

return

Returns to the caller of the current procedure, passing back a result where required:

return { expression }

Note You cannot specify the return of a literal compound data type such as an array or record
using this command, but you can return the value of a variable, expression or compound
type.

step

Steps execution through one or more statements:

step {in} {out} { count |w{hile} expression }
step out

where:

in continues single-stepping into procedure calls, so that each statement
within a called procedure is single-stepped. If in is absent, each
procedure call counts as a single statement and is executed without
single stepping.

count specifies the number of statements to be stepped through: if it is omitted
only one statement will be executed. The while clause continues single
stepped execution until its expression , which is evaluated after every
step, evaluates as false (zero).

out steps out of a function to the line of originating code which immediately
follows that function. This is useful when step in has been used too
often.

To step by instructions rather than statements, use the istep command, or enter:

language none

ARM Debugger
symbols

Lists all symbols defined in the given or current context, with their type information:

symbols { context }
10-23Reference Guide
ARM DUI 0041B

The information produced is listed in the form:

name type , storage - class

To see global variables, use the filename with no path or extension as the context.
To see internal variables, use symbols $

type

Types the contents of a source file, or any text file, between a specified pair of line numbers:

type { expression1 } {, {{+} expression2 } {, filename } }

The start line is given by expression1 . If expression1 is omitted, it defaults to:

• the source line associated with the current context minus 5, if the context has
changed since the last type command

• the line following the last line displayed with the type command, if the context has
not changed

The end line is given by expression2 , in one of three ways:

• if expression2 is omitted, the end line is the start line +10

• if expression2 is preceded by +, the end line is given by the value of the start
line + expression2

• if there is no +, the end line is simply the value of expression2

To look at a file other than that of the current context, specify the filename required and
the locations within it. To change the number of lines displayed from the default setting of
10, use the $type_lines variable.

unbreak

Removes a breakpoint:

unbreak { location }

location is either a source code location, or # followed by the breakpoint number,
as displayed by break .

If there is only one breakpoint, delete it using unbreak without any arguments.

Note A breakpoint always keeps its assigned number; breakpoints are not renumbered when
another breakpoint is deleted, unless the deleted breakpoint was the last one set.

unwatch

Clears a watchpoint:

unwatch { variable }

variable can be either a variable name or the number of a watchpoint (preceded by #) set
using watch . If only one watchpoint has been set, delete it using unwatch .

ARM Debugger
variable

Provides type and context information on the specified variable (or structure field).

variable variable
10-24 Reference Guide
ARM DUI 0041B

variable can also return the type of an expression.

watch

Sets a watchpoint on a variable. (Bitfields are not watchable.)

watch { variable }

If variable is not specified, a list of current watchpoints is displayed along with their
numbers. When the variable is altered, program execution is suspended. As with break and
unbreak , these numbers can subsequently be used to remove watchpoints.

Notes Adding watchpoints may make programs execute very slowly, because the value of
variables has to be checked every time they could have been altered. It is more practical to
set a breakpoint in the area of suspicion and set watchpoints once execution has stopped.

If EmbeddedICE is available, ensure that watchpoints use hardware watchpoint registers
to avoid any performance penalty.

When using the C compiler, be aware that the code produced can use the same register to
hold more than one variable if their lifetimes don’t overlap. If the register variable you are
investigating is no longer being used by the compiler, you may see a value pertaining to a
completely different variable.

where

Prints the current context and shows the procedure name, line number in the file, filename
and the line of code:

where { context }

If a context is specified after the where command, the debugger displays the location of that
context.

while

This command is only useful at the end of an existing statement. You enter multi-statement
lines by separating the statements with “;” characters:

statement; {statement;} while expression

Interpretation of the line continues until expression evaluates to false (zero).

ARM Debugger
10.5 Specifying Source-level Objects

10.5.1 Variable names and context
10-25Reference Guide
ARM DUI 0041B

You can usually just refer to variables by their names in the original source code. To print the
value of a variable, type:

print variable

With structured high-level languages, variables defined in the current context can be
accessed by giving their names. Other variables should be preceded by the context (eg.
filename of the function) in which they are defined. This also gives access to variables that
are not visible to the executing program at the point at which they are being examined. The
syntax in this case is:

procedure : variable

Global variables can be referenced by qualifying them with the module name or filename if
there is likely be any ambiguity. For example, because the module name is the same as a
procedure name, you should prefix the filename or module name with #. The syntax in this
case is:

#module : variable

If a variable is declared more than once within the same procedure, resolve the ambiguity
by qualifying the reference with the line number in which the variable is declared as well as,
or instead of, the function name:

#module : procedure : line-no : variable

To pick out a particular activation of a repeated or recursive function call, prefix the variable
name with a backslash (\) followed by an integer. Use 1 for the first activation, 2 for the
second and so on. A negative number will look backwards through activations of the
function, starting with \-1 for the previous one. If no number is specified and multiple
activations of a function are present, the debugger always looks at the most recent
activation.

To refer to a variable within a particular activation of a function, use:

procedure \{-} activation-number : variable

The complete syntax for the various ways of expressing context is:

{#} module {{: procedure }* {\{-} activation - number }}
{#} procedure {{: procedure }* {\{-} activation - number }}
#

The complete syntax for specifying a variable name is:

{ context :.{ line - number : :: }} variable

The various syntax extensions needed to differentiate between different objects rarely need
to be used together.

ARM Debugger
10.5.2 Program locations

Some commands require arguments that refer to locations in the program. You can refer to
a location in the program by:
10-26 Reference Guide
ARM DUI 0041B

• procedure entry and exit

• program line numbers

• statement within a line

In addition to the high-level program locations described here, low-level locations can also
be specified. See 10.7.1 Low-level symbols on page 10-33 for further details.

Procedure entry and exit

Using a procedure name alone sets a breakpoint (see the break instruction on page 10-11)
at the entry point of that procedure. To set a breakpoint at the end of a procedure, just before
it returns, use the syntax:

procedu re:$exit

Program line numbers

Program line numbers can be qualified in the same way as variable names, for example:

#module :123
procedure :3

Line numbers can sometimes be ambiguous, for example when a file is included within a
function. To resolve any ambiguities, add the name of the file or module in which the line
occurs in parentheses. The syntax is:

number (filename)

Statement within a line

To refer to a statement within a line, use the line number followed by the number of the
statement within the line, in the form:

line - number . statement - number

So, for example, 100.3 refers to the third statement in line 100.

10.5.3 Expressions

Some debugger commands require expressions as arguments. Their syntax is based on C.
A full set of operators is available. The lower the number, the higher the precedence of
the operator. These are shown in the following table, in descending order of precedence.

ARM Debugger

Precedence Operator Purpose Syntax

1 () Grouping a * (b + c)
10-27Reference Guide
ARM DUI 0041B

[] Subscript isprime[n]

. Record selection rec.field,a.b.c

-> Indirect selection
(rec->next is identical to
(*rec).next)

rec->next

2 ! Logical NOT !finished

~ Bitwise NOT ~mask

- Unary minus -a

* Indirection *ptr

& Address &var

3 * Multiplication a * b

/ Division a / b

% Integer remainder a % b

4 + Addition a + b

- Subtraction a - b

5 >> Right shift a >> 2

<< Left shift a >> 2

6 < Less than a < b

> Greater than a > b

<= Less than or equal a <= b

>= Greater than or equal a >= b

7 == Equal a == 0

!= Not equal a != 0

8 & Bitwise AND a & b

9 ^ Bitwise EOR a ^ b

10 | Bitwise OR a | b

11 && Logical AND a && b

12 || Logical OR a || b

ARM Debugger
Subscripting can only be applied to pointers and array names. The symbolic debugger
checks both the number of subscripts and their bounds, in languages which support such
checking. It is inadvisable to use out-of-bound array accesses. As in C, the name of an array
may be used without subscripting to yield the address of the first element.
10-28 Reference Guide
ARM DUI 0041B

The prefix indirection operator * is used to de-reference pointer values. If ptr is a pointer,
*ptr yields the object to which it points.

If the left-hand operand of a right shift is a signed variable, the shift is an arithmetic one and
the sign bit is preserved. If the operand is unsigned, the shift is a logical one and zero is
shifted into the most significant bit.

Note Expressions must not contain function calls that return nonprimitive values.

10.5.4 Constants

Constants may be decimal integers, floating-point numbers, octal integers or hexadecimal
integers. Note that 1 is an integer whereas 1. is a floating-point number.

Character constants are also allowed. For example, A yields 65, the ASCII code for “A”.

Address constants may be specified by the address preceded with an “@” symbol.
For commands which accept low-level symbols by default, the “@” may be omitted.

ARM Debugger
10.6 Variables

This section lists the variables available in armsd, and gives information on manipulating
them.
10-29Reference Guide
ARM DUI 0041B

10.6.1 Summary of armsd variables

Many of the debugger’s defaults can be modified by setting variables. Most of these are
described elsewhere in this chapter in more detail:

$clock number of microseconds since simulation started.
This variable is read-only.

$cmdline argument string for the debuggee.

$echo non-zero if commands from obeyed files should be echoed
(initially set to 01).

$examine_lines default number of lines for the examine command
(initially set to 8).

$format default format for printing integer values (initially set to “%ld”).

$fpresult floating-point value returned by last “called” function
(junk if none, or if a floating-point value was not returned).
This variable is read-only.

$inputbase base for input of integer constants (initially set to 10).

$list_lines default number of lines for list command (initially set to 16).

$memory_statistics outputs any memory map statistics which the ARMulator has
been keeping. This variable is read-only. See the Software
Development Toolkit User Guide (ARM DUI 0040) for further
details.

$rdi_log rdi logging is enabled if non-zero, and serial line logging is
enabled if bit 1 is set (initially set to 0).

$result integer result returned by last “called” function
(junk if none, or if an integer result was not returned).
This variable is read-only.

$sourcedir directory containing source code for the program being
debugged (initially set to the current directory).

$statistics outputs any statistics which the ARMulator has been keeping.
This variable is read-only.

ARM Debugger
$statistics_inc similar to $statistics , but outputs the difference between

the current statistics and those when $statistics was last
read. This variable is read-only.
10-30 Reference Guide
ARM DUI 0041B

10.6.2 armsd internal variables

The following variables are included to support EmbeddedICE.

$icebreaker_lockedpoints shows or sets locked EmbeddedICE
macrocell points

$semihosting_enabled enables semihosting

$semihosting_vector sets up semihosting SWI vector

Semihosting EmbeddedICE is described in the Software Development Toolkit User
Guide (ARM DUI 0040) .

Semihosting SWIs

There are also two variables for use when the debug agent is changing the semihosting
SWIs it supports:

$semihosting_arm_swi
$semihosting_thumb_swi

$top_of_memory This is only available when using EmbeddedICE version 2.00
onwards. It is used to enable EmbeddedICE to return
sensible values when a HEAP_INFO SWI call is made to
determine where the heap and stack should be placed
in memory. The default is 0x80000 (ie. 512Kb). This should
be modified before executing a program on the target if the
memory size available differs from this

$type_lines default number of lines for the type command.

$vector_catch indicates whether or not execution should be caught when
various conditions arise. The default value is %RUsPDAifE.
Capital letters indicate that the condition is to be intercepted:

A address exception

D data abort

E Error

F FIQ

I IRQ

P prefetch abort

R reset

S SWI

U undefined instruction

ARM Debugger
These variables define how many ARM or Thumb SWIs are interpreted as semihosting
requests by the debug agent.

In practice, these are used only in the ADP EmbeddedICE, as Angel only supports this as
10-31Reference Guide
ARM DUI 0041B

a recompilation option, and not at runtime. See Chapter 8, Angel for more information.

10.6.3 Accessing variables

print

This command examines the contents of the debugged program’s variables, or displays
the result of arbitrary calculations involving variables and constants. Its syntax is:

p{rint}{/ format } expression

For example:

print/%x listp->next

prints field next of structure listp .

If no format string is entered, integer values default to the format described by the variable
$format . Floating-point values use the default format string %g. Pointer values are treated
as integers, using a default fixed format %.8x , for example, 000100e4.

let

The let command allows you to change the value of a variable or contents of a memory
location. Its syntax is:

{let} variable = expression {{,} expression }*
{let} memory- location = expression {{,} expression }*

An equals sign(=) or a colon(:) can be used to separate the variable or location from the
expression. If multiple expressions are used, they must be separated by commas or spaces.

Variables can only be changed to compatible types of expression. However, the debugger
will convert integers to floating-point and vice versa, rounding to zero. The value of an array
can be changed, but not its address, since array names are constants. If the subscript is
omitted, it defaults to zero. If multiple expressions are specified, each expression is assigned
to variable[n- 1] , where n is the nth expression.

The let command is used in low-level debugging to change memory. If the left-hand side
expression is a constant or a true expression (and not a variable) it is treated as a word
address, and memory at that location (and if necessary the following locations) is changed
to the values in the following expression(s).

ARM Debugger
10.6.4 Formatting integer results

You can set the default format string used by the print command for the output of integer
results by using let with the root-level variable $format . This is initially set to %d.
10-32 Reference Guide
ARM DUI 0041B

{let} $format = string

Note When using floating-point formats, integers will not print correctly. The contents of string
should be a format as described in section 10.1.1 Names used in syntax descriptions on
page 10-2.

10.6.5 Specifying the base for input of integer constants

You use the $inputbase variable to set the base used for the input of integer constants.

{let} $inputbase = expression

If the input base is set to 0, numbers will be interpreted as octal if they begin with 0.
Regardless of the setting of $inputbase , hexadecimal constants are recognized if they
begin with 0x.

Note $inputbase only specifies the base for the input of numbers; specify the output format by
setting $format to an appropriate value.

ARM Debugger
10.7 Low-level Debugging

Low-level debugging tables are generated automatically when programs are linked with the
-debug flag set (this is enabled by default). In fact, it is not possible to include high-level
10-33Reference Guide
ARM DUI 0041B

debugging tables in an image without the low-level ones as well. There is no need to enable
debugging at the compilation stage if only low-level debugging is to be done; just specify
debugging when linking the program.

10.7.1 Low-level symbols

Low-level symbols are differentiated from high-level ones by preceding them with @.
A low-level symbol for a procedure refers to its call address, often the first instruction of
the stack frame initialization, whereas the corresponding high-level symbol (if any) refers to
the address of the code generated by the first statement in the procedure.

Low-level symbols can be used with most debugger commands; for example, with watch
they stop execution if the word at the location named by the symbol changes.
Memory addresses can also be used with commands and should also be preceded by @.
Low-level symbols can also be used where a command would expect an expression; its
value is the address of the low-level symbol.

Certain commands (list , find , examine , putfile , and getfile) accept low-level
symbols by default. To specify a high-level symbol, precede it by “^”.

Note Low-level symbols do not have a context and so they are always available.

10.7.2 Symbols for low-level entities

There are several predefined high-level naming low-level entities:

r0 - r14 The general-purpose ARM registers 0 to 14.

r15 The address of the instruction which is about to execute. This may include the
condition code flags, interrupt enable flags, and processor mode bits,
depending on the target ARM architecture (ie. this information is included in
26-bit address mode; not otherwise). Note that this value may be different
from the real value of register 15 due to the effect of pipelining.

pc The address of the instruction which is about to execute, without any
processor status register (PSR) flags.

sp The stack pointer (r13).

lr The link register (r14).

fp The frame pointer (r11).

psr
cpsr

psr and cpsr are synonyms for the current mode’s processor status register.

ARM Debugger
spsr spsr is the saved status register for the current mode. The values displayed

for the condition code flags, interrupt enable flags, and processor mode bits,
are an alphabetic letter per condition code and interrupt enable flag, and a
10-34 Reference Guide
ARM DUI 0041B

All these registers can be examined with the print command and changed with the let
command. For example, the form print/%x psr displays the processor status register
(PSR).

These symbols are defined in the root context, so if you have a variable r0 and you wish to
refer to register 0, you can use # to specify the register as follows:

print #r0

The let command can also set the PSR, using the usual syntax for PSR flags. For example,
the N and F flags could be set, the V flag cleared, and the I , Z and C flags left untouched
and the processor set to 26-bit supervisor mode, by typing:

let psr = %NvF_SVC26

Note The percentage sign must precede the condition flags and the underscore which in turn
must precede the processor mode description.

mode name (preceded by an underscore) for the mode bits. This mode name
will be one of USER26, IRQ26, FIQ26, SVC26, USER32, IRQ32, FIQ32,
SVC32, UNDEF32 and ABORT32. Note that spsr is not defined if the
processor is not capable of 32-bit operation. See also Application Note 11,
Differences Between ARM6 Series and Earlier Processors.

f0 to f7 The floating-point registers 0 to 7.

fpsr The floating-point status register.

fpcr The floating-point control register.

a1 to a4 These refer to arguments 1 to 4 in a procedure call (stored in r0 to r3).

v1 to v7 These refer to the five to seven general-purpose register variables which the
compiler allocates (stored in r4 to r10).

sb Static base, as used in re-entrant variants of the ARM Procedure Call
Standard (APCS) (r9/v6).

sl The stack limit register, used in variants of the APCS which implement
software stack limit checking (r10/v7).

ip Used in procedure entry and exit and as a scratch register (r12).

ARM Debugger
10.8 armsd commands for EmbeddedICE

listconfig file Lists the configurations known to the debug
agent.
10-35Reference Guide
ARM DUI 0041B

loadagent Downloads a replacement EmbeddedICE
ROM image, and starts it (in RAM):

loadconfig file Loads an EmbeddedICE configuration data
file:

readsyms file Loads an image file containing debug
information but does not download the image.

The highest-numbered version meeting the
version constraint is used. For more
information, see the Software Development
Toolkit User Guide.

selectconfig name version Selects an EmbeddedICE configuration to
use, where:

name is the name of the configuration
data to be used:

version indicates the version which
should be used:

any accepts any version
number (default)

n uses version n

n+ uses version n or later

Debug communications channel

armsd accesses the debug communication channel using the following commands:

ccin filename Selects a file containing Comms Channel data for
reading.
This command also enables Host to Target Comms
Channel communication.

ccout filename Selects a file where Comms Channel data is written.
This command also enables Target to Host Comms
Channel communication.

For more information, see Application Note 38: Using the ARM7TDMI’s Debug
Communication Channel.

ARM Debugger
10.9 Angel and armsd

For information on Angel, see Chapter 8, Angel . The Angel-aware version of armsd
supports shared device communications between the host and target application, accessed
10-36 Reference Guide
ARM DUI 0041B

through a prefix command, sys .

This provides access to extended commands which support operating systems or special
hardware features. The syntax is:

sys command args

The following commands are available:

sys Displays a list of installed commands. This is the same as typing:

sys help

sys help Displays a list of available SYS commands.

sys help command Displays help on a particular command.

sys help * Displays information about all SYS commands in addition to
their names.

10.9.1 Angel SYS commands

The default Angel-aware version of armsd has the following sys commands shown below.

These commands control communications between the host and the target application via
the shared device mechanism. This allows host and target to communicate using the same
link that is being used by armsd/Angel.

The target application accesses the shared device via the API provided by devappl.h
in the Angel sources.

sys applin Controls comms in the host to target application direction.
The syntax is:

sys applin filename

With a filename, host to target comms is enabled and input
for delivery to the target is taken from the named file or pipe.
Without a filename, host to target comms is disabled.

sys applout Controls communications from the target application to the host
via the shared device mechanism. The syntax is:

sys applout filename

With a filename, target to host comms is enabled and output
from the target is written to the named file or pipe.
Without a filename, target to host comms is disabled.

11-1Reference Guide
ARM DUI 0041B

This chapter describes the Remote Debug Interface and the Angel Debug Protocol.

11.1 ARM Remote Debug Interface 11-2
11.2 RDI Functions 11-3
11.3 Error Codes 11-19
11.4 Angel Debug Protocol (ADP) 11-21

Remote Debugging11

Remote Debugging
11.1 ARM Remote Debug Interface

This chapter describes a C interface to the Remote Debug Interface (RDI). The RDI is
a procedural interface between a debugger and a debuggee via a debug monitor or
11-2 Reference Guide
ARM DUI 0041B

controlling debug agent. The interface is designed to make it easier to use the RDI from a C
program when the debugger and debug agent are linked as one program.

The interface can be pulled apart to yield a pair of stub interfaces communicating via the
Angel Debug Protocol (for details see 11.4 Angel Debug Protocol (ADP) on page 11-21).

The RDI gives the ARM symbolic debugger core a uniform way to communicate with:

• a controlling debug agent or debug monitor linked with the debugger

• a debug agent executing in a separate operating system process

• a debug monitor running on ARM-based hardware accessed via a communication
link

• a debug agent controlling an ARM processor via hardware debug support

The RDI is not an entity fixed for all time. As it evolves, new levels of specification are added,
and within any level of specification there are implementation options. This approach is
taken so that a variety of minimal debug monitors and controlling debug agents can be
accommodated without excessive overhead, and to ensure compatibility between
debuggers and debug monitors released at different times. As a result, a debugger using the
RDI must negotiate to establish its debuggee’s capabilities and must not use capabilities its
debuggee does not support.

Every function returns an error status. Zero indicates no error, otherwise the value returned
is the error number (see 11.3 Error Codes on page 11-19). It is the caller’s responsibility to
ensure that memory pointers point to valid memory locations in the debugger’s address
space.

Structure 1 arises in the variant of armsd which is linked with ARM’s standard ARM
emulation environment (for the PC- and Sun-hosted cross-development variants of armsd),
and in the self-hosted, single address-space variant of armsd (for Acorn’s RISC OS).

Structure 2 arises in an ARM-UNIX-hosted variant of armsd , if armsd and the ARM emulator
(the ARMulator) were run in separate UNIX processes (perhaps on separate machines). In
this case, the RDI would consist of two stubs using UNIX’s remote procedure calls to effect
the inter-process message passing.

Structures 3 and 4 arise when armsd is used to control a debuggee, executing on
ARM-based hardware (for instance on the Platform Independent Evaluation (PIE) card)
connected to armsd ’s host via a hardware debugging channel; for example, via RS232 as
used on the PIE card.

Remote Debugging
11.2 RDI Functions

The following list shows all the RDI functions available. Each function is described in detail
on the following pages.
11-3Reference Guide
ARM DUI 0041B

Function name Purpose

RDI_open open and/or initialize debuggee

RDI_close close and finalize debuggee

RDI_read read memory address

RDI_write write memory address

RDI_CPUread read cpu state

RDI_CPUwrite write cpu state

RDI_CPread read co-processor state

RDI_CPwrite write co-processor state

RDI_setbreak set breakpoint

RDI_clearbreak clear breakpoint

RDI_setwatch set watchpoint

RDI_clearwatch clear watchpoint

RDI_execute execute

RDI_step multiple step

RDI_pointinquiry break/watch inquiry

RDI_addconfig add config block

RDI_loadconfig load config block

RDI_selectconfig select config block

RDI_drivernames get driver names

RDI_cpunames get cpu names

RDI_errmess get error messages

RDI_loadagent load debug agent

RDI_info miscellaneous info

Remote Debugging
RDI_open (open and/or initialize debuggee)

int RDI_open(unsigned type, struct Dbg_ConfigBlock
const *config, struct Dbg_HostasInterface
const *i, struct Dbg_MCState *dbg_state)
11-4 Reference Guide
ARM DUI 0041B

This function opens or initializes the debugger, where:

type distinguishes between types of initialization:

Bit 0 = 0 cold start (execute bootstrap, initialize MMU etc.)

Bit 0 = 1 warm start (terminate execution, reset processor state, and
so on)

Bit 1 = 1 reset the communication link

config holds information such as the memory size, byte sex, serial port,
processor, etc. See dbg_conf.h for full details.

i provides various functions which can be called to interact with the host’s
operating system, eg. print character to screen, read character from
keyboard. See dbg_hif.h for full details.

dbg_state is internal to the debugger toolbox.

RDI_close (close and finalize debuggee)

int RDI_close()

This function terminates the current debugging session. Only a call to RDI_open may follow
this call.

RDI_read (read memory address)

int RDI_read(unsigned long source, void *dest,
unsigned *nbytes)

This function transfers data from the debuggee’s memory to the debugger. Bytes are read
from the debuggee at address source , and stored at location dest in the caller’s address
space. nbytes points to the number of bytes to transfer.

On return, the location pointed to by nbytes contains the number of bytes that were
successfully transferred. If an error occurs, the state of the memory at dest is undefined.

RDI_write (write memory address)

int RDI_write(void *source, unsigned long dest,
unsigned *nbytes)

This function transfers data from address source in the debugger to address dest in the
debuggee. nbytes points to the number of bytes to transfer. On return, the location pointed
to by nbytes contains the number of bytes that were successfully transferred. If an error
occurs, the state of the memory at dest is undefined.

Remote Debugging
RDI_CPUread (read CPU state)

int RDI_CPUread(unsigned mode, unsigned long mask,
unsigned long state[])
11-5Reference Guide
ARM DUI 0041B

This function allows the debugger to read the values of the debuggee’s CPU registers,
where:

mode defines the ARM processor mode from which the transfer should be
made. A value of RDIMode_Curr indicates that the prevailing processor
mode should be used. Other values correspond to the mode the target
ARM would be in if the mode bits of the PSR were set to this value.

mask indicates which registers should be transferred. Bit 0 of this word
corresponds to register 0, bit 14 corresponds to the link register, and bit
15 the Program Counter (including the mode and flag bits in 26-bit
modes). Other values can be ORed into the mask to retrieve other
registers:

• RDIReg_PC to get just the Program Counter value
• RDIReg_CPSR to get the value of the CPSR
• RDIReg_SPSR to get the value of the SPSR in non-user modes

Notice that the value of Program Counter that is returned (via either bit 15
or RDIReg_PC) has already had the effect of pipelining removed, so it is
eight less than the actual value in the Program Counter.

state is a pointer to enough words of memory in which to save the CPU state
(four bytes per register). The requested registers are saved contiguously
into this memory.

RDI_CPUwrite (write CPU state)

int RDI_CPUwrite(unsigned mode, unsigned long mask,
unsigned long state[])

This function allows the debugger to set the values of the debuggee’s CPU registers.
The arguments are as for RDI_CPUread , except that register values are read from state
and written to the debuggee’s register set.

RDI_CPread (read co-processor state)

int RDI_CPread(unsigned CPnum, unsigned long mask,
unsigned long state[])

This function allows the debugger to read the debuggee’s co-processor registers (it has
a similar function to RDI_CPUread , except that the register values are taken from the
co-processor whose number is specified by the CPnumargument). The actual registers
transferred, and their size, depend on the co-processor specified. The transferred values
are written to state .

Remote Debugging
By convention, the following co-processors are understood:

• Co-processor 1 (and 2 in the case of FPA) is a floating-point unit:

Bits 0 to 7 of mask request the transfer of data from co-processor registers 0 to 7.
11-6 Reference Guide
ARM DUI 0041B

Bit 8 designates the floating-point status register (FPSR).
Bit 9 designates the floating-point command register (FPCR).

• Co-processor 15 is a memory management unit (eg. ARM3 or ARM600):

Bits 0 to 7 of mask request transfer of MMU registers 0 to 7.

RDI_CPwrite (write co-processor state)

int RDI_CPwrite(unsigned CPnum, unsigned long mask,
unsigned long state[])

This function allows the debugger to write the values of the debuggee’s co-processor
registers (it has a similar function to RDI_CPUwrite , except that the register values are
written to the co-processor whose number is given by CPnum). The actual registers
transferred, and their size, depend on the co-processor specified. The transferred values are
read from state . Currently the following co-processors are understood:

• Co-processor 1 (and 2 in the case of FPA) is a floating-point unit:

Bits 0 to 7 of mask request transfer of data to co-processor registers 0 to 7.
Bit 8 designates the floating-point status register (FPSR).
Bit 9 designates the floating-point command register (FPCR).

• Co-processor 15 is a memory management unit (eg. ARM3 or ARM600).

Bits 0 to 7 of mask request transfer to MMU registers 0 to 7.

RDI_setbreak (set breakpoint)

int RDI_setbreak(unsigned long address, unsigned type,
unsigned long bound, PointHandle *point)

This function requests the debuggee to set an execution breakpoint at address .
If a breakpoint is set on a location which already has a breakpoint, the first breakpoint will
be removed before the new breakpoint is set.

The type argument defines the sort of breakpoint to set:

RDIPoint_EQ halt execution if the pc is equal to address .

RDIPoint_GT halt execution if the pc is greater than address .

RDIPoint_GE halt execution if the pc is greater than or equal to address .

RDIPoint_LT halt execution if the pc is less than address .

RDIPoint_LE halt execution if the pc is less than or equal to address .

RDIPoint_IN halt execution if the pc is in the address range from address to
bound , inclusive.

RDIPoint_OUT halt execution if the pc is not in the address range address to
bound , inclusive.

RDIPoint_MASK halt execution if (pc & bound) = address .

Remote Debugging
Note the following bit settings of type :

Bit 4 If set, this indicates that the breakpoint is on a 16-bit (Thumb)
instruction rather than a 32-bit (ARM) instruction.
11-7Reference Guide
ARM DUI 0041B

Bit 5 indicates whether the breakpoint should be conditional.
If it is set, execution halts only when the breakpointed
instruction is executed, not when the condition code causes it to
be skipped. Otherwise, breakpoints are unconditional: execution
halts when the breakpoint is reached, regardless of the condition
field of the breakpointed instruction.

Bits 6 and 7 are not used in the RDI, although they are used in the RDP.
This is because the RDI supports these facilities directly.

If the call succeeds, point is set to a value which identifies the breakpoint. At RDI
specification level 0, a breakpoint is identified by its address (the value of address);
at levels 1 and above, it is identified by a handle returned by the debuggee (see the section
RDI_info (miscellaneous information) on page 11-11).

Return values: A special return value, RDIError_NoMorePoints , indicates that the call
to RDI_setbreak was successful but that there are no more breakpoint resources of this
type available.

The return value RDIError_CantSetPoint shows that the call failed because the
debuggee currently has insufficient breakpoint resources available to honour this request.

RDI_clearbreak (clear breakpoint)

int RDI_clearbreak(PointHandle point)

This function clears the execution breakpoint identified by point which was set by
a previous call to RDI_setbreak .

RDI_setwatch (set watchpoint)

int RDI_setwatch(unsigned long address, unsigned type,
unsigned datatype, unsigned long bound,
PointHandle *point)

This function gets a data access watchpoint at address in the debuggee. If a watchpoint is
set on a location which already has a watchpoint, the first watchpoint is removed before the
new watchpoint is set.

Values may be summed or ORed together in order to halt on any of a set of memory access
types. For example, to watch for any write access to the specified location(s):

RDIWatch_ByteWrite
RDIWatch_HalfWrite
RDIWatch_WordWrite

If the call succeeds, *point is set to a value which identifies the watchpoint to the debugee.
At RDI specification level 0, a watchpoint is identified by its address (the value of address);
at levels 1 and above it is identified by a handle returned by the debuggee (see the section
 RDI_info (miscellaneous information) on page 11-11).

Remote Debugging

type defines the type of watchpoint to set:

RDIPoint_EQ halts on a data access equal to address
11-8 Reference Guide
ARM DUI 0041B

Return values: A special return value, RDIError_NoMorePoints , indicates that the call
to RDI_setwatch was successful, but that there are no more watchpoint resources of this
type available. The return value RDIError_CantSetPoint indicates that the call failed
because the debuggee currently has insufficient watchpoint resources to honour this
request.

RDI_clearwatch (clear watchpoint)

int RDI_clearwatch(PointHandle point)

This function clears the data access watchpoint identified by point which was set by a
previous call to RDI_setwatch .

RDIPoint_GT halts on a data access greater than
address

RDIPoint_GE halts on a data access greater than or equal
to address

RDIPoint_LT halts on a data access less than address

RDIPoint_LE halts on a data access less than or equal to
address

RDIPoint_IN halts on a data access in the range from
address to bound , inclusive

RDIPoint_OUT halts on a data access not in the range from
address to bound , inclusive

RDIPoint_MASK halts execution if
(data-access-addr & bound) = addr

datatype defines the type of data access to watch for:

RDIWatch_ByteRead watches for byte reads

RDIWatch_HalfRead watches for halfword reads

RDIWatch_WordRead watches for word reads

RDIWatch_ByteWrite watches for byte writes

RDIWatch_HalfWrite watches for halfword writes

RDIWatch_WordWrite watches for word writes

Remote Debugging
RDI_execute (execute)

int RDI_execute(PointHandle *point)

This function initiates execution in the debuggee, at the address currently loaded into the
11-9Reference Guide
ARM DUI 0041B

CPU Program Counter. This function returns an error code if:

• a breakpoint is reached

• a watched address is accessed

• an exception occurs

• you press Escape

See 11.3 Error Codes on page 11-19 for further information.

If a breakpoint or watchpoint caused the return, *point is set to the handle identifying the
break/watchpoint. At RDI specification level 0, a breakpoint/watchpoint is identified by its
address; at levels 1 and above it is identified by a handle returned by the debuggee when
the point was set.

RDI_step (multiple step)

int RDI_step(unsigned ninstr, PointHandle *point)

This function initiates execution in the debuggee at the address currently loaded into the
CPU Program Counter, but only executes the number of instructions specified by ninstr .

If ninstr is zero, the debuggee executes instructions up to the next instruction that
explicitly alters the program counter (ie. a branch or ALU operation with the program counter
as destination).

If a breakpoint is reached, or a watched address is accessed, or an exception occurs, or you
press Escape, or the end of the program is reached before instr instructions have been
executed, RDI_step returns an error code indicating why execution was suspended
(see 11.3 Error Codes on page 11-19).

If a breakpoint or watchpoint caused the return, *point will be set to the handle identifying
the breakpoint/watchpoint. At RDI specification level 0, a breakpoint/watchpoint is identified
by its address; at levels 1 and above it is identified by a handle returned by the debuggee
when the breakpoint/watchpoint was set.

RDI_pointinquiry (breakpoint/watchpoint inquiry)

int RDI_pointinquiry(unsigned long *address, unsigned type,
unsigned datatype,unsigned long *bound)

This function returns information about what happens if a corresponding call is made to
setbreak or setwatch . (For range and comparison point types, the debuggee tries to
honour the request and is not required to use precisely the address and bound requested.)

If the break/watch type is supported, address and, if applicable, bound are updated to the
values that will be used if a breakpoint or watchpoint is set.

If the corresponding breakpoint/watchpoint request cannot be honored because there are
no breakpoint/watchpoint resources left, the value RDIError_NoMorePoints is returned.

Remote Debugging
For inquiries about breakpoints, datatype must be 0. Otherwise, type and datatype are
precisely as in corresponding calls to setbreak and setwatch .

Note The absence of a return value of RDIError_NoMorePoints from setbreak or
11-10 Reference Guide
ARM DUI 0041B

setwatch does not mean that the next request can be honoured, but merely that there is
some value of type and datatype for which a following request can be honoured. To be
sure that a request will be honored, it is necessary to call RDI_pointinquiry .

RDI_addconfig (add config block)

int RDI_addconfig(unsigned long bytes)

This function declares the size of a config block about to be loaded.

RDI_loadconfig (load config block)

int RDI_loadconfig(unsigned long nbytes, char const *data)

This function loads the config block of size nbytes , pointed to by data . This config block
specifies target-dependent information to the Debug Agent. See the documentation on the
Debug Agent concerned for more detail (for example, ICEman).

RDI_selectconfig (select config block)

int RDI_selectconfig(RDI_ConfigAspect aspect, char *const name,
RDI_ConfigMatchType matchtype,
unsigned versionreq, unsigned *versionp)

This function selects which of the loaded config blocks should be used, and then
re-initializes the Debug Agent to use the selected configuration data.

aspect is one of RDI_ConfigCPU or RDI_ConfigSystem

name is the name of the configuration to be selected

matchtype specifies how the version number must match that requested:

RDI_MatchAny
RDI_MatchExactly
RDI_MatchNoEarlier

versionreq is the version number requested

versionp is the version actually selected

RDI_NameList (get driver names)

RDI_NameList const *RDI_drivernames(void)

This function is typedef ’d to be a struct containing the number of names and an array
of these names. The returned names are used to recognize whether a particular driver has
been selected on the command line.

RDI_NameList (get CPU names)

RDI_NameList const *RDI_cpunames(void)

This function works in a similar way to RDI_DriverNames .

Remote Debugging
RDI_ErrMess (get error messages)

int RDI_ErrMess(char *buf,int buflen,int errno)

This function requests that an error message (up to buflen characters) corresponding to
11-11Reference Guide
ARM DUI 0041B

errno is placed in buffer buf .

RDI_loadagent (load debug agent)
int RDI_loadagent(ARMword dest, unsigned long size,

getbuffer proc *getb, void *getbarg)

This function downloads a new version of the Debug Agent. It can be used only if
RDIInfo_Target returns a value with RDITarget_LoadAgent set.

dest address in the Debug Agent’s memory where the new version will be put

size size of the new version, in bytes

getb a function which can be called (with getbarg as the first argument) and
the number of bytes to download this call as the second argument

11.2.1 Miscellaneous functions

RDI_info (miscellaneous information)
int RDI_info(unsigned type, unsigned long *arg1, unsigned long *arg2)

This function is used to transfer miscellaneous information between the debugger and the
debuggee. Not all types make use of all three arguments. The information transferred is
dependent on the value of the first argument. A status value is returned to indicate success
or failure of the call.

RDIInfo_Points (breakpoints and watchpoints)

int RDI_info(RDIInfo_Points, unsigned long *arg1)

After a call of type RDIInfo_Points , the word addressed by arg1 should be interpreted
as a set of bits as follows:

Bit 0: comparison breakpoints/watchpoints are supported

Bit 1: range breakpoints/watchpoints are supported

Bit 2: watchpoints for byte reads are supported

Bit 3: watchpoints for halfword reads are supported

Bit 4: watchpoints for word reads are supported

Bit 5: watchpoints for byte writes are supported

Bit 6: watchpoints for halfword writes are supported

Bit 7: watchpoints for word writes are supported

Bit 8: mask breakpoints/watchpoints are supported

Bit 9: thread-specific breakpoints are supported

Bit 10: thread-specific watchpoints are supported

Bit 11: conditional breakpoints are supported

Remote Debugging
Bit 12: status enquiries about the capabilities of (H/W) breakpoints and

watchpoints are allowed

If none of bits 2–7 are set, bits 0, 1, and 8 apply only to breakpoints. Otherwise, bits 0, 1,
11-12 Reference Guide
ARM DUI 0041B

and 8 apply to both breakpoints and watchpoints

Note All debuggees support breakpoints of type RDIPoint_EQ (break at specified address),
so there is no bit denoting this in the value returned by RDIInfo_Points .

RDIInfo_Step
int RDI_info(RDIInfo_Step, unsigned long *arg1)

After a call of type RDIInfo_Step , the location addressed by arg1 should be interpreted
as follows:

Bit 0: single stepping of more than one instruction is supported

Bit 1: single stepping to the next direct PC alteration is supported

Bit 2: single stepping of a single instruction is supported

RDIInfo_Target (identify target)
int RDI_info(RDIInfo_Target, unsigned long *arg1, unsigned long *arg2)

After calling RDIInfo_Target , the value addressed by arg1 should be interpreted as:

Bit 16 1 => the debuggee has a communications channel

Bit 15 1 => can cope with 16-bit (Thumb) code

Bit 14 1 => the Debug Agent can do profiling

Bit 13 1 => understands RDPInterrupt (a single-byte version of
RDI_SignalStop)

Bit 12 1 => asks about the maximum size download chunk the agent can accept

Bit 11 1 => the Debug Agent can be reloaded

Bits 8,9,10 the minimum RDI specification level (0–7) that the debugger requires of
the debuggee

Bits 5,6,7 the maximum RDI specification level (0–7) implemented by the debuggee

Bit 4 = 0 debuggee is running under a software emulator

Bit 4 = 1 debuggee is running on ARM hardware

Bits 0:3 host speed as 10**(bits 0:3) instruction per second (IPS)
(0 => 1IPS, 1 => 10IPS, 2 => 100IPS, 3 = 1000IPS, ..., 6 => 1MIPS, ...)

The value addressed by arg2 is a unique identifier, which identifies the ARM processor or
ARM emulator under which the debuggee is running.

Bits 5..10 allow a debugger to negotiate a suitable RDI specification level with a debuggee
or to report that it is incompatible with the debuggee.

Remote Debugging
RDIVector_Catch

int RDI_info(RDIVector_Catch, unsigned long *arg1)

A set bit in the location addressed by arg1 indicates to the debuggee that the corresponding
11-13Reference Guide
ARM DUI 0041B

exception should be reported to the debugger, as follows:

Bits which are 0 indicate that the corresponding exception vector should be taken by the
debuggee.

RDIInfo_MMU
int RDI_info(RDIInfo_MMU, unsigned long *arg1, unsigned long *arg2)

This enquires about type and status of any MMU present. On return, arg1 contains a word
which identifies the types of the MMU. arg2 addresses a word describing the status of the
MMU.

RDIInfo_DownLoad
int RDI_info(RDIInfo_DownLoad, unsigned long *arg1, unsigned long *arg2)

This enquires whether configuration download and selection is available. The status
returned is OK if these features are available.

RDIInfo_SemiHosting
int RDI_info(RDIInfo_SemiHosting, unsigned long *arg1,

unsigned long *arg2)

This enquires whether RDISemiHosting_* RDIInfo calls are available. The status
returned is OK if these features are available.

RDIInfo_CoPro
int RDI_info(RDIInfo_CoPro, unsigned long *arg1, unsigned long *arg2)

This enquires whether the CoPro RDI Info calls are available. The status returned is OK
if these features are available.

RDIInfo_Icebreaker
int RDI_info(RDIInfo_Icebreaker, unsigned long *arg1,

unsigned long *arg2)

This enquires whether the debuggee is controlled by EmbeddedICE. The status returned is
OK if the debuggee is controlled by EmbeddedICE.

Bit 0: Branch through 0 Bit 5: Address exception

Bit 1: Undefined instruction Bit 6: Interrupt (IRQ)

Bit 2: Software interrupt (SWI) Bit 7: Fast interrupt (FIQ)

Bit 3: Prefetch abort Bit 8: Error

Bit 4: Data abort

Remote Debugging
RDIMemory_Access

int RDI_info(RDIMemory_Access, unsigned long *arg1, unsigned long *arg2)

This asks for the memory access statistics for a block of memory indicated by the handle
11-14 Reference Guide
ARM DUI 0041B

addressed by arg1 . On return arg1 points to the memory access statistics. For more
details, see RDI_MemAccessStats in dbg_stat.h .

RDIMemoryMap
int RDI_info(RDIMemoryMap, unsigned long *arg1, unsigned long *arg2)

This call sets the characteristics for an area of memory. For full details of memory
descriptions, see RDI_MemDesc in dbg_stat.h . On entry:

arg1 points to an array of memory descriptions (n)

arg2 points to a word holding n.

RDISet_CPUSpeed
int RDI_info(RDISet_CPUSpeed, unsigned long *arg1)

This call sets the simulated CPU speed to be arg1 (in nanoseconds).

RDIRead_Clock
int RDI_info(RDIRead_Clock, unsigned long *arg1, unsigned long *arg2)

This call reads the simulated CPU time. On return:

arg1 addresses the time in nanoseconds

arg2 addresses the time in seconds

RDIConfig_Count
int RDI_info(RDIConfig_Count, unsigned long *arg1)

This requests that arg1 returns the number of configuration blocks known to the debug
agent to the word address. Use this option only if RDIInfo_Download returned no errors.

RDIConfig_Ntl
int RDI_info(RDIConfig_Ntl, unsigned long *arg1, unsigned long *arg2)

This requests that details of the configuration block whose index (zero-based) is the word
addressed by arg1 should be returned to the RDI_ConfigDesc block addressed by arg2 .
Use this option only if RDIInfo_Download and RDIConfig_Count returned no errors.

RDIInfo_MemoryStats
int RDI_info(RDIInfo_MemoryStats, unsigned long *arg1,

unsigned long *arg2)

This enquires whether the last four calls are available (Memory_Access->Read_Clock).
The status returned is OK if they are available.

Remote Debugging
RDIPointStatus_Watch

int RDI_info(RDIPointStatus_Watch, unsigned long *arg1,
unsigned long *arg2)
11-15Reference Guide
ARM DUI 0041B

This can be used only if RDIInfo_Points sets bit 12 of arg1 . When called with the handle
of a watchpoint pointed to by arg1 , this function returns the hardware resource number in
the word pointed to by arg1 , and the type of watchpoint in the word pointed to by arg2 .

RDIPointStatus_Break
int RDI_info(RDIPointStatus_Break, unsigned long *arg1,

unsigned long *arg2)

This is identical to RDIPointStatus_Watch , except that it is used for breakpoints.

RDISignal_Stop
int RDI_info(RDISignal_Stop, unsigned long *arg1, unsigned long *arg2)

This call requests that the debuggee stops execution.

RDISemiHosting_SetState
int RDI_info(RDISemiHosting_SetState, unsigned long *arg1)

This should be used only if RDIInfo_SemiHosting did not return an error. The setting of
arg1 is either:

0 disables semihosting

1 enables semihosting

RDISemiHosting_GetState
int RDI_info(RDISemiHosting_GetState, unsigned long *arg1)

This should be used only if RDIInfo_SemiHosting did not return an error. On return,
arg1 points to the current state of semihosting (0=off, 1= on).

RDISemiHosting_SetVector
int RDI_info(RDISemiHosting_SetVector, unsigned long *arg1)

This should be used only if RDIInfo_SemiHosting did not return an error. This sets the
semihosting vector to be the value pointed to by arg1 .

RDISemiHosting_GetVector
int RDI_info(RDISemiHosting_SetVector, unsigned long *arg1)

This should be used only if RDIInfo_SemiHosting did not return an error. On return,
arg1 points to the current value of the semihosting vector.

RDIICEBreaker_GetLocks
int RDI_info(RDIICEBreaker_GetLocks, unsigned long *arg1)

This should be used only if RDIInfo_ICEBreaker did not return an error. The value
pointed to by arg1 indicates which ICEBreaker breakpoints are locked.

Remote Debugging
RDIICEBreaker_SetLocks

int RDI_info(RDIICEBreaker_SetLocks, unsigned long *arg1)

This should be used only if RDIInfo_ICEBreaker did not return an error. The value
11-16 Reference Guide
ARM DUI 0041B

pointed to by arg1 indicates which ICEBreaker break points are locked.

RDIICEBreaker_GetLoadSize
int RDI_info(RDIICEBreaker_GetLoadsize, unsigned long *arg1)

This should be used only if RDIInfo_Target returned bit 12 set (Can Inquire Load Size).
The maximum block size the Debug Agent can support is stored in the word pointed to by
arg1 .

RDICommsChannel_ToHost
int RDI_info(RDICommsChannel_ToHost, unsigned long *arg1,

unsigned long *arg2)

This should be used only if the value returned by RDIInfo_Target had bit 16
(Debug Channel Exists) set. On entry, arg1 points to a function RDICCProc_ToHost , and
arg2 contains arg . The type of RDICCProc_ToHost is:

void RDICCProc_ToHost(void *arg, ARMword data)

This should be called back to pass data from the target (via Debug Comms Channel)
to the host. arg is the value passed in arg2 by RDICommsChannel_ToHost .

RDICommsChannel_FromHost
int RDI_info(RDICommsChannel_FromHost, unsigned long *arg1,

unsigned long *arg2)

This should be used only if the value returned by RDIInfo_Target had bit 16 (Debug
Channel Exists) set. On entry, arg1 points to a function RDICCProc_FromHost , and arg2
contains arg .

The type of RDICCProc_FromHost is:

void RDICCProc_FromHost(void *arg, ARMword *data, int *valid)

This should be called back to request data from the host to be sent to the debuggee (via the
Debug Comms Channel).

arg is the value passed in arg2 by RDICommsChannel_FromHost .

valid indicates whether any data is available to be sent; if it is, it is stored at the
word pointed to by data .

RDICycles
int RDI_info(RDICycles, unsigned long *arg1)

The debuggee returns, in the buffer addressed by arg1 , the number of instructions and the
number of S, N, I, C, and F cycles executed since it was initialized.

Remote Debugging
RDIErrorP

int RDI_info(RDIErrorP, unsigned long *arg1)

The debuggee returns, in the memory location addressed by arg1 , the error pointer
11-17Reference Guide
ARM DUI 0041B

associated with the last return from RDI_Execute with status RDIError_Error .

RDISet_CmdLine
int RDI_info(RDISet_CmdLine, unsigned long *arg1)

Set the debuggee’s command-line arguments before starting execution. arg1 is a pointer to
a NULL-terminated argument string, which must be no longer than 256 bytes, including the
NULL.

RDISet_RDILevel
int RDI_info(RDISet_RDILevel, unsigned long *arg1)

Set the RDI/RDP protocol level to be used between the debugger and the debuggee.
The level must be between the limits indicated by RDIInfo_Target .

RDISet_Thread
int RDI_info(RDISet_Thread, unsigned long *arg1)

Set the thread context for thread-sensitive functions such as breakpoint and watchpoint
setting. The thread’s handle must be passed in arg1 .

RDI_DescribeCoPro
int RDI_info(RDI_DescribeCoPro, unsigned long *arg1,

unsigned long *arg2)

This describes the registers of a coprocessor.

arg1 points to the coprocessor number.

arg2 points to a Dbg_CoProDesc block which the debuggee will fill in.

For full details of this structure see Dbg_CoProDesc in dbg_cp.h .

RDI_RequestCoProDesc
int RDI_info(RDI_RequestCoProDesc, unsigned long *arg1,

unsigned long *arg2)

This function requests the description of the coprocessor.

arg1 gives the number of the coprocessor

arg2 points to a Dbg_CoProDesc block which the debuggee will fill in

For full details of this structure see Dbg_CoProDesc in dbg_cp.h .

RDIInfo_Log
int RDI_info(RDIInfo_TLog, unsigned long *arg1)

Return the RDI’s logging state in the integer variable addressed by arg1 . Bit 0 is set to log
calls to RDI interfaces, and bit 1 to log RDP transactions.

Remote Debugging
RDIInfo_SetLog

int RDI_info(RDIInfo_SetLog, unsigned long *arg1)

Return the RDI’s logging state to the integer value addressed by arg1 . Bit 0 is set to log
11-18 Reference Guide
ARM DUI 0041B

calls to RDI interfaces, and bit 1 to log RDP transactions.

RDIProfile_Stop
int RDI_info(RDIProfile_Stop, unsigned long *arg1)

This function specifies that profiling data should stop being collected. It should be used only
if RDIInfo_Target returned bit 14 set in the value pointed to by arg1 (to indicate that
profiling is supported).

RDIProfile_Start
int RDI_info(RDIProfile_Start, unsigned long *arg1)

This call starts profiling. It should be used only if RDIInfo_Target returned bit 14 set in
the value pointed to by arg1 (to indicate that profiling is supported). arg1 points to the
interval in microseconds which should be used to start profiling.

RDIProfile_WriteMap
int RDI_info(RDIProfile_WriteMap, unsigned long *arg1)

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 . arg1 points to an array of debuggee addresses. These addresses should be in
increasing order, and are used to decide which count element in a corresponding array
should be incremented when a value of the PC has been sampled. This works as follows:

arg1[0] = length of array
if

PC lies between arg1[i] and arg1[i+1]
then

count[i] should be incremented

RDIProfile_ReadMap
int RDI_info(RDIProfile_ReadMap, unsigned long *arg1,

unsigned long *arg2)

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 (indicates that profiling is supported). On entry arg1 points to the length of counts
array to be read. arg2 points to memory where the array of counts will be placed on exit.
For more information, see RDIProfile_WriteMap .

RDIProfile_ClearCounts
int RDI_info(RDIProfile_ClearCounts, unsigned long *arg1)

This should be used only if RDIInfo_Target returned bit 14 set in the value pointed to by
arg1 (indicating that profiling is supported). All counts are reset to zero.

Remote Debugging
11.3 Error Codes

The symbolic values named here are defined in rdi.h .
11-19Reference Guide
ARM DUI 0041B

RDIError_NoError Everything worked

RDIError_Reset Debuggee reset

RDIError_UndefinedInstruction Tried to execute an undefined instruction

RDIError_SoftwareInterrupt A SWI occurred

RDIError_PrefetchAbort Execution ran into unmapped memory

RDIError_DataAbort No memory at the specified address

RDIError_AddressException Accessed > 26-bit address in 26-bit mode

RDIError_IRQ An interrupt occurred

RDIError_FIQ A fast interrupt occurred

RDIError_Error A software error occurred

RDIError_BranchThrough0 Branch through location 0

RDIError_NoMorePoints The last breakpoint/watchpoint

RDIError_CantSetPoint Breakpoint/watchpoint resources exhausted

RDIError_BreakpointReached Returned by RDI_execute and RDI_step

RDIError_WatchpointAccessed Returned by RDI_execute and RDI_step

RDIError_ProgramFinishedInStep End of the program reached while stepping

RDIError_UserInterrupt You pressed Escape

RDIError_NoSuchPoint Tried to clear a non-existant breakpoint/watchpoint

RDIError_CantLoadConfig Configuration data could not be loaded

RDIError_BadConfigData Configuration data was corrupted

RDIError_NoSuchConfig Requested configuration has not been loaded

RDIError_BufferFull Buffer became full during operation

RDIError_OutOfStore Debug Agent ran out of memory

RDIError_NotInDownLoad Illegal request made during DownLoad

RDIError_PointInUse EmbeddedICE breakpoint is already in use

RDIError_BadImageFormat Debug Agent could not make sense of AIF image

RDIError_TargetRunning Target Processor did not stop (probably with
EmbeddedICE system)

RDIError_DeviceWouldNotOpen Failed to open serial/parallel port

RDIError_NoSuchHandle No such memory description handle exists

RDIError_ConflictingPoint Incompatible breakpoint already exists

RDIError_SoftInitialiseError Recoverable error in RDI initialization. (You might
need to use a different configuration.)

Remote Debugging
11.3.1 Information messages

The following messages pass information about the debuggee:
11-20 Reference Guide
ARM DUI 0041B

LittleEndian The debuggee is little endian

BigEndian The debuggee is big endian

11.3.2 Internal fault or limitation

The following errors indicate an internal fault or limitation:

InsufficientPrivilege Supervisor state was not accessible to this debug
monitor

UnimplementedMessage Debuggee cannot honour this RDP request

UndefinedMessage Corrupted RDP request

IncompatibleRDILevel There is no common RDI level at which the debugger
and debuggee can operate.

11.3.3 RDI errors

The following errors indicate misuse of the RDI or similar problems:

NotInitialised RDI_open must be the first call

UnableToInitialise The target world is broken

WrongByteSex The debuggee cannot operate with the requested
byte sex

UnableToTerminate Target world was smashed by the debuggee

BadInstruction It is illegal to execute this instruction

IllegalInstruction The effect of executing this is undefined

BadCPUStateSetting Tried to set the SPSR of user mode

UnknownCoPro This co-processor is not connected

UnknownCoProState Cannot execute this co-processor request

BadCoProState Recognizably broken co-pro request

BadPointType Misuse of the RDI

UnimplementedType Misuse of the RDI

BadPointSize Misuse of the RDI

UnimplementedSize Halfwords are not yet implemented

Remote Debugging
11.4 Angel Debug Protocol (ADP)

The Angel Debug Protocol (ADP) is the communication protocol used between the ARM
Debuggers and a remote debuggee. ADP is different from, and incompatible with, the ARM
11-21Reference Guide
ARM DUI 0041B

Remote Debug Protocol (RDP). ADP supercedes RDP.

Usually, the ADP is implemented on the host side as a module which translates RDI
requests into ADP packets to be sent to the remote debuggee by a communications link of
some sort.

The ADP gives the ARM Debuggers a uniform way to communicate with:

• a debug monitor running on ARM-based hardware accessed via a communications
link, for example: Angel Debug Monitor running on an ARM PIE card, linked with
serial, serial & parallel, or Ethernet

• a remote debug agent controlling an ARM processor via hardware debug support,
for example: ARM’s EmbeddedICE connected to the host via serial or serial and
parallel, and the EmbeddedICE box connected to the debuggee via the JTAG port.

As the ADP evolves, new levels of specification are added and within any level of
specification there are implementation options. This approach is taken so that a variety of
minimal debug monitors and controlling debug agents can be accommodated without
excessive overhead, and to ensure compatibility between debuggers and debug agents
released at different times. As a result, a debugger using the ADP must negotiate its debug
agent’s capabilities and must not use capabilities its debug agent does not support.

11.4.1 The protocol stack

Debuggers and debug agents which communicate using ADP do so using not just ADP, but
a stack of protocols which provide different capabilities.

 Figure 11-1: The protocol stack

ADP C library support Other (user) protocolsDebug-level protocols

Channels protocols

Serial/parallel comms link Ethernet comms link

Channel management protocol

Device protocols Packet-based encapsulation
UDP stack

Remote Debugging
The lowest level protocol(s) depend on the communications link being used. These are the
device-dependent protocols.

Above this there is a channels layer protocol which allows a single communications link to
11-22 Reference Guide
ARM DUI 0041B

support many sets of higher level protocols to go on simultaneously. Finally there is the ADP
protocol, C Library Support protocol, and potentially other user-defined protocols.

11.4.2 Device-level protocols

The function of the device layer protocol is to encapsulate requests into packets and then
transmit them across the communications link. This may involve many layers of protocol (eg.
the Ethernet UDP stack), or a very thin layer such as for serial/parallel devices.

As an example, the device-level protocol for serial communication sends:

• a start-of-packet character

• the length of the packet

• some flags

It then escapes any characters in the data which match the start-of-packet, end-of-packet or
escape character. After sending the data, a data checksum (CRC) is sent, and finally an
end-of-packet character is sent.

On receipt of a packet, it is possible to detect a number of errors by checking for:

• no “out of packet” characters

• packets which are not the correct length

• packets which have a bad checksum

This layer passes on good and bad packets (indicating them as such) to the channels layer.

11.4.3 Channels-level protocol

This layer distinguishes the different sources of packets, by adding the Id of the channel. It
is also responsible for checking to see if packets are missing, or are corrupt. In either case,
this layer will request a resend.

The exact protocol used to accomplish this is provided in:

hostchan.c on the host side

channels.c on the target side

It does this by adding two packet-sequencing numbers (one for each end of
the communications link), and checking that the sequencing numbers of any received
packet are those it would expect. If not, resend requests are made as appropriate.

Note Any one channel can support messages which are either host originated or target
originated, but not both. This is described in 11.4.4 Debug-level protocols .

Remote Debugging
11.4.4 Debug-level protocols

Each channel can have a different protocol running on it at this level.
11-23Reference Guide
ARM DUI 0041B

The major protocol is ADP, which supports debugging functionality between ARM
debuggers and ARM Debug Agents/Monitors. For details of the exact protocol used, see
the header file adp.h .

In brief, ADP runs over two channels:

• one for Host-originated requests
(eg. read memory, write registers, set breakpoint, etc.)

• one for Target-originated messages (gives reasons why execution on the target
has stopped; for example, breakpoint, exception, etc.)

Each message contains:

1 A reason code.

2 Multi-threaded debug support fields (currently unused).

3 Data, as indicated by the reason code. There may also be a sub-reason code
which further specifies some requests. The data will always include a status field
to indicate success or otherwise of the request.

Replies are of the same format.

C library support protocol

The C Library support protocol runs on a single channel since it is always target-originated.
The messages are the same structure as those for the ADP. For more details, see the
header file sys.h .

File Format Reference

12-1Reference Guide
ARM DUI 0041B

This section describes the file formats used by the ARM Software Development Toolkit.

12.1 Overview of ARM Image Format 12-2
12.2 AIF Flavors 12-3
12.3 The Layout of AIF 12-6
12.4 Zero-initialization code 12-10

ARM Image Format12

ARM Image Format
12.1 Overview of ARM Image Format

ARM Image Format (AIF) is a simple format for ARM executable images, consisting of:

• a 128-byte header
12-2 Reference Guide
ARM DUI 0041B

• the image's code

• the image's initialized static data

At its most sophisticated, AIF can be considered to be a collection of envelopes which
enwrap a plain binary image, as follows:

• The outer wrapper allows the inner layers to be compressed using any
compression algorithm that supports efficient decompression at image load time,
either by the loader or by the loaded image itself. In particular, AIF defines a simple
structure for images which decompress themselves, consisting of:

- AIF header

- compressed contents

- decompression tables

- decompression code

• The next layer of wrapping deals with relocating the image to its load address.
Three options are supported:

- link-time relocation

- load-time relocation to the address where the image has been loaded

- load-time relocation to a fixed offset from the top of memory

In particular, an AIF image is capable of self-relocation or self-location
(to the high-address end of memory), followed by self-relocation. Once an AIF
image has been decompressed and relocated, it can create its own zero-initialized
area.

• Finally, the enwrapped image is entered at the (unique) entry point found by
the linker in the set of input object modules.

ARM Image Format
12.2 AIF Flavors

Three flavors of AIF are supported:

Executable AIF This can be loaded at its load address and entered at the same
12-3Reference Guide
ARM DUI 0041B

point (at the first word of the AIF header). It prepares itself for
execution by relocating itself, setting to zero its own
zero-initialized data, etc. An executable AIF image is loaded at
its load address (which may be arbitrary if the image is
relocatable), and entered at the same address. Eventually,
control passes to a branch to the image’s entry point.

The header is part of the image itself. This variant can be
executed by entering the header at its first word. Code in
the header ensures that the image is properly prepared for
execution before being entered at its entry address.

The fourth word of an executable AIF header is:

BL entrypoint

The most-significant byte of this word (in the target byte order) is
0xEB.

The base address of an executable AIF image is the address at
which its header should be loaded; its code starts at base +
0x80.

Non-executable AIF The header is not part of the image, but merely describes it.
This variant is intended to be loaded by a program which
interprets the header, and prepares the image following it for
execution.

The fourth word of a non-executable AIF image is the offset of its
entry point from its base address. The most-significant nibble of
this word (in the target byte order) is 0x0.

The base address of a non-executable AIF image is the address
at which its code should be loaded.

Non-executable AIF must be processed by an image loader,
which loads the image at its load address and prepares it for
execution as detailed in the AIF header. The header is then
discarded.

Extended AIF This is not directly executable. It contains a scatter-loaded
image. It has an AIF header which points to a chain of load
regions within the file. The image loader should place these
regions at the correct place in memory.

ARM Image Format
12.2.1 Executable AIF

It is assumed that on entry to a program in AIF, the general registers contain nothing of value
to the program (the program is expected to communicate with its operating environment
12-4 Reference Guide
ARM DUI 0041B

using SWI instructions or by calling functions at known, fixed addresses).

A program image in AIF is loaded into memory at its load address, and entered at its first
word. The load address may be:

• an implicit property of the type of the file containing the image (as is usual with
UNIX executable file types, etc.)

• read by the program loader from offset 0x28 in the file containing the AIF image

• given by some other means; for example, by instructing an operating system or
debugger to load the image at a specified address in memory

12.2.2 Compressed images

An AIF image may be compressed and can be self-decompressing (to support faster loading
from slow peripherals, and better use of space in ROMs and delivery media such as floppy
disks). An AIF image is compressed by a separate utility which adds self-decompression
code and data tables to it.

12.2.3 Relocation

If created with appropriate linker options, an AIF image may relocate itself at load time.
Two kinds of self-relocation are supported:

• relocate to load address (the image can be loaded anywhere and will execute
where loaded)

• self-move up memory, leaving a fixed amount of workspace above, and relocate to
this address (the image is loaded at a low address and will move to the highest
address which leaves the required workspace free before executing there)

The second kind of self-relocation can only be used if the target system supports an
operating system or monitor call which returns the address of the top of available memory.

The ARM linker provides a simple mechanism for using a modified version of the self-move
code illustrated in 12.4 Zero-initialization code on page 12-10, allowing AIF to be tailored
easily to new environments.

12.2.4 Debugging

AIF images support being debugged by the ARM symbolic debugger. Low-level and
source-level support are orthogonal, and both, either, or neither kind of debugging support
need be present in an AIF image. For details of the format of the debugging tables see
Chapter 15, ARM Symbolic Debug Table Format .

References from debugging tables to code and data are in the form of relocatable
addresses. After loading an image at its load address these values are effectively absolute.

ARM Image Format
References between debugger table entries are in the form of offsets from the beginning of
the debugging data area. Following relocation of a whole image, the debugging data area
itself is position-independent and may be copied or moved by the debugger.
12-5Reference Guide
ARM DUI 0041B

12.2.5 AIF output

In order to produce an AIF output there must be:

• no unresolved symbolic references between the input objects (each reference
must resolve directly or via an input library)

• exactly one input object containing a program entry point (or no input area
containing an entry point, and the entry point given using an -Entry option)

• either an absolute load address or the relocatable option given to the linker
(the self-location option is system-dependent)

ARM Image Format
12.3 The Layout of AIF

12.3.1 Compressed AIF image
12-6 Reference Guide
ARM DUI 0041B

The layout of a compressed AIF image is as follows:

1 Header

2 Compressed image

3 Decompression data (position-independent)

4 Decompression code (position-independent)

The header described below is small and fixed in size. In a compressed AIF image,
the header is not compressed.

12.3.2 Uncompressed AIF image

An uncompressed image has the following layout:

1 Header

2 Read-only area

3 Read-write area

4 Debugging data (optional)

5 Self-relocation code (position-independent)

6 Relocation list. This is a list of byte offsets from the beginning of the AIF header, of
words to be relocated, followed by a word containing -1 . The relocation of
non-word values is not supported.

12.3.3 Debugging

Debugging data is absent unless the image has been linked using the linker's -d option and,
in the case of source-level debugging, unless the components of the image have been
compiled using the compiler's -g option.

After the execution of the self-relocation code (or if the image is not self-relocating)
the image has the following layout:

1 Header

2 Read-only area

3 Read-write area

4 Debugging data (optional)

At this stage, a debugger is expected to copy any debugging data to somewhere safe,
otherwise it will be overwritten by the zero-initialized data and/or the heap/stack data of
the program. A debugger can take control at the appropriate moment by copying,
then modifying the third word of the AIF header (see Figure 12-1: AIF header layout).

ARM Image Format

00: BL DecompressCode NOP if the image is not compressed. Note 1

04: BL SelfRelocCode NOP if the image is not self-relocating.
12-7Reference Guide
ARM DUI 0041B

 Figure 12-1: AIF header layout

08: BL DBGInit/ZeroInit NOP if the image has none.

0C:
BL ImageEntryPoint
 or
EntryPoint offset

BL to make the header addressable via r14
...but the application will not return...
Non-executable AIF uses an offset, not BL.

Note 2

10: Program Exit Instr ...last attempt in case of return. Note 3

14: Image ReadOnly size Includes header size if executable AIF; excludes
header size if non-executable AIF.

Note 4

18: Image ReadWrite size Exact size (a multiple of 4 bytes).

1C: Image Debug size Exact size (a multiple of 4 bytes).

20: Image zero-init size Exact size (a multiple of 4 bytes).

24: Image debug type 0, 1, 2, or 3 . Note 6

28: Image base Address where the image (code) was linked.

2C: Work space Minimum work space (in bytes) to be reserved by
a self-moving relocatable image.

30: Address mode: 26/32
+ 3 flag bytes

LS byte contains 26 or 32;
bit 8 set when using a separate data base.

Note 7

34: Data base Address where the image data was linked.

38: Two reserved words
(initially 0)

Note 8

40: Debug Init Instr NOP if unused. Note 9

44: Zero-init code
(15 words as below)

Header is 32 words long.

ARM Image Format
Notes

1 NOP is encoded as MOV r0, r0 .

2 BL is used to make the header addressable via r14 in a position-independent
12-8 Reference Guide
ARM DUI 0041B

manner, and to ensure that the header will be position-independent. Care is taken
to ensure that the instruction sequences which compute addresses from these r14
values work in both 26-bit and 32-bit ARM modes.

3 Program Exit Instruction will usually be a SWI causing program
termination. On systems which lack this, a branch-to-self is recommended.
Applications are expected to exit directly and not to return to the AIF header, so this
instruction should never be executed. The ARM linker sets this field to SWI 0x11
by default, but it may be set to any desired value by providing a template for the AIF
header in an area called AIF_HDR in the first object file in the input list to armlink.

4 Image ReadOnly Size includes the size of the AIF header only if the AIF type
is executable (that is, if the header itself is part of the image).

5 An AIF image is restartable if, and only if, the program it contains is restartable (an
AIF image is not re-entrant). If an AIF image is to be restarted following its
decompression, the first word of the header must be set to NOP. Similarly, following
self-relocation, the second word of the header must be reset to NOP. This causes
no additional problems with the read-only nature of the code segment; both
decompression and relocation code must write to it. On systems with memory
protection, both the decompression code and the self-relocation code must be
bracketed by system calls to change the access status of the read-only section
(first to writable, then back to read-only).

6 Image debug type has the following meaning:
0 No debugging data are present.
1 Low-level debugging data are present.
2 Source level (ASD) debugging data are present.
3 1 and 2 are present together.

All other values of image debug type are reserved to ARM Ltd.

7 Address mode word (at offset 0x30) is 0, or contains in its least significant byte
(using the byte order appropriate to the target):

26 indicates that the image was linked for a 26-bit ARM mode, and
may not execute correctly in a 32-bit mode

32 indicates that the image was linked for a 32-bit ARM mode, and
may not execute correctly in a 26-bit mode

(0 indicates an old-style 26-bit AIF header)

If the Address mode word has bit 8 set ((address_mode & 0x100) != 0),
the image was linked with separate code and data bases (usually the data is
placed immediately after the code). Here, the word at offset 0x34 contains the base
address of the image's data.

ARM Image Format
8 FAT AIF images. In these images, the word at 0x38 is non-zero. It contains the

byte offset within the file of the header for the first non-root load region. This header
has a size of 44 bytes, and the following format:

word 0 file offset of header of next region (0 is none)
12-9Reference Guide
ARM DUI 0041B

word 1 load address
word 2 size in bytes (a multiple of 4)
char[32] the region name padded out with zeros

The initializing data for the region follows the header.

9 Debug Initialization Instruction (if used) is expected to be a SWI
instruction which alerts a resident debugger that a debuggable image is starting to
execute. The ARM cross-linker sets this field to NOP by default, but you can
customize it by providing your own template for the AIF header in an area called
AIF_HDR in the first object file in the input list to armlink.

ARM Image Format
12.4 Zero-initialization code

The zero-initialization code is as follows:

NOP ; or Debug Init Instruction
12-10 Reference Guide
ARM DUI 0041B

SUB r12,r14,pc ; base+12+[PSR]-(ZeroInit+12+[PSR])
; = base-ZeroInit

ADD r12,pc,r12 ; base-ZeroInit+ZeroInit+16

; = base+16
LDMIB r12,{r0-r3} ; various sizes
SUB r12,r12,#0x10 ; image base
LDR r2,[r12,#0x30]
TST r2,#0x100
LDRNE r12,[r12,#0x34]
ADDEQ r12,r12,r0 ; + rO size
ADD r12,r12,r1 ; + RW size

; = base of 0-init area
MOV r0,#0
CMP r3,#0

00 MOVLE pc,r14 ; nothing left to do
STR r0,[r12],#4
SUBS r3,r3,#4
B %B00

12.4.1 Self-move and self-relocation code

This code is added to the end of an AIF image by the linker, immediately before the list of
relocations (which is terminated by -1).

Note The code is entered via a BL from the second word of the AIF header so, on entry, r14 ->
AIFHeader + 8. In 26-bit ARM modes, r14 also contains a copy of the PSR flags.

On entry, the relocation code calculates the address of the AIF header (in a
CPU-independent manner) and decides whether the image needs to be moved. If the image
does not need to be moved, the code branches to RelocateOnly .

RelocCode
 NOP ; required by ensure_byte_order()

; and used below.
 SUB ip, lr, pc ; base+8+[PSR]-(RelocCode+12+[PSR])

; = base-4-RelocCode
 ADD ip, pc, ip ; base-4-RelocCode+RelocCode+16 = base+12
 SUB ip, ip, #12 ; -> header address
 LDR r0, RelocCode ; NOP
 STR r0, [ip, #4] ; won't be called again on image re-entry
 LDR r9, [ip, #&2C] ; min free space requirement
 CMPS r9, #0 ; 0 => no move, just relocate

BEQ RelocateOnly

If the image needs to be moved up memory, the top of memory has to be found.
Here, a system service (SWI 0x10) is called to return the address of the top of memory in r1.

ARM Image Format
Note This is system-specific and should be replaced by whatever code sequence is appropriate

to the environment.

 LDR r0, [ip, #&20] ; image zero-init size
12-11Reference Guide
ARM DUI 0041B

 ADD r9, r9, r0 ; space to leave =

; min free + zero init
 SWI #&10 ; return top of memory in r1.

The following code calculates the length of the image inclusive of its relocation data, and
decides whether a move up store is possible.

 ADR r2, End ; -> End
01 LDR r0, [r2], #4 ; load relocation offset,

; increment r2
 CMNS r0, #1 ; terminator?
 BNE %B01 ; No, so loop again
 SUB r3, r1, r9 ; MemLimit - freeSpace
 SUBS r0, r3, r2 ; amount to move by
 BLE RelocateOnly ; not enough space to move...
 BIC r0, r0, #15 ; a multiple of 16...
 ADD r3, r2, r0 ; End + shift
 ADR r8, %F02 ; intermediate limit for

; copy-up

Finally, the image copies itself four words at a time, taking care over the direction of copy,
and jumping to the copied code as soon as it has copied itself.

02 LDMDB r2!, {r4-r7}
STMDB r3!, {r4-r7}
CMPS r2, r8 ; copied the copy loop?
BGT %B02 ; not yet
ADD r4, pc, r0
MOV pc, r4 ; jump to copied copy code

03 LDMDB r2!, {r4-r7}
STMDB r3!, {r4-r7}
CMPS r2, ip ; copied everything?
BGT %B03 ; not yet
ADD ip, ip, r0 ; load address of code
ADD lr, lr, r0 ; relocated return address

Whether the image has moved itself or not, control eventually arrives here, where the list of
locations to be relocated is processed. Each location is word sized and is relocated by
the difference between the address where the image was loaded (the address of the AIF
header) and the address where the image was linked (stored at offset 0x28 in the AIF
header):

ARM Image Format
RelocateOnly
 LDR r1, [ip, #&28] ; header + 0x28 = code base

; set by Link
 SUBS r1, ip, r1 ; relocation offset
12-12 Reference Guide
ARM DUI 0041B

 MOVEQ pc, lr ; relocate by 0 so nothing to do
 STR ip, [ip, #&28] ; new image base = actual load address
 ADR r2, End ; start of reloc list
04 LDR r0, [r2], #4 ; offset of word to relocate
 CMNS r0, #1 ; terminator?
 MOVEQ pc, lr ; yes => return
 LDR r3, [ip, r0] ; word to relocate
 ADD r3, r3, r1 ; relocate it
 STR r3, [ip, r0] ; store it back
 B %B04 ; and do the next one
End ; The list of offsets of locations to

; relocate starts here,
; terminated by -1.

You can customize the self-relocation and self-moving code generated by the linker by
providing your version of it in an area called AIF_RELOC in the first object file in the linker’s
input list.

13-1Reference Guide
ARM DUI 0041B

This section describes the file formats used by the ARM Software Development Toolkit.

13.1 Overview of ARM Object Library Format 13-2
13.2 Endianness and Alignment 13-3
13.3 Library File Format 13-4
13.4 Time Stamps 13-6
13.5 Object Code Libraries 13-7

ARM Object Library Format13

ARM Object Library Format
13.1 Overview of ARM Object Library Format

This section defines a file format called ARM Object Library Format, or ALF, which is used
by the ARM linker and the ARM object librarian.
13-2 Reference Guide
ARM DUI 0041B

A library file contains a number of separate but related pieces of data. In order to simplify
access to these data, and to provide for a degree of extensibility, the library file format is
itself layered on another format called Chunk File Format. This provides a simple and
efficient means of accessing and updating distinct chunks of data within a single file. For a
description of the Chunk File Format, see 14.2.1 Chunk file format on page 14-5.

The Library format defines four chunk classes:

• Directory

• Time stamp

• Version

• Data

There may be many Data chunks in a library.

The Object Library Format defines two additional chunks:

• Symbol table

• Symbol table time stamp

These chunks are described in detail in Chapter 15, ARM Symbolic Debug Table Format .

13.1.1 Terminology

The terminology in this chapter is as follows:

byte means 8 bits, considered unsigned unless otherwise stated, usually used
to store flag bits or characters

halfword means 16 bits, or 2 bytes, usually considered unsigned

word means 32 bits, or 4 bytes, usually considered unsigned

string means a sequence of bytes terminated by a NUL (0x00) byte
The NUL byte is part of the string but is not counted in the string's length.

ARM Object Library Format
13.2 Endianness and Alignment

There are two sorts of ALF: little-endian and big-endian:

Little-endian The least significant byte of a word or halfword has the lowest address of
13-3Reference Guide
ARM DUI 0041B

any byte in the (half-)word. This byte sex is used by DEC and Intel
amongst others.

Big-endian The most significant byte of a (half)word has the lowest address.
This byte sex is used by IBM, Motorola and Apple, amongst others.

For data in a file, address means offset from the start of the file.

There is no guarantee that the endianness of an ALF file will be the same as the endianness
of the system used to process it (the endianness of the file is always the same as
the endianness of the target ARM system).

The two sorts of ALF cannot meaningfully be mixed (the target system cannot have mixed
endianness: it must have one or the other). The ARM linker accepts inputs of either sex and
produces an output of the same sex, but rejects inputs of mixed endianness.

13.2.1 Alignment

Strings and bytes may be aligned on any byte boundary.

ALF fields defined in this document do not use halfwords, and align words on 4-byte
boundaries.

Within the contents of an ALF file (within the data contained in OBJ_AREA chunks—see
below), the alignment of words and halfwords is defined by the use to which ALF is being
put. For all current ARM-based systems, alignment is strict.

ARM Object Library Format
13.3 Library File Format

For library files, the first part of each chunk’s name is LIB_ ; for object libraries, the names
of the additional two chunks begin with OFL_.
13-4 Reference Guide
ARM DUI 0041B

Each piece of a library file is stored in a separate, identifiable chunk, named as follows:

Chunk Chunk name

Directory LIB_DIRY

Time stamp LIB_TIME

Version LIB_VSRN

Data LIB_DATA

Symbol table OFL_SYMT object code libraries only

Time stamp OFL_TIME object code libraries only

There may be many LIB_DATA chunks in a library, one for each library member.
In all chunks, word values are stored with the same byte order as the target system;
strings are stored in ascending address order, which is independent of target byte order.

Earlier versions of ARM object library format

These notes ensure maximum robustness with respect to earlier, now obsolete, versions of
the ARM object library format:

• Applications which create libraries or library members should ensure that
the LIB_DIRY entries they create contain valid time stamps.

• Applications which read LIB_DIRY entries should not rely on any data beyond
the end of the name string being present, unless the difference between
the DataLength field and the name-string length allows for it. Even then,
the contents of a time stamp should be treated cautiously.

• Applications which write LIB_DIRY or OFL_SYMT entries should ensure that
padding is done with NUL (0) bytes; applications which read LIB_DIRY or
OFL_SYMT entries should make no assumptions about the values of padding bytes
beyond the first, string-terminating NUL byte.

13.3.1 LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of which is
stored in a LIB_DATA chunk. The directory size is fixed when the library is created.
The directory consists of a sequence of variable length entries, each an integral number of
words long. The number of directory entries is determined by the size of the LIB_DIRY
chunk.

ARM Object Library Format
Pictorially:

ChunkIndex
13-5Reference Guide
ARM DUI 0041B

 Figure 13-1: The LIB_DIRY chunk

where:

ChunkIndex is a word containing the zero-origin index within the chunk file
header of the corresponding LIB_DATA chunk. Conventionally,
the first three chunks of an OFL file are LIB_DIRY , LIB_TIME
and LIB_VSRN, so ChunkIndex is at least 3. A ChunkIndex
of 0 means the directory entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and
size of the library module in the library file.

EntryLength is a word containing the number of bytes in this LIB_DIRY entry,
always a multiple of 4.

DataLength is a word containing the number of bytes used in the data section
of this LIB_DIRY entry, also a multiple of 4.

Data consists of, in order:

• a zero-terminated string (the name of the library member).
Strings should contain only ISO-8859 non-control
characters (codes [0–31], 127 and 128+[0–31] are
excluded). The string field is the name used to identify this
library module. Typically it is the name of the file from which
the library member was created.

• any other information relevant to the library module
(often empty).

• a two-word, word-aligned time stamp. The format of the
time stamp is described in 13.4 Time Stamps on
page 13-6. Its value is an encoded version of the last-
modified time of the file from which the library member was
created.

13.3.2 LIB_VSRN

The version chunk contains a single word whose value is 1.

EntryLength the size of this LIB_DIRY chunk
(an integral number of words)

DataLength the size of the Data (an integral
number of words)

Data

ARM Object Library Format
13.3.3 LIB_DATA

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY chunk.
The endianness or byte order of this data is, by assumption, the same as the byte order of
13-6 Reference Guide
ARM DUI 0041B

the containing library/chunk file.

No other interpretation is placed on the contents of a member by the library management
tools. A member could itself be a file in chunk file format or even another library.

13.4 Time Stamps
A library time stamp is a pair of words encoding the following:

• a six-byte count of centi-seconds since the start of the 20th century

• a two-byte count of microseconds since the last centi-second (usually 0).

The first word stores the most significant four bytes of the six-byte count; the least significant
two bytes of the count are in the most significant half of the second word.

The least significant half of the second word contains the microsecond count; it is usually 0.

Time stamp words are stored in target system byte order; they must have the same
endianness as the containing chunk file.

13.4.1 LIB_TIME

The LIB_TIME chunk contains a two-word (eight-byte) time stamp recording when
the library was last modified.

centi-seconds since 00:00:00
1st January 1900

first (most significant) word

second (least significant) word
u-seconds

ARM Object Library Format
13.5 Object Code Libraries

An object code library is a library file whose members are files in ARM Object Format.
An object code library contains two additional chunks:
13-7Reference Guide
ARM DUI 0041B

• an external symbol table chunk named OFL_SYMT

• a time stamp chunk named OFL_TIME

13.5.1 OFL_SYMT

The external symbol table contains an entry for each external symbol defined by members
of the library, together with the index of the chunk containing the member defining that
symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except that
the Data section of each entry contains only a string, the name of an external symbol, and
between one and four bytes of NUL padding, as follows:

OFL_SYMT entries do not contain time stamps.

13.5.2 OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has
the same format as the LIB_TIME chunk (see 13.4 Time Stamps on page 13-6).

ChunkIndex

EntryLength the size of this OFL_SYMT chunk (an integral
number of words

DataLength the size of the External Symbol Name and Padding
(an integral number of words)

External Symbol Name

Padding

14-1Reference Guide
ARM DUI 0041B

This section defines a file format called ARM Object Format (AOF) which is used by
language processors for ARM-based systems.

14.1 ARM Object Format 14-2
14.2 Overall Structure of an AOF File 14-5
14.3 Format of the AOF Header Chunk 14-8
14.4 Attributes and Alignment 14-11
14.5 Format of the AREAS Chunk 14-14
14.6 Relocation Directives 14-15
14.7 Symbol Table Chunk Format (OBJ_SYMT) 14-18
14.8 The String Table Chunk (OBJ_STRT) 14-21
14.9 The Identification Chunk (OBJ_IDFN) 14-21

ARM Object Format14

ARM Object Format
14.1 ARM Object Format

AOF is a simple object format, similar in complexity and expressive power to the UNIX
a.out format. It provides a generalized superset of a.out ’s descriptive facilities. AOF is
14-2 Reference Guide
ARM DUI 0041B

designed to be simple to generate and to process, rather than to be expressive or compact.

ARM Object Format directly supports the ARM Procedure Call Standard (APCS), which is
described in Chapter 5, ARM Procedure Call Standard .

In this section:

object file refers to a file in ARM Object Format

linker refers to the ARM linker

byte is 8 bits long, and is considered unsigned unless otherwise stated.
This is usually used to store flag bits or characters

halfword is 16 bits or 2 bytes, and is usually considered unsigned

word is 32 bits or 4 bytes, and is usually considered unsigned

string is a sequence of bytes terminated by a NUL (0x00) byte. The NUL byte is
part of the string but is not counted in the string's length

address for data in a file, this means offset from the start of the file

14.1.1 Areas

An object file written in AOF consists of any number of named, attributed areas. Attributes
include:

• read-only

• re-entrant

• code

• data

• position-independent etc.

For details see 14.4 Attributes and Alignment on page 14-11).

Typically, a compiled AOF file contains a read-only code area, and a read-write data area
(a zero-initialized data area is also common, and re-entrant code uses a separate based
area for address constants).

ARM Object Format
14.1.2 Relocation directives

Associated with each area is a (possibly empty) list of relocation directives which describe
locations that the linker will have to update when:
14-3Reference Guide
ARM DUI 0041B

• a non-zero base address is assigned to the area

• a symbolic reference is resolved

Each relocation directive may be given relative to the (not yet assigned) base address of an
area in the same AOF file, or relative to a symbol in the symbol table. Each symbol may:

• have a definition within its containing object file which is local to the object file

• have a definition within the object file which is visible globally (to all object files in
the link step)

• be a reference to a symbol defined in some other object file

14.1.3 AOF and the linker

The ARM linker accepts input files in AOF format and can generate output in the same
format, as well as in a variety of image formats. The ARM linker is described in Chapter 3,
Linker . When AOF is used as an output format, the linker does the following with its input
object files:

• merges similarly named and attributed areas

• performs PC-relative relocations between merged areas

• rewrites symbol-relative relocation directives between merged areas, as
area based relocation directives belonging to the merged area

• minimizes the symbol table

Unresolved references remain unresolved, and the output AOF file may be used as the input
to a further link step.

14.1.4 Byte sex or endianness

There are two types of AOF:

Little-endian The least significant byte of a word or halfword has the lowest address of
any byte in the (half)word. This byte sex is used by DEC and Intel,
amongst others.

Big-endian The most significant byte of a (half)word has the lowest address.
This byte sex is used by IBM, Motorola and Apple, amongst others.

There is no guarantee that the endianness of an AOF file will be the same as the endianness
of the system used to process it (the endianness of the file is always the same as
the endianness of the target ARM system).

The two sorts of AOF cannot be mixed (the target system cannot have mixed endianness;
it must have one or the other). The ARM linker accepts inputs of either sex and produces
an output of the same sex, but rejects inputs of mixed endianness.

ARM Object Format
14.1.5 Alignment

Strings and bytes may be aligned on any byte boundary. AOF fields defined in this document
make no use of halfwords and align words on 4-byte boundaries.
14-4 Reference Guide
ARM DUI 0041B

Within the contents of an AOF file, the alignment of words and halfwords is defined by
the use to which AOF is being put. For all current ARM-based systems, words are aligned
on 4-byte boundaries and halfwords on 2-byte boundaries.

ARM Object Format
14.2 Overall Structure of an AOF File

An AOF file contains a number of separate but related pieces of data. To simplify access to
the data, and to give a degree of extensibility to tools which process AOF, the object file
14-5Reference Guide
ARM DUI 0041B

format is itself layered on another format called Chunk File Format, which provides a simple
and efficient means of accessing and updating distinct chunks of data within a single file.

14.2.1 Chunk file format

The object file format defines five chunks:

• AOF header

• AOF areas

• producer's identification

• symbol table

• string table

These are described 14.2.2 ARM object format on page 14-6.

A chunk is accessed via a header at the start of the file. The header contains the number,
size, location and identity of each chunk in the file. The size of the header may vary between
different chunk files, but is fixed for each file. Not all entries in a header need be used, thus
limited expansion of the number of chunks is permitted without a wholesale copy. A chunk
file can be copied without knowledge of the contents of its chunks. Pictorially, the layout of
a chunk file is as follows:

 Figure 14-1: Chunk file layout

ChunkFileId marks the file as a chunk file. Its value is 0xC3CBC6C5.
The endianness of the chunk file can be deduced from this value
(if it appears to be 0xC5C6CBC3when read as a word, each
word value must be byte-reversed before use).

max_chunks defines the number of the entries in the header, fixed when
the file is created.

num_chunks defines how many chunks are currently used in the file, which
can vary from 0 to maxChunks . It is redundant in that it can be
found by scanning the entries.

Fixed part of header occupies three
words and describes what follows

ChunkFileId
max_chunks
num_chunks

four words per entry entry_1
entry_2

. . .

ARM Object Format
Each entry in the chunk file header consists of four words in order:

chunkId is an 8-byte field identifying what data the chunk contains.
Note that this is an 8-byte field, not a 2-word field, so it has
14-6 Reference Guide
ARM DUI 0041B

the same byte order independent of endianness.

file_offset is a one-word field defining the byte offset within the file of
the start of the chunk. All chunks are word-aligned, so it must be
divisible by four. A value of zero indicates that the chunk entry is
unused.

size is a one-word field defining the exact byte size of the chunk's
contents (which need not be a multiple of four).

Identifying data types

The chunkId field provides a conventional way of identifying what type of data a chunk
contains. It has eight characters, and is split into two parts:

• the first four characters contain a unique name allocated by a central authority

• the remaining four characters can be used to identify component chunks within this
domain

The eight characters are stored in ascending address order, as if they formed part of
a NUL-terminated string, independent of endianness.

For AOF files, the first part of each chunk’s name is OBJ_; the second components are
defined in 14.2.2 ARM object format below.

14.2.2 ARM object format

Each piece of an object file is stored in a separate, identifiable chunk. AOF defines five
chunks as follows:

Chunk Chunk name

AOF Header OBJ_HEAD

Areas OBJ_AREA

Identification OBJ_IDFN

Symbol Table OBJ_SYMT

String Table OBJ_STRT

Only the AOF Header and Areas chunks must be present, but a typical object file contains
all five of the above chunks.

Each name in an object file is encoded as an offset into the string table, stored in
the OBJ_STRT chunk (see 14.8 The String Table Chunk (OBJ_STRT) on page 14-21).
This allows the variable-length nature of names to be factored out from primary data
formats.

A feature of ARM Object Format is that chunks may appear in any order in the file
(for example, the ARM C compiler and the ARM assembler produce their AOF chunks in
different orders).

ARM Object Format
A language translator or other utility may add additional chunks to an object file; for example,
a language-specific symbol table or language-specific debugging data. Therefore it is
conventional to allow space in the chunk header for additional chunks; space for eight
chunks is conventional when the AOF file is produced by a language processor which
14-7Reference Guide
ARM DUI 0041B

generates all five chunks described here.

Note The AOF header chunk should not be confused with the chunk file's header.

ARM Object Format
14.3 Format of the AOF Header Chunk

The AOF header consists of two parts, which appear contiguously in the header chunk:

part 1 is of fixed size and describes the contents and nature of the object file
14-8 Reference Guide
ARM DUI 0041B

part 2 has a variable length (specified in the fixed part of the header), and
consists of a sequence of area declarations describing the code and data
areas within the OBJ_AREA chunk

Pictorially, the AOF header chunk has the format shown in Figure 14-2: AOF header chunk
on page 14-9.

Object File Type the value 0xC5E2D080 marks the file as being in relocatable
object format (the usual output of compilers and assemblers and
the usual input to the linker). The endianness of the object code
can be deduced from this value and must be identical to
the endianness of the containing chunk file.

Version Id encodes the version of AOF with which the object file complies:

• version 1.50 is denoted by decimal 150
• version 2.00 is denoted by 200
• this version is denoted by decimal 310 (0x136)

The code and data of an object file are encapsulated in a number of separate areas in the
OBJ_AREA chunk, each with a name and some attributes (see below). Each area is
described in the variable-length part of the AOF header which immediately follows the fixed
part. Number_of_Areas gives the number of areas in the file and, equivalently, the number
of area declarations which follow the fixed part of the AOF header.

If the object file contains a symbol table chunk (named OBJ_SYMT), Number of Symbols
records the number of symbols in the symbol table.

One of the areas in an object file may be designated as containing the start address of any
program which is linked to include the file. If this is the case, the entry address is specified
as an Entry Area Index , Entry Offset pair.

Entry Area Index , in the range 1 to Number of Areas, gives the 1-origin index in the
following array of area headers of the area containing the entry point. The entry address is
defined to be the base address of this area plus Entry Offset .

ARM Object Format
A value of 0 for Entry Area Index signifies that no program entry address is defined by
this AOF file.

Object File Type
14-9Reference Guide
ARM DUI 0041B

 Figure 14-2: AOF header chunk

14.3.1 Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following format:

Area name (offset into string table)

Attributes + Alignment

Area Size

Number of Relocations

Base Address or 0 (five words in total)

Each area within an object file must be given a unique name.

Area Name gives the offset of that name in the string table (stored
in the OBJ_STRT chunk; see 14.8 The String Table
Chunk (OBJ_STRT) on page 14-21).

Area Size gives the size of the area in bytes, which must be
a multiple of 4. Unless the Not Initialised bit
(bit 12) is set in the area attributes (see 14.4 Attributes
and Alignment), there must be this number of bytes
for this area in the OBJ_AREA chunk. If the Not
Initialised bit is set, there must be no initializing
bytes for this area in the OBJ_AREA chunk.

Version Id

Number of Areas

Number of Symbols

Entry Area Index

Entry Offset six words in the fixed part

1st Area Header five words per area header

2nd Area Header
. . .

nth Area Header (6 + (5*Number_of_Areas))
words in the AOF header

ARM Object Format
Number of Relocations specifies the number of relocation directives which

apply to this area (which is equivalent to the number of
relocation records following the area's contents in
the OBJ_AREA chunk; see 14.5 Format of the AREAS
14-10 Reference Guide
ARM DUI 0041B

Chunk on page 14-14).

Base Address is unused unless the area has the absolute attribute.
In this case, the field records the base address of
the area. In general, giving an area a base address
prior to linking will cause problems for the linker and
may prevent linking altogether, unless only a single
object file is involved.

ARM Object Format
14.4 Attributes and Alignment

Each area has a set of attributes encoded in the most significant 24 bits of the
Attributes + Alignment word. The least significant eight bits of this word encode
14-11Reference Guide
ARM DUI 0041B

the alignment of the start of the area as a power of 2 and must have a value between 2 and
32 (this value denotes that the area should start at an address divisible by 2alignment).

The linker orders areas in a generated image in the following order:

• by attributes

• by the (case-significant) lexicographic order of area names

• by position of the containing object module in the link list

The position in the link list of an object module loaded from a library is not predictable.
The precise significance to the linker of area attributes depends on the output being
generated. For details see 3.4 Area Placement and Sorting Rules on page 3-13.

Note If both bits 10 and 11 are set, bit 11 is ignored.

Common areas

Common areas with the same name are overlaid on each other by the linker.
The Area Size field of a common definition area defines the size of a common block.
All other references to this common block must specify a size which is smaller than or equal
to the definition size. If, in a link step, there is more than one definition of an area with
the common definition attribute (area of the given name with bit 10 set), each of these areas
must have exactly the same contents. If there is no definition of a common area, its size will
be the size of the largest common reference to it.

Although common areas conventionally hold data, you can use bit 10 in conjunction with
bit 9 to define a common block containing code. This is useful for defining a code area which
must be generated in several compilation units, but which should be included in the final
image only once.

Bit 8 encodes the absolute attribute and denotes that the area must be placed at
its Base Address. This bit is not usually set by language processors.

Bit 9 encodes the code attribute:

set indicates code in the area.

unset indicates data in the area.

Bit 10 specifies that the area is a common definition.

Bit 11 defines the area to be a reference to a common block, and precludes
the area having initializing data (see Bit 12). In effect, bit 11 implies bit 12.

ARM Object Format

Bit 12 encodes the zero-initialized attribute, specifying that the area has no
initializing data in this object file, and that the area contents are missing
14-12 Reference Guide
ARM DUI 0041B

from the OBJ_AREA chunk. Typically, this attribute is given to large
municipalized data areas. When a municipalized area is included in
an image, the linker either includes a read-write area of binary zeros of
appropriate size, or maps a read-write area of appropriate size that will be
zeroed at image startup time. This attribute is incompatible with
the read-only attribute (see Bit 13, below).
Whether or not a zero-initialized area is re-zeroed if the image is
re-entered is a property of the relevant image format and/or the system on
which it will be executed. The definition of AOF neither requires nor
precludes re-zeroing.

A combination of bit 10 (common definition) and bit 12 (zero-initialized) has exactly
the same meaning as bit 11 (reference to common).

Bit 13 encodes the read only attribute and denotes that the area will not be
modified following relocation by the linker. The linker groups read-only
areas together so that they may be write-protected at runtime, hardware
permitting. Code areas and debugging tables must have this bit set.
The setting of this bit is incompatible with the setting of bit 12.

Bit 14 encodes the position independent (PI) attribute, usually only of
significance for code areas. Any reference to a memory address from a PI
area must be in the form of a link-time-fixed offset from a base register
(eg. a PC-relative branch offset).

Bit 15 encodes the debugging table attribute and denotes that the area contains
symbolic debugging tables. The linker groups these areas together so
they can be accessed as a single continuous chunk at or before runtime
(usually, a debugger extracts its debugging tables from the image file prior
to starting the debuggee). Usually, debugging tables are read-only and,
therefore, have bit 13 set also. In debugging table areas, bit 9 (the code
attribute) is ignored.

Bits 16–22 encode additional attributes of code areas and must be non-zero only if
the area has the code attribute (bit 9) set. Bits 20–22 can be non-zero for data areas.

Bit 16 encodes the 32-bit PC attribute, and denotes that code in this area
complies with a 32-bit variant of the APCS. For details, refer to 5.3.1 32-bit
PC vs 26-bit PC on page 5-11. Such code may be incompatible with code
that complies with a 26-bit variant of the APCS.

Bit 17 encodes the re-entrant attribute, and denotes that code in this area
complies with a re-entrant variant of the APCS.

ARM Object Format

Bit 18 when set, denotes that code in this area uses the ARM's extended
floating-point instruction set. Specifically, function entry and exit use
the LFM and SFM floating-point save and restore instructions rather than
14-13Reference Guide
ARM DUI 0041B

multiple LDFEs and STFEs. Code with this attribute may not execute on
older ARM-based systems.

Bit 19 encodes the No Software Stack Check attribute, denoting that code in this
area complies with a variant of the APCS without software stack-limit
checking. Such code may be incompatible with code that complies with
a limit-checked variant of the APCS.

Bit 20 indicates that this area is a Thumb code area.

Bit 21 indicates that this area may contain ARM halfword instructions. This bit is
set by armcc when compiling code for a processor with halfword
instructions such as the ARM7TDMI.

Bit 22 indicates that this area has been compiled to be suitable for ARM/Thumb
interworking. See the Software Development Toolkit User Guide.

Bits 20–27 encode additional attributes of data areas, and must be non-zero only if
the area does not have the code attribute (bit 9) unset.
Bits 20–22 can be non-zero for code areas.

Bit 20 encodes the based attribute, denoting that the area is addressed via
link-time-fixed offsets from a base register (encoded in bits 24-27). Based
areas have a special role in the construction of shared libraries and
ROM-able code, and are treated specially by the linker (refer to 3.6.6
Based area relocation on page 3-17).

Bit 21 encodes the Shared Library Stub Data attribute. In a link step involving
layered shared libraries, there may be several copies of the stub data for
any library not at the top level. In other respects, areas with this attribute
are treated like data areas with the common definition (bit 10) attribute.
Areas which also have the zero-initialized attribute (bit 12) are treated
much the same as areas with the common reference (bit 11) attribute.
This attribute is not usually set by language processors, but is set only by
the linker.

Bits 22–23 are reserved and must be set to 0.

Bits 24–27 encodes the base register used to address a based area. If the area does
not have the based attribute, these bits are set to 0.

Bits 28–31 are reserved and must be set to 0.

ARM Object Format
14.4.1 Area attributes summary
14-14 Reference Guide
ARM DUI 0041B

14.5 Format of the AREAS Chunk
The areas chunk (OBJ_AREA) contains the actual area contents (code, data, debugging
data, etc.) together with their associated relocation data. Its chunkId is OBJ_AREA. An area
is simply a sequence of byte values. The endianness of the words and halfwords within it
must agree with that of the containing AOF file. Pictorially, an area’s layout is:

Area 1
Area 1 Relocation
...
Area n
Area n Relocation

An area is followed by its associated table of relocation directives (if any). An area is either
completely initialized by the values from the file or is initialized to zero, as specified by bit 12
of its area attributes. Both area contents and table of relocation directives are aligned to
4-byte boundaries.

Bit Mask Attribute Description

8
9
10
11
12
13
14
15

0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000

Absolute attribute
Code attribute
Common block definition
Common block reference
Uninitialized (zero-initialized)
Read-only
Position independent
Debugging tables

16
17
18
19
20
21
22

0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000

(Code areas only)
Complies with the 32-bit APCS
Re-entrant code
Uses extended FP inst set
No software stack checking
Thumb Code area
Area may contain ARM halfword instructions
Area suitable for ARM/Thumb interworking

20
21
24–27

0x00100000
0x00200000
0x0F000000

(Data areas only)
Based area
Shared library stub data
Base register for based area

 Table 14-1: Area attributes

ARM Object Format
14.6 Relocation Directives

A relocation directive describes a value which is computed at link time or load time, but
which cannot be fixed when the object module is created.
14-15Reference Guide
ARM DUI 0041B

In the absence of applicable relocation directives, the value of a byte, halfword, word or
instruction from the preceding area is exactly the value that will appear in the final image.

A field may be subject to more than one relocation.

Pictorially, a relocation directive looks like:

Offset is the byte offset in the preceding area of the subject field to be relocated by a value
calculated as described below.

The interpretation of the 24-bit SID field depends on the value of the A bit (bit 27):

Value Description

1 The subject field is relocated (as further described below) by the value of
the symbol of which SID is the zero-origin index in the symbol table
chunk.

0 The subject field is relocated (as further described below) by the base of
the area of which SID is the zero-origin index in the array of areas,
(or, equivalently, in the array of area headers).

The two-bit field type FT (bits 25, 24) describes the subject field:

Value Description

00 the field to be relocated is a byte

01 the field to be relocated is a halfword (two bytes)

10 the field to be relocated is a word (four bytes)

11 the field to be relocated is an instruction or instruction sequence

Bytes, halfwords and instructions may only be relocated by values of small size. Overflow is
faulted by the linker.

An ARM branch or branch-with-link instruction is always a suitable subject for a relocation
directive of field type instruction. For details of other relocatable instruction sequences, refer
to 3.6 Handling Relocation Directives on page 3-16.

offset

1 II B A R FT 24-bit SID

Thumb If bit 0 of the relocation offset is set, this identifies a Thumb instruction sequence,
otherwise it is taken to be an ARM instruction sequence.

ARM Object Format
If the subject field is an instruction sequence, the address in Offset points to the first
instruction of the sequence, and the II field (bits 29 and 30) constrains how many
instructions may be modified by this directive:
14-16 Reference Guide
ARM DUI 0041B

Value Description

00 no constraint (the linker may modify as many contiguous instructions as it
needs to)

01 the linker will modify at most 1 instruction

10 the linker will modify at most 2 instructions

11 the linker will modify at most 3 instructions

The R (PC-relative) bit, modified by the B (based) bit, determines how the relocation value
is used to modify the subject field.

14.6.1 R (bit 26) = 0 and B (bit 28) = 0

This specifies plain additive relocation: the relocation value is added to the subject field.
In pseudo C:

subject_field = subject_field + relocation_value

14.6.2 R (bit 26) = 1 and B (bit 28) = 0

This specifies PC-relative relocation: to the subject field is added the difference between
the relocation value and the base of the area containing the subject field. In pseudo C:

subject_field = subject_field + (relocation_value -
base_of_area_containing(subject_field))

As a special case, if A is 0, and the relocation value is specified as the base of the area
containing the subject field, it is not added and:

subject_field = subject_field -
base_of_area_containing(subject_field)

This caters for relocatable PC-relative branches to fixed target addresses.

If R is 1, B is usually 0. A B value of 1 is used to denote that the inter-link-unit value of a
branch destination is to be used, rather than the more usual intra-link-unit value.

Note This allows compilers to perform the tail-call optimization on re-entrant code. For details,
refer to 3.6.4 Forcing use of an inter-link-unit entry point on page 3-16.

14.6.3 R (bit 26) = 0 and B (bit 28) = 1

This specifies based area relocation. The relocation value must be an address within
a based data area. The subject field is incremented by the difference between this value and
the base address of the consolidated based area group (the linker consolidates all areas
based on the same base register into a single, contiguous region of the output image).

ARM Object Format
In pseudo C:

subject_field = subject_field + (relocation_value
- base_of_area_group_containing(relocation_value))
14-17Reference Guide
ARM DUI 0041B

For example, when generating re-entrant code, the C compiler places address constants in
an adcon area based on register sb, and loads them using sb relative LDRs. At link time,
separate adcon areas will be merged and sb will no longer point where presumed at compile
time. B type relocation of the LDR instructions corrects for this. For further details, refer to
3.6.6 Based area relocation on page 3-17.

Bits 29 and 30 of the relocation flags word must be 0; bit 31 must be 1.

ARM Object Format
14.7 Symbol Table Chunk Format (OBJ_SYMT)

The NumberofSymbols field in the fixed part of the AOF header (OBJ_HEAD chunk) defines
how many entries there are in the symbol table. Each symbol table entry has this format:
14-18 Reference Guide
ARM DUI 0041B

Name
Attributes
Value
Area Name 4 words per entry

where:

Area Name is meaningful only if the symbol is a non-absolute defining occurrence (bit
0 of Attributes set, bit 2 unset). In this case it gives the index into the
string table for the name of the area in which the symbol is defined (which
must be an area in this object file).

Name is the offset in the string table (in chunk OBJ_STRT) of the character string
name of the symbol.

Value is meaningful only if the symbol is a defining occurrence (bit 0 of
Attributes set), or a common symbol (bit 6 of Attributes set):

• if the symbol is absolute (bits 0–2 of Attributes set), this field
contains the value of the symbol

• if the symbol is a common symbol (bit 6 of Attributes set), this
contains the byte length of the referenced common area

• otherwise, Value is interpreted as an offset from the base address
of the area named by Area Name , which must be an area defined in
this object file.

14.7.1 Symbol attributes

The Symbol Attributes word is interpreted as follows:

Bit 0 denotes that the symbol is defined in this object file.

Bit 1 denotes that the symbol has global scope and can be matched by the
linker to a similarly named symbol from another object file.

01 (bit 1 unset, bit 0 set) denotes that the symbol is defined in this
object file and has scope limited to this object file (when resolving
symbol references, the linker will only match this symbol to
references from within the same object file).

10 (bit 1 set, bit 0 unset) denotes that the symbol is a reference to
a symbol defined in another object file. If no defining instance of
the symbol is found, the linker attempts to match the name of
the symbol to the names of common blocks. If a match is found,
it is as if an identically-named symbol of global scope were
defined, taking its value from the base address of the common
area.

ARM Object Format
11 denotes that the symbol is defined in this object file with global

scope (when attempting to resolve unresolved references,
the linker will match this definition to a reference from another
object file).
14-19Reference Guide
ARM DUI 0041B

00 is reserved.

Bit 2 encodes the absolute attribute which is meaningful only if the symbol is
a defining occurrence (bit 0 set). If set, it denotes that the symbol has
an absolute value—for example, a constant. If unset, the symbol’s value
is relative to the base address of the area defined by the Area Name field
of the symbol.

Bit 3 encodes the case insensitive reference attribute which is meaningful only
if the symbol is an external reference (bits 1, 0 = 10). If set, the linker will
ignore the case of the symbol names it tries to match when attempting to
resolve this reference.

Bit 4 encodes the weak attribute which is meaningful only if the symbol is
an external reference (bits 1, 0 = 10). It denotes that it is acceptable for
the reference to remain unsatisfied and for any fields relocated via it
to remain unrelocated. The linker ignores weak references when deciding
which members to load from an object library.

Bit 5 encodes the strong attribute which is meaningful only if the symbol is
an external defining occurrence (bits 1, 0 = 11). In turn, this attribute only
has meaning if there is a non-strong, external definition of the same
symbol in another object file. In this case, references to the symbol from
outside of the file containing the strong definition resolve to the strong
definition, while those within the file containing the strong definition
resolve to the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced.
Usually, a strong definition will be absolute, and will be used to implement
an operating system's entry vector having the forever binary property.

Bit 6 encodes the common attribute, which is meaningful only if the symbol is
an external reference (bits 1, 0 = 10). If set, the symbol is a reference to
a common area with the symbol's name. The length of the common area
is given by the symbol's Value field (see above). The linker treats
common symbols much as it treats areas having the Common Reference
attribute; all symbols with the same name are assigned the same base
address, and the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area,
these are merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area
(reference or definition) are collected into an anonymous, linker-created,
pseudo-area.

Bit 7 is reserved and must be set to 0.

ARM Object Format
Bits 8–11 encode additional attributes of symbols defined in code areas.

Bit 8 encodes the code datum attribute which is meaningful only if this symbol
defines a location within an area having the Code attribute. It denotes that
14-20 Reference Guide
ARM DUI 0041B

the symbol identifies a (usually read-only) datum, rather than
an executable instruction.

Bit 9 encodes the floating-point arguments in floating-point registers attribute.
This is meaningful only if the symbol identifies a function entry point.
A symbolic reference with this attribute cannot be matched by the linker
to a symbol definition which lacks the attribute.

Bit 10 is reserved and must be set to 0.

Bit 11 is the simple leaf function attribute which is meaningful only if this symbol
defines the entry point of a sufficiently simple leaf function (a leaf function
is one which calls no other function). For a re-entrant leaf function,
it denotes that the function's inter-link-unit entry point is the same as its
intra-link-unit entry point. For details of the significance of this attribute to
the linker, refer to 3.6.4 Forcing use of an inter-link-unit entry point on
page 3-16.

14.7.2 Symbol attribute summary

Thumb Bit 12 is the Thumb attribute, which is set if the symbol is a Thumb symbol.

Bit Mask Attribute description

0
1
2
3
4
5
6

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040

Symbol is defined in this file
Symbol has a global scope
Absolute attribute
Case-insensitive attribute
Weak attribute
Strong attribute
Common attribute

8
9
11
12

0x00000100
0x00000200
0x00000800
0x00001000

Code symbols only:
Code area datum attribute
FP args in FP regs attribute
Simple leaf function attribute
Thumb symbol

 Table 14-2: Symbol attributes

ARM Object Format
14.8 The String Table Chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and symbol
table chunks. This separation is made to factor out the variable length characteristic of print
14-21Reference Guide
ARM DUI 0041B

names from the key data structures.

A print name is stored in the string table as a sequence of non-control characters (codes 32–
126 and 160–255) terminated by a NUL (0) byte, and is identified by an offset from the start
of the table. The first four bytes of the string table contain its length (including the length of
its length word), so no valid offset into the table is less than four, and no table has length less
than four.

The endianness of the length word must be identical to the endianness of the AOF and
chunk files containing it.

14.9 The Identification Chunk (OBJ_IDFN)
This chunk should contain a string of printable characters (codes 10–13 and 32–126)
terminated by a NUL (0) byte, which gives information about the name and version of
the tool which generated the object file.

Use of codes in the range 128–255 is discouraged, as the interpretation of these values is
host-dependent.

15-1Reference Guide
ARM DUI 0041B

This section specifies the format of symbolic debugging data generated by ARM compilers,
which is used by the ARM symbolic debugger to support high-level language-oriented,
interactive debugging.

15.1 Overview of ARM Symbolic Debug Table Format 15-2
15.2 Order of Debugging Data 15-3
15.3 Representation of Data Types 15-4
15.4 Section Items 15-7
15.5 Procedure Items 15-9

ARM Symbolic Debug
Table Format15

ARM Symbolic Debug Table Format
15.1 Overview of ARM Symbolic Debug Table Format

For each separate compilation unit (called a section) the compiler produces debugging data,
and a special area in the object code (see Chapter 14, ARM Object Format for an
15-2 Reference Guide
ARM DUI 0041B

explanation of ARM Object Format, including areas and their attributes). Debugging data are
position-independent, containing only relative references to other debugging data within the
same section, and relocatable references to other compiler-generated areas.

Debugging data areas are combined by the ARM linker into a single contiguous section of
a program image. For details of the ARM linker's capabilities see Chapter 3, Linker .
For a description of the linker's principal output format see Chapter 12, ARM Image
Format .

The format of debugging data allows for a variable amount of detail. This potentially allows
you to trade off between memory used, disk space used, execution time, and debugging
detail.

Assembly-language-level debugging is also supported, though in this case the debugging
tables are generated by the linker. If required, the assembler can generate debugging table
entries relating code addresses to source lines. Low-level debugging tables appear in
an extra section item, as if generated by an independent compilation.

Low-level and high-level debugging are orthogonal facilities, though the debugger allows
you to move smoothly between levels if both sets of debugging data are present in an image.

15.1.1 Terminology

The terms byte, word, and halfword are used to mean:

byte 8 bits, usually considered unsigned

word 32 bits (4 bytes), often considered signed

halfword 16 bits (2 bytes), also called a short

Halfwords are unused, except in the long form of LineInfo items.

ARM Symbolic Debug Table Format
15.2 Order of Debugging Data

A debug data area consists of a series of items. The arrangement of these items mimics
the structure of the high-level language program itself.
15-3Reference Guide
ARM DUI 0041B

For each debug area, the first item is a section item, giving global information about
the compilation, including a code identifying the language, and flags indicating the amount
of detail included in the debugging tables.

Each definition datum, function, procedure, etc., in the source program has a corresponding
debug data item, which appear in an order corresponding to the order of definitions in the
source. This means that nested structures in the source program are preserved in the
debugging data, and the debugger can use these structure to make deductions about
the scope of various source-level objects. For procedure definitions, there are two debug
items:

procedure item marks the definition itself

endproc item marks the end of the procedure's body and the end of any
nested definitions

If procedure definitions are nested, so are the procedure endproc brackets. Variable and
type definitions made at the outermost level appear outside of all procedure/endproc items.

Information about the relationship between the executable code and source files is collected
together and appears as a fileinfo item, which is always the final item in a debugging area.
Because of the C language's #include facility, the executable code produced from
an outer-level source file may be separated into disjoint pieces interspersed with that
produced from the included files. Therefore, source files are considered to be collections of
fragments, each corresponding to a contiguous area of executable code, and the fileinfo
item is a list with an entry for each file, each in turn containing a list with an entry for each
fragment. The fileinfo field in the section item addresses the fileinfo item itself. In each
procedure item there is a fileentry field, which refers to the file-list entry for the source file
containing the procedure's start; there is a separate one in the endproc item because it may
possibly not be in the same source file.

15.2.1 Endianness and the encoding of debugging data

The ARM can be configured to use either a little-endian memory system (least significant
byte of each four-byte word has the lowest address), or a big-endian memory system
(most significant byte of each four-byte word has the lowest address).

In general, the code to be generated varies according to the byte sex (or endianness) of
the target, and the linker has insufficient information to change the byte sex of an object file.
Therefore, object files are encoded using the byte order of the intended target,
independently of the byte order of the host system on which the compiler or assembler runs.
The ARM linker accepts inputs having either byte order, but rejects mixed sex inputs, and
generates its output using the same byte order. This means that producers of debugging
tables must be prepared to generate them in either byte order, as required. In turn, this
requires definitions to be very clear about when a four-byte word is being used (which will

ARM Symbolic Debug Table Format
require reversal on output or input when cross-sex compiling or debugging), and when a
sequence of bytes is being used (which requires no special treatment provided it is written
and read as a sequence of bytes in address order).
15-4 Reference Guide
ARM DUI 0041B

15.3 Representation of Data Types
Several of the debugging data items (eg. procedure and variable) have a type word field
to identify their data type. This field contains:

• in the most significant 24 bits, a code to identify a base type

• in the least significant 8 bits, a pointer count:

0 denotes the type itself
1 denotes a pointer to the type
2 denotes a pointer to a pointer

For simple types the code is a positive integer as follows (all codes are decimal):

void 0

signed integers
single byte 10
halfword 11
word 12
double word 13

unsigned integers
single byte 20
halfword 21
word 22
double word 23

floating point
float 30
double 31
long double 32

complex
single complex 41
double complex 42

functions
function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data item
(array, struct, etc.) to give details such as array bounds and field types. The type code for
compound types is negative; the negation of the (byte) offset of the debug item from the start
of the debugging area.

Set types in Pascal are not treated in detail: the only information recorded for them is
the total size occupied by the object in bytes. Neither are Pascal file variables supported by
the debugger, since their behavior under debugger control is unlikely to be helpful to you.

Fortran character types are supported by special kinds of debugging data item, the format
of which is specific to each Fortran compiler.

ARM Symbolic Debug Table Format
15.3.1 Representation of source file positions

Several of the debugging data items have a sourcepos field to identify a position in
the source file. This field contains a line number and character position within the line
15-5Reference Guide
ARM DUI 0041B

packed into a single word. The most significant 10 bits encode the character offset
(zero-based) from the start of the line and the least significant 22 bits give the line number.

15.3.2 The code and length field

The first word of each debugging data item contains the byte length of the item (encoded in
the most significant 16 bits), and a code identifying the kind of item (in the least significant
16 bits). The defined codes are:

1 section
2 procedure/function definition
3 endproc
4 variable
5 type
6 struct
7 array
8 subrange
9 set
10 fileinfo
11 contiguous enumeration
12 discontiguous enumeration
13 procedure/function declaration
14 begin naming scope
15 end naming scope
16 bitfield
17 macro definition
18 macro undefinition
19 class
20 union
32 FP map fragment

The meaning of the second and subsequent words of each item is defined in the following
sections.

If a debugger encounters a code it does not recognize, it uses the length field to skip the item
entirely. This discipline allows the debugging tables to be extended without invalidating
existing debuggers.

ARM Symbolic Debug Table Format
15.3.3 Text names in items

Where items include a string field, the string is packed into successive bytes beginning with
a length byte, and padded at the end to a word boundary with 0 bytes. The length of a string
15-6 Reference Guide
ARM DUI 0041B

is in the range [0..255] bytes.

15.3.4 Offsets in file and addresses in memory

When an item contains a field giving an offset in the debugging data area (usually to address
another item), this means a byte offset from the start of the debugging data for the whole
section (in other words, from the start of the section item).

ARM Symbolic Debug Table Format
15.4 Section Items

A section item is the first item of each section of the debugging data. After its code and
length word it contains the fields listed below. First, there are four flag bytes:
15-7Reference Guide
ARM DUI 0041B

lang a byte identifying the source language

flags a byte describing the level of detail

unused

asdversion a byte version number of the debugging data

15.4.1 Lang byte

The language byte codes are defined in the following table:

All other codes are reserved by ARM.

15.4.2 Flags byte

The flags byte uses the following mask values:

• debugging data contains line-number information.

• debugging data contains information about top-level variables.

• both of the above

15.4.3 asdversion byte

The asdversion byte should be set to 2, the version of this definition.

The flag bytes are followed by the following word-sized fields:

codestart Address of first instruction in this section, relocated by the linker.

datastart Address of start of static data for this section, relocated by
the linker.

codesize Byte size of executable code in this section.

Language Code Description

LANG_NONE 0 Low-level debugging data only

LANG_C 1 C source level debugging data

LANG_PASCAL 2 Pascal source level debugging data

LANG_FORTRAN 3 Fortran-77 source level debugging data

LANG_ASM 4 ARM assembler line number data

 Table 15-1: Language byte codes

ARM Symbolic Debug Table Format
datasize Byte size of the static data in this section.

fileinfo Offset in the debugging area of the fileinfo item for this section (0
if no fileinfo item present). The fileinfo field is 0 if no source
file information is present.
15-8 Reference Guide
ARM DUI 0041B

debugsize Total byte length of debug data for this section.

name or nsyms String or integer. The name field contains the program name for
Pascal and Fortran programs. For C programs it contains
a name derived by the compiler from the root filename
(notionally a module name). In each case, the name is similar to
a variable name in the source language. For a low-level
debugging section (language = 0), the field is treated as a four-
byte integer giving the number of symbols following.

For linker-generated debug data, the fields have these values:

language 0
codestart Image$$RO$$Base
datastart Image$$RW$$Base
codesize Image$$RO$$Limit - Image$$RO$$Base
datasize Image$$RW$$Limit - Image$$RW$$Base
fileinfo 0
nsyms Number of symbols in the next debugging data.
debugsize Total size of the low-level debugging data

including the size of this section item.

Also, the section item is followed by nsyms symbol items, each
consisting of two words:

sym Flags + byte offset in string table of symbol name.
sym encodes an index into the string table in
the 24 least significant bits, and the following flag
values in the eight most significant bits, as in Table
15-2: Linker-generated debugging data .

value the symbol’s value.

Symbol Offset Description

ASD_ABSSYM 0 if the symbol is absolute

ASD_GLOBSYM 0x01000000L if the symbol is global

ASD_TEXTSYM 0x02000000L if the symbol names code

ASD_DATASYM 0x04000000L if the symbol names data

ASD_ZINITSYM 0x06000000L if the symbol names 0-initialized data

ASD_16BITSYM 0x10000000L bit set if the symbol is a Thumb symbol

 Table 15-2: Linker-generated debugging data

ARM Symbolic Debug Table Format
Note The linker reduces all symbol values to absolute values, so that the flag values record

the history, or origin, of the symbol in the image.

Immediately after the symbol table is the string table, in standard AOF format. It consists of:
15-9Reference Guide
ARM DUI 0041B

• a length word

• the strings themselves, each terminated by a NUL (0)

The length word includes the size of the length word, so no offset into the string table is less
than four. The end of the string table is padded with NULs to the next word boundary
(so the length is a multiple of 4).

15.5 Procedure Items
A procedure item appears once for each procedure or function definition in the source
program. Any definitions within the procedure have their related debugging data items
between the procedure item and its matching endproc item. After its code and length field,
a procedure item contains the following word-sized fields:

type the return type if this is a function, else 0 (see 15.3
Representation of Data Types on page 15-4)

args the number of arguments

sourcepos the source position of the procedure's start (see
15.3.1 Representation of source file positions on page 15-5)

startaddr address of the first instruction of the procedure prologue

The startaddr field addresses the start of the prologue; it is
the instruction where control arrives when the procedure is
called.

entry address of the first instruction of the procedure body

The entry field addresses the first instruction following the
procedure prologue; it is the first address where a high-level
breakpoint could sensibly be set.

endproc offset of the related endproc item

fileentry offset of the file list entry for the source file

name string

15.5.1 Type items

A type item is used to describe a named type in the source language (eg. a typedef in C).
After its code and length field, a type item contains two word-sized fields:

type a type word (described in 15.3 Representation of Data Types on
page 15-4)

name string

ARM Symbolic Debug Table Format
15.5.2 Endproc items

An endproc item marks the end of the debugging data items belonging to a particular
procedure. It also contains information relating to the procedure's return. After its code and
15-10 Reference Guide
ARM DUI 0041B

length field, an endproc item contains the following word-sized fields:

sourcepos position in the source file of the procedure's end (see 15.3.1
Representation of source file positions on page 15-5)

endpoint address of the code byte after the compiled code for the
procedure

fileentry offset of the file-list entry for the procedure's end

nreturns number of procedure return points (may be 0)

retaddrs array of addresses of procedure return code

If the procedure body is an infinite loop, there will be no return point, so nreturns will be
0. Otherwise each member of retaddrs should point to a suitable location at which
a breakpoint may be set at the exit of the procedure. When execution reaches this point,
the current stack frame should still be for this procedure.

15.5.3 Label items

A label in a source program is represented by a special procedure item with no matching
endproc (the endproc field is 0 to denote this). Pascal and Fortran numerical labels are
converted by their respective compilers into strings prefixed by $n . For Fortran77, multiple
entry points to the same procedure each give rise to a separate procedure item, all of which
have the same endproc offset referring to the unique, matching endproc item.

15.5.4 Variable items

A variable item contains debugging data relating to a source program variable, or a formal
argument to a procedure (the first variable items in a procedure always describe its
arguments). After its code and length field, a variable item contains the following word-sized
fields:

type type of this variable (see 15.3 Representation of Data Types
on page 15-4)

sourcepos the source position of the variable (see 15.3.1 Representation
of source file positions on page 15-5)

storageclass a word encoding the variable's storage class

location see explanation below

name string

ARM Symbolic Debug Table Format
The following codes define the storage classes of variables:

1 external variables (or Fortran common)

2 static variables private to one section
15-11Reference Guide
ARM DUI 0041B

3 automatic variables

4 register variables

5 Pascal 'var' arguments

6 Fortran arguments

7 Fortran character arguments

The meaning of the location field of a variable item depends on the storage class:

• an absolute address for static and external variables (relocated by the linker)

• a stack offset (offset from the frame pointer) for automatic and var-type args

• an offset into the argument list for Fortran argument

• a register number for register variables (the eight floating-point registers are
16..23)

The sourcepos field is used by the debugger to distinguish between different definitions
that have the same name (eg. identically named variables in disjoint source-level naming
scopes such as nested blocks in C).

15.5.5 Struct, union, and class items

A struct item is used to describe a structured data type (eg. a struct in C or a record in
Pascal). A class item is used to describe a C++ class type. A union item is used to describe
a union type. All have the same format. Note that the C or C++ tag for a struct, union,
or class is not represented in the debug table.

After its code and length field, a struct item contains the following word-sized fields:

fields the number of fields in the structure

size total byte size of the structure

fieldtable ... an array of fields struct field items

Each struct field item has the following word-sized fields:

offset byte offset of this field within the structure

type a type word (described in 15.3 Representation of Data Types
on page 15-4)

name string

Earlier versions of the ARM tools described union types by struct items in which all fields
have 0 offsets.

For C and C++ bit fields, the type part of the type word identifies a bitfield item.

ARM Symbolic Debug Table Format
15.5.6 Array items

An array item is used to describe a one-dimensional array. Multi-dimensional arrays are
described as arrays of arrays. Which dimension comes first is dependent on the source
15-12 Reference Guide
ARM DUI 0041B

language (which is different for C and Fortran). After its code and length field, an array item
contains the following word-sized fields:

size total byte size of the array. If the size field is zero, debugger
operations which affect the whole array, rather than individual
elements of it, are forbidden.

flags (see below)

basetype a type word (described in 15.3 Representation of Data Types
on page 15-4)

lowerbound constant value or location of variable

upperbound constant value or location of variable

The following mask values are defined for the flags field:

ARRAY_UNDEF_LBOUND 1 lower bound is undefined

ARRAY_CONST_LBOUND 2 lower bound is a constant

ARRAY_UNDEF_UBOUND 4 upper bound is undefined

ARRAY_CONST_UBOUND 8 upper bound is a constant

ARRAY_VAR_LBOUND 16 lower bound is a variable

ARRAY_VAR_UBOUND 32 upper bound is a variable

15.5.7 Bounds

Note A variable item may be used to describe a location known to the compiler, which need not
correspond to a source language variable.

undefined No information about it is available.

constant Its value is known at compile time. In this case, the
corresponding bound field gives its value.

variable The offset field identifies a variable debug item describing the
location containing the bound. In a debug area in an object file,
the offset field contains the offset from the start of the debug
area to the variable item.

ARM Symbolic Debug Table Format
15.5.8 Subrange items

A subrange item is used to describe a subrange typed in Pascal. It also serves to describe
enumerated types in C, and scalars in Pascal (in which case the base type is understood
15-13Reference Guide
ARM DUI 0041B

to be an unsigned integer of appropriate size). After its code and length field, a subrange
item contains the following word-sized fields:

lb low bound of subrange

hb high bound of subrange

sizeandtype encodes the byte size of container for the subrange (1, 2 or 4)
in its least significant 16 bits, and a simple type code (see 15.3
Representation of Data Types on page 15-4) in its most
significant 16 bits. The type code refers to the base type of the
subrange; for example, a subrange 256..511 of unsigned short
may be held in one byte.

15.5.9 Set items

A set item is used to describe a Pascal set type. Currently, the description is only partial.
After its code and length field, a set item consists of a single word:

size byte size of the object

15.5.10 Enumeration items

An enumeration item describes a Pascal or C enumerated type. After its code and length
word, the description of a contiguous enumeration contains the following word-sized fields:

type a type word describing the type of the container for the enumeration
(see 15.3 Representation of Data Types on page 15-4)

count the cardinality of the enumeration

base the first (lowest) value (may be negative)

nametable a character array containing count name strings

The description of a discontiguous enumeration (such as the C enumeration enum bits
{bit0=1, bit1=2, bit2=4, bit3=8, bit4=16}) contains the following fields after its code and
length word:

type as above

count as above

nametable a table of count (value, name) pairs

Each nametable entry has the following format (which is variable in length):

val the enumerated value (1/2/4/8/16 in the example)

name string (may be several words long)

ARM Symbolic Debug Table Format
15.5.11 Function declaration items

After its code and length word, a function declaration item contains the following fields:
15-14 Reference Guide
ARM DUI 0041B

type a type word (see 15.3 Representation of Data Types on page 15-4)
describing the return type of the function or procedure

argcount the number of arguments to the function

args a sequence of argcount argument description items

Each argument description item contains the following:

type a type word (see 15.3 Representation of Data Types on page 15-4)
describing the type of the argument

name string (may be several words)

An argument descriptor need not be named; in this case the length of the name is zero, and
the name field is a single zero word.

15.5.12 Begin and end naming scope items

These debug items are used to mark the beginning and end of a naming scope. They must
be properly nested in the debug area. In each case, after the code and length word, there is
one word-sized field:

codeaddress address of the start/end of scope (which is determined by
the code word)

15.5.13 Bitfield item

A bitfield item describes a bitfield member of a C or C++ struct, union, or class.
After the code and length field, a bitfield item contains the following fields, which are then
followed by two zero bytes to pad to a word boundary:

type a type word describing the type of the field

container a type word describing the type of the field’s container

size a byte containing the size of the field in bits

offset a byte containing the offset from bit 0 of the containing value of
bit 0 of the field

15.5.14 Macro definition item

A macro definition item describes a C or C++ preprocessor macro definition (#define).
After the code and length field, a macro definition item contains the following fields:

fileentry offset of the file list entry for the source file containing the macro
definition

sourcepos the source position of the macro definition

body the offset of the replacement for the macro (not a string, but
the characters of the replacement, terminated by a zero byte)

ARM Symbolic Debug Table Format
argcount a word containing the number of arguments for the macro.

For object-type macros, this field has the value -1.

argtable offset of a description of the macro’s argument names.
This contains argcount strings. The field is zero if the macro
15-15Reference Guide
ARM DUI 0041B

has no arguments.

name string

Note The body and argtable offsets are contained within the macro definition item, but the
offset is an offset within the containing section.

15.5.15 Macro undefinition item

A macro undefinition item describes a C or C++ preprocessor macro undefinition (#undef).
After the code and length field, a macro undefinition item contains the following fields:

fileentry offset of the file list entry for the source file containing the macro
undefinition

sourcepos the source position of the macro undefinition

name string

15.5.16 Fileinfo items

A fileinfo item appears once per section, after all other debugging data items. If the fileinfo
item is too large for its length to be encoded in 16 bits, its length field must be written as 0
(since this is the last item in a section and the section header contains the length of
the whole section, the length field is strictly redundant).

Each source file is described by a sequence of fragments. Each fragment describes
a contiguous region of the file, within which the addresses of compiled code increase
monotonically with source file position. The order in which fragments appear in
the sequence is not necessarily related to the source file positions to which they refer.

Note For compilations which make no use of the #include facility, the list of fragments may have
only one entry, and all line-number information can be contiguous.

After its code and length word, the fileinfo item is a sequence of file entry items of this format:

len length of this entry in bytes (including the length of the following
fragments)

date date and time when the file was last modified (may be 0,
indicating not available, or unused). If present, the date field
contains the number of seconds since the beginning of 1970
(the UNIX date origin).

filename string (or "" if the name is not known)

fragment data see below

Following the final file entry item, a single 0 word marks the end of the sequence.

The fragment data is a word giving the number of following fragments, followed by
a sequence of fragment items:

ARM Symbolic Debug Table Format
n number of fragments following

fragments... n fragment items

Each fragment item consists of five words, followed by a sequence of byte pairs and halfword
15-16 Reference Guide
ARM DUI 0041B

pairs, formatted as follows:

size length of this fragment in bytes
(including length of following lineinfo items)

firstline linenumber

lastline linenumber

codestart pointer to the start of the fragment's executable code

codesize byte size of the code in the fragment

lineinfo... a variable number of bytes matching line numbers to code
addresses

Each lineinfo item describes a source statement and consists of a pair of (unsigned)
bytes, possibly followed by two or three (unsigned) halfwords (each halfword has the byte
ordering appropriate to the target memory system's endianness or byte sex).

The short form (pair of bytes) lineinfo item is as follows:

codeinc # bytes of code generated by this statement. If codeinc is greater than
255, or lineinc is required to describe a line number change greater
than 63 or a column change greater than 191, then both bytes are written
to describe 0 increments, and the real values are given in the following
two or three (unsigned) halfwords.

lineinc # source space occupied by this statement. lineinc describes how
to calculate the source position (line, column) of the next statement from
the source position of this one. If lineinc is in the range 0 <= lineinc
< 64, the new position is (line+lineinc ,1). If lineinc >= 64, the new
position is (line,column+lineinc -64).

The number of bytes of code generated for a statement may be zero, provided that the line
increment is non-zero (such an item may describe a block end or block start).

It is not possible to describe a statement which generates no code and no line number
increment, as encoding is used as an escape to the long form lineinfo items.

Note There are two ways to describe zero increments: zero lines and zero columns, which serves
to discriminate between the two halfword and three halfword forms.

If the starting column for the next statement is 1, the two-halfword form is used, which in
effect is a triple of halfwords as follows:

zero 2 zero bytes

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

Note The order of the lineinc and codeinc halfwords is the reverse of the corresponding
bytes.

ARM Symbolic Debug Table Format
If the starting column for the next statement is not 1, the three-halfword form is used, which
in effect is a quadruple of halfwords, as follows:

codeinc = 0, lineinc = 64
15-17Reference Guide
ARM DUI 0041B

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

newcol starting column for the next statement

Note Again, the order of the lineinc and codeinc halfwords is the reverse of the
corresponding bytes. In addition, the column item here is the absolute column number for
the next statement, and not an increment as in the two byte form.
(This encoding of lineinfo items is an incompatible change from the previous format
(version 2): in that format, lineinc in a two byte lineinfo item always describes a line
increment, and accordingly, there is no four halfword form. Programs interpreting asd tables
should interpret lineinfo items differently according to the table format in the section item.)

15.5.17 Map fragment items

An FP map fragment item describes the offsets from the stack pointer of the “virtual frame
pointer” in functions without a frame pointer. The stack offsets in variable items are offsets
from its virtual frame pointer. Functions may have no frame pointer because a no-fp APCS
variant has been selected, or because they are sufficiently simple leaf functions with an fp
APCS variant. In the latter case, FP map fragments will be generated only for those
functions which actually use the stack.

FP map fragments are generated regardless of whether other debug tables are being
generated, in a separate debug area (whether or not the -g complier option is used).

After the code and length field, an FP map fragment item contains the following fields:

bytes exact size of the item in bytes (the length part of the code and length field
is rounded up to a word boundary)

codestart address of the first word of code described

saveaddr address of the instruction saving callee-save registers.
(0 if there is none within the area of code described)

codesize size of the area of code described

initoffset offset of the virtual FP from the SP at the start of the code area described.
These items are followed by a variable number of FPInfo fields, which take
one of these forms:

byte codeinc size of code area described by this item
(unsigned)

byte offsetinc change in the virtual FP offset for the next
item (signed)

or, two zero bytes:

short codeinc (unsigned)

short offsetinc (signed)

16-1Reference Guide
ARM DUI 0041B

This section describes the ELF file format.

16.1 Overview of ELF File Format 16-2
16.2 Generic ELF File Layout 16-4
16.3 Scatter-loaded Executables 16-8

ELF File Format16

ELF File Format
16.1 Overview of ELF File Format

It is assumed that the reader is familiar with ELF version 1. This section only describes
options taken by ARM in its executable file format; unless otherwise stated, Executable
16-2 Reference Guide
ARM DUI 0041B

ARM ELF files are as defined in the TIS Portable Formats Specification, Version 1.1.

16.1.1 Object file format

ELF describes three types of Object File:

• relocatable file

• executable file

• shared object file

In general, an ELF Object File has the following organization:

 Figure 16-1: ELF object file organization

Section header table

The view of an Object File as a series of named Sections is used by a linker or debugger.
Several Sections are denoted “special” and have names reserved which define their
contents. For example:

• .bss

• .text

The Section Header Table gives access to such sections.

Linking View Execution View

ELF Header ELF Header

Program Header Table
(Optional)

Program Header Table

Section 1
Segment 1

....

Section n
Segment 2

....

....

Section Header Table
Section Header Table

(Optional)

ELF File Format
Program header table

The view of an Object File as a series of Segments is typically used by a loader in order to
create an executable process image for a particular runtime environment.
16-3Reference Guide
ARM DUI 0041B

The Program Header Table gives access to such Segments.

16.1.2 Executable ARM ELF File Layout

The ARM linker is used to produce an Executable ARM ELF file. For simple cases, it lays
out the file as shown in 16.2 Generic ELF File Layout on page 16-4.

Extra information is encoded in the file for scatter-loaded and overlayed executables and
these special cases are described in 16.3 Scatter-loaded Executables on page 16-8.

Only Segments will form part of the final executable image. Sections are included in
the Executable to provide further information on how to create the executable image.

ELF File Format
16.2 Generic ELF File Layout

A simple Executable ARM ELF file has the conceptual
layout shown in the diagram on the right. ELF Header
16-4 Reference Guide
ARM DUI 0041B

Note that the actual ordering of the file may be different
from that shown, since only an ELF header has a fixed
position in the file.

All other parts of the file have a position defined by:

• the ELF header

• the Program Header Table

• the Section Header Table

16.2.1 ARM-specific ELF Header Values

This section describes the values in the ELF header which need to be defined for the ARM
target environment. All other values are as specified in the Tool Interface Standard Portable
Formats Specification:

e_machine is set to EM_ARM (defined as 40)

e_ident[EI_CLASS] is set to ELFCLASS32

e_ident[EI_DATA] is set to:

ELFDATA2LSB for little-endian targets

ELFDATA2MSB for big-endian targets

Note: The endianness of the target is determined by the endianness of the ELF Object Files
submitted to the ARM linker. The linker will produce an error message if presented with
object files of mixed endianness.

16.2.2 Segments

There are three types of Segment:

• Text

• Data

• BSS

Entries for these appear in the Program Header Table.

Program Header Table

Text segment

Data segment

BSS segment

“.symtab” section

“.strtab” section

“.shstrtab” section

Debug sections

Section Header Table

ELF File Format
In a simple Executable ARM ELF file, there is just one of each type of Segment; more
complex cases are described in 16.3 Scatter-loaded Executables on page 16-8.

Attributes of these Segments are described below:
16-5Reference Guide
ARM DUI 0041B

Text Segment

Contains the code for the executable.

p_type - set to PT_LOAD
p_vaddr - load address of the segment
p_paddr - 0
p_filesz - size of text segment
p_memsz - same as p_filesz
p_flags - PF_X + PF_R
p_align - 4

Data Segment

Contains initialized read-write data for the executable.

p_type - set to PT_LOAD
p_vaddr - load address of data segment
p_paddr - 0
p_filesz - size of data segment
p_memsz - same as p_filesz
p_flags - PF_R + PF_W
p_align - 4

BSS Segment

Contains uninitialized data, which should be zeroed either when an image is created, or at
program startup by the runtime environment. Note that a BSS Segment is distinguished by
having a p_filesz of 0 to indicate that it occupies no space in the executable file.

p_type - set to PT_LOAD
p_vaddr - load address of BSS data segment
p_paddr - 0
p_filesz - 0 (note: occupies no file space)
p_memsz - size of BSS segment
p_flags - PF_R + PF_W
p_align - 4

16.2.3 Sections

Under the ELF specification, an executable object file can include a Section Header Table
which describes Sections in the file. In Executable ARM ELF, all Executables have at least
two Sections, unless the linker has been invoked with -nodebug ; then the Executable has
no Symbol Table or String Table Sections:

• the Symbol Table Section

• the String Table Section

ELF File Format
Further Sections may appear in the file, and these are described later in 16.3
Scatter-loaded Executables on page 16-8.

When an Executable contains source-level debugging information, it also includes several
16-6 Reference Guide
ARM DUI 0041B

Debugging Sections, as described below.

If required, an Executable can be stripped of its Sections, leaving just the Text, Data and
BSS Segments. The Section Header Table is also removed.

Symbol Table Section

The Symbol Table Section has the following attributes:

sh_name: “.symtab”
sh_type: SHT_SYMTAB
sh_addr: 0 (to indicate it is not part of the image)

Note: In Executable ARM ELF we do not set the SHF_ALLOC bit in the sh_flags field, thus
indicating that there is no space allocated for the symbol table in the image which will be
created from this Executable.

This symbol table can be used for low-level debugging symbol information.

String Table Section

The String Table Section holds all strings referenced by other Sections in the Executable.
In particular it will hold the textual names of entries in the Symbol Table Section. It has the
following attributes:

sh_name: “.strtab”
sh_type: SHT_STRTAB
sh_addr: 0 (to indicate it is not part of the image)

Section Name String Table

The Section Name String Table holds the textual names of all sections. It has the following
attributes:

sh_name: “.shstrtab”
sh_type: SHT_STRTAB
sh_addr: 0 (to indicate it is not part of the image)

Debugging Sections

ARM Executable ELF supports three types of debugging information held in debugging
Sections. A consumer of an ELF executable can distinguish between these three types of
debugging information by examining the Section Table for the executable:

• ASD debugging tables

These provide backwards compatibility with ARM’s Symbolic Debugger.
ASD debugging information is stored in a single Section in the executable named
.asd .

• DWARF version 1.0

ELF File Format
When DWARF 1.0 debugging information is included by the linker in the ELF
executable, the file contains the following ELF Sections, each of which has a
Section Header Table entry:

Section Name Contents
16-7Reference Guide
ARM DUI 0041B

.debug debugging entries

.line fileinfo entries

.debug_pubnames table for accelerated access to debug items

.debug_aranges address ranges for compilation units

• DWARF version 2.0

When DWARF 2.0 debugging information is included by the linker in the ELF
executable, the file contains the following ELF sections, each of which has a
Section Header Table entry:

Section Name Contents

.debug_info debugging entries

.debug_line fileinfo statement program

.debug_pubnames table for accelerated access to debug items

.debug_aranges address ranges for compilation units

.debug_macinfo macro information (#define / #undef)

.debug_frame call frame information

.debug_abbrev abbreviation table

.debug_str debug string table

Each of the .debug_* sections will have type SHT_PROGBITS. These are only included
when source-level debugging information is available.

Each entry will have a sh_addr member of 0 indicating that the file contains the debugging
information, but that this information will not be included in an image created from the
executable.

Note: This means debugging information (albeit maybe only low-level debug symbols) can be kept
for a program image residing in ROM without that information appearing in the ROM itself.

ELF File Format
16.3 Scatter-loaded Executables

When scatter loading is used, the ARM linker generates Section Header Table entries for a
load region, where the Section name is taken from the load region name as defined in the
16-8 Reference Guide
ARM DUI 0041B

scatter description.

If the load region contains a mixture of code, data and uninitialized data, there will be more
than one Segment generated for that load region:

• each Segment generated will have its own Section Header Table entry, so more
than one Section may have the same name

• each Section Header Table entry will have its sh_offset field set to the same value
as the p_offset field of the Program Header Table entry for its corresponding
Segment.

Each Section Header Table entry for a load region will have the following attributes:

sh_name: name of load region (as given in scatter description)

sh_type: SHT_PROGBITS or SHT_NOBITS (for zero init areas)

sh_addr: same as p_vaddr of corresponding Segment

sh_offset: same as p_offset of corresponding Segment

sh_flags: bit SHF_LOADREGION set

The p_vaddr field of each Segment of a scatter-loaded Executable is the load address of
the Segment, which need not necessarily be its execution address. Startup code can move
(part of) a Segment to its execution address using the symbols:

Load$$reg$$Base

Image$$reg$$Base

Image$$reg$$Length

as described in the Software Development Toolkit User Guide (ARM DUI 0040).

The Section Header Table entries can be used to generate a separate plain binary file for
each load region, using the Section name as the name of the generated file. A tool which
does this would need to merge any Sections of the same name, sorting them by address
(sh_addr). Alternatively a single image can be made simply by using the Segment
information held in the Program Header Table.

Note: Debugging information (if included) for the Executable will refer to memory locations in
execution regions rather than load regions.

17-1Reference Guide
ARM DUI 0041B

This section describes other file formats used by the ARM Software Development Toolkit.

17.1 Plain Binary Format 17-2
17.2 Extended Intellec Hex Format (IHF) 17-2

Other File Formats17

Other File Formats
17.1 Plain Binary Format

An image in plain binary format is a sequence of bytes to be loaded into memory at a known
address. The linker is not concerned with how this address is communicated to the loader,
17-2 Reference Guide
ARM DUI 0041B

and where to enter the loaded image.

In order to produce a plain binary output, there must be:

• no unresolved symbolic references between the input objects (each reference
must resolve directly or via an input library)

• an absolute base address (given by the -Base option to armlink). This is set to zero
if it is not specified.

• complete performance of all relocation directives

Input areas having the read-only attribute are placed at the low-address end of the image;
initialized writable areas follow; zero-initialized areas are consolidated at the end of the file
where a block of zeros of the appropriate size is written, unless the -nozeropad linker
option is specified. The application then needs to create the zero-initialized area at runtime.

Note If the binary file is part of a scatter-loaded application, the zero-initialized areas are not
present. The initialization information generated by the linker enables the application
initialization to generate the zero-initialized areas at runtime.

17.2 Extended Intellec Hex Format (IHF)
This format is for small (< 64Kb) images, such as those destined for ROM. IHF is essentially
a plain binary format, encoded as 32-bit hex values and checksummed. All the restrictions
of plain binary format apply to the generation of IHF.

The following linker option supports IHF:

The linker is described fully in Chapter 3, Linker .

-ihf Generates a plain binary image encoded in VLSI Extended Intellec
Hex Format. The output is ASCII-coded, is always big-endian and is
suitable for driving the Compass integrated circuit design tools (see
Chapter 17, Other File Formats for details).

Index

Index-1Reference Guide
ARM DUI 0041B

Symbols
+ character, armcc 1-15, 1-17, 1-18
// armcc comment 1-40

Numerics
32-bit PC attribute 14-12
32-bit vs 26-bit PC 5-11

A
a.out 14-2
Aborts 5-23
Absolute attribute 14-10, 14-11, 14-14, 14-19, 14-20
Additive relocation 14-16
Address mode 12-7
ADR pseudo-instruction 2-11
AIF

debug initialisation instruction 12-9

executable 12-3, 12-4, 12-7
image debug type 12-7
image ReadOnly size 12-7
non-executable 12-3, 12-7
program exit instruction 12-8
RelocateOnly 12-10, 12-11
self-decompressing 12-4
self-move 12-4, 12-10
self-relocation 12-4, 12-6, 12-8, 12-10
zero-initialisation code 12-10

ALF 13-2
alignment 13-3
endianness 13-3, 13-6
LIB_DATA 13-4, 13-6
LIB_DIRY 13-4, 13-6
LIB_TIME 13-4, 13-6
LIB_VSRN 13-4, 13-5
OFL_SYMT 13-4, 13-7
OFL_TIME 13-4, 13-7
time stamps 13-4, 13-5, 13-6, 13-7

Alignment 14-4, 14-9, 14-11
Arm library format 13-3

Index

Index Angel — APCS

Angel
Angel_yield 8-49
APPL device channel 8-26
armsd command 10-36

ANSI
C library 1-27, 4-2, 4-3
library functions 4-9

AOF
Index-2 Reference Guide
ARM DUI 0041B

ARMulator floating-point emulation 9-14
boot support 8-11
booting and parameter negotiation 8-24
breakpoints 8-44

undefined instructions 8-9
buffers 8-16
C library 8-2, 8-3
callbacks 8-40
channels 8-11, 8-16

buffer format 8-18
packet format 8-17

communication layers 8-10
control calls 8-26
deadlock and semideadlock 8-15
device driver interface 8-28
FIQ latency, reducing 8-51
FusionIP 8-34
heartbeat mechanism 8-18
host debugger hooks 8-31
interrupts

handlers 8-24
handling 8-43
IRQ or FIQ 8-24

late debugger start-up 8-8
packet decode engine 8-22
packets 8-12, 8-15
polled devices 8-21
processor modes 8-42
protocol 8-13
recoding Demon SWIs 8-3
register blocks 8-50
ROM applications 8-8
semihosted operations 8-3
serialisetask 8-39
serialization 8-38
stacks 8-42
SVC mode 8-47
SWI 8-3
task priorities 8-39
thumb state 8-9
yield function 8-49

additive relocation 14-16
alignment 14-4, 14-9, 14-11
area attributes 14-9, 14-11, 14-14

see also Attributes
area chunk format 14-14
area declarations 14-8
area header format 14-9
based area relocation 14-16
byte sex 14-3
chunk file format 14-5
chunks 14-6

header 14-8
identification 14-21
indentification 14-21
string table 14-21
symbol table 14-8, 14-15, 14-18, 14-21

endianness 14-3, 14-5, 14-8
forever binary property 14-19
formats

area headers 14-9
header chunk 14-8

header chunk format 14-8
identification chunk 14-21
object file type 14-8, 14-9
PC-relative relocation 14-16
relocatable object format 14-8
relocation directives 14-10, 14-14, 14-15
string table chunk 14-21
structure of 14-5
symbol attributes 14-18, 14-20

see also Attributes
symbol table chunk 14-8, 14-15, 14-18, 14-21

APCS
32-bit vs 26-bit PC 5-11
aborts 5-23
argument

list marshalling 5-13
passing 5-9, 5-19, 5-20
representation 5-13

argument passing
floating-point 5-11–5-13, 5-17

Index Area attributes — ARM assembly language

ARM register usage 5-2, 5-3
C

calling conventions 5-13
function

Area attributes
see also Attributes
see Attributes

Area declarations 14-8
Index-3Reference Guide
ARM DUI 0041B

entry 5-2, 5-15–5-17, 5-19
exit 5-11, 5-18, 5-20

C libraries 3-19
callee saves standard 5-10
conformance 5-2, 5-3, 5-5, 5-6, 5-11
control

arrival 5-8
return 5-10

data representation 5-9
design criteria 5-2
floating-point registers 5-4, 5-17

floating-point arguments in 5-12
function

entry 5-15–5-17
exit 5-20
invocations 5-6, 5-7

inter-link-unit 5-4, 5-8, 5-16
intra-link-unit 5-8, 5-16
marshalling 5-13
non-simple value return 5-13
non-user modes in ARM 5-23
open array arguments 5-18
pre-ARM6-based ARMs 5-23
re-entrant vs non-re-entrant 5-12
registers

general 5-3
marshalling 5-13
names of 5-3

returning a non-simple value 5-13
saving FP registers 5-17
stack 5-5

backtrace 5-6–5-7, 5-15–5-16, 5-19
chunk 5-4–5-6, 5-8, 5-15, 5-18–5-20
conventions 5-2
limit checking 5-18–5-19

explicit 5-11
implicit 5-11

limit violations 5-18
static base 5-4, 5-12, 5-15, 5-16
variants 5-3, 5-8, 5-9, 5-11

Area header format 14-9
Areas 2-6

see also ARM Assembly Language
see also Directives

Argument passing
APCS 5-9

stack 5-19, 5-20
floating-point 5-11–5-13, 5-17

ARM assembly language
|$$$$$$$| 2-8
addition and logical operators 2-15
area attributes 2-7
areas 2-6
assertions 2-20
binary operators 2-14
boolean

constants 2-10
operators 2-16

characters 2-10
comments 2-10
conditional assembly 2-25, 2-27
conditional execution 2-12
constants 2-10

setting 2-23
string 2-10

diagnostic generation 2-20
directives

organisational 2-19
see also Directives

disable floating-point 2-22
dynamic listing options 2-20
entry point 2-22
expressions and operators 2-13
floating-point store initialisation 2-17
global variables 2-23
input lines 2-6
labels 2-8
links

to other object files 2-19
to other source files 2-20

literal origin 2-19

Index ARM Image Format — armcc

local
labels 2-9
variables 2-23

macros 2-9, 2-23, 2-26

ARM Toolkit contents vi
armasm

command-line options 2-2
register names 2-4
Index-4 Reference Guide
ARM DUI 0041B

default parameters 2-27
defining 2-26
invoking 2-27

multiplicative operators 2-14
numbers 2-10
numeric constants 2-10
operator precedence 2-13, 2-14
operators

addition and logical 2-15
binary 2-14
boolean 2-16
multiplicative 2-14
relational 2-15
shift 2-15

organisational directives 2-19
overview 2-6
register names 2-6, 2-23
relational operators 2-15
repetitive assembly 2-26
shift operators 2-15
store

layout 2-18
reservation and initialisation 2-17

string constants 2-10
string manipulation 2-14
symbolic capabilities 2-23
symbols 2-8
titles 2-20
unary operators 2-13
variables

built-in 2-24
global 2-23
local 2-23
substitution 2-24

ARM Image Format, see AIF
ARM Object Format, see AOF
ARM Object Library Format, see ALF
ARM RDI, see RDI
ARM Remote Debug Interface, see RDI
ARM Symbolic Debug Table Format

see armsd table format

armcc
+ character 1-15, 1-17, 1-18
// comments 1-40
arguments passed to main 1-27
arithmetic limits 1-21
arithmetic operations 1-24
arrays 1-31
assembly language files 1-11
big-endian 1-9, 1-23, 1-29
bitfields 1-23, 1-35
C language extensions 1-40
callee-narrowing 1-9
caller-narrowing 1-9
character sets 1-9, 1-20, 1-21, 1-25, 1-29
code-generation control 1-11
command-line options 1-7
controlling

additional compiler features 1-18
code generation 1-11
linker 1-14
warning messages 1-15, 1-17

current place 1-5, 1-10
data elements 1-20
debug table options 1-12
declarators 1-25, 1-31
dependency determination 1-14
enumerations 1-26, 1-35
environment 1-27
error 1-27
escape sequences 1-30
expression evaluation 1-25
fatal 1-27, 1-48
filename

conventions 1-4
validity 1-5

floating-point 1-16, 1-20, 1-24, 1-30, 1-31, 1-49
characteristics 1-22

I/O redirection 1-28
identifiers 1-9, 1-20, 1-25, 1-28
IEEE 754 1-30
implementation

Index armlib command-line options — armsd

ANSI standard 1-20
details 1-20
limits 1-25

included files 1-5, 1-6, 1-10, 1-26

command-line options 3-4
entry point 3-10, 12-3
forcing an area mapping 3-10, 3-13
functionality 3-2
Index-5Reference Guide
ARM DUI 0041B

inline assembler 1-41
branches 1-45
instruction set 1-41
SWIs 1-45

integers 1-9, 1-16, 1-19, 1-20, 1-23, 1-24, 1-29,
1-30, 1-31

invocation 1-48
left shifts 1-24
linker options 1-11
little-endian 1-9, 1-23
long long 1-40
no automatic link 1-14
object files 1-4, 1-5, 1-7, 1-11, 1-26
pointers 1-19, 1-20, 1-23, 1-31

pointer subtraction 1-23
portability 1-11, 1-15, 1-27
pragma directives 1-18
pragmas, see also Pragmas
predefined macros 1-52
preprocessing directives 1-35
preprocessor flags 1-14
processor selection 1-13
qualifiers 1-31, 1-48
registers 1-31, 1-47, 1-49
right shifts 1-24, 1-29
search path 1-6
search rule 1-6, 1-10
serious error 1-27
severity of diagnostics 1-27
standard headers 1-15
standard implementation definition 1-27
statements 1-26, 1-32
structure packing 1-32
structured data types 1-23
structures 1-23, 1-24, 1-31
translation 1-27, 1-35
unions 1-26, 1-34
warning 1-27

armlib command-line options 7-6
armlink

area placement 3-13

input files 3-9
input list processing 3-12
Intellec Hex format 3-7, 17-2
inter-link-unit 3-16
intra-link-unit 3-16
library module inclusion 3-12
output formats 3-2
plain binary format 3-3, 17-2
pre-defined symbols 3-14
relocation directives, see Relocation directives
segments, see Overlays
special options 3-9
unused area elimination 3-11
usage 3-4

armprof 7-3
armsd

$cmdline 10-6, 10-29
$echo 10-29
$examine_lines 10-29
$format 10-29
$fpresult 10-29
$inputbase 10-29
$list_lines 10-29
$memory_statistics 10-29
$rdi_log 10-29
$result 10-29
$sourcedir 10-29
$statistics 10-29
$statistics_inc 10-30
$type_lines 10-30
$vector_catch 10-30
activation levels 10-17, 10-19
activation numbers 10-25
addresses 10-12, 10-17, 10-28, 10-31, 10-33
alias 10-10
Angel commands 10-36
arguments 10-2, 10-10, 10-18, 10-34
ARM

architecture 10-33
Procedure Call Standard (APCS) 10-34
registers 10-33

Index armsd — armsd

arrays 10-17, 10-22, 10-28, 10-31
ASCII 10-28
backquotes 10-10
backslash 10-25

inexact 10-16
initialisation file 10-5
inputbase 10-32
integers 10-28
Index-6 Reference Guide
ARM DUI 0041B

backtrace 10-10
breakpoints 10-11, 10-16, 10-23, 10-26
call 10-12
command line 10-10, 10-19

options 7-3, 10-4
commands 10-25
compound data type 10-22
condition code flags 10-33
constants 10-20, 10-28, 10-31, 10-32
context 10-2, 10-7, 10-14, 10-24, 10-25
coproc 10-12
count 10-22
cregisters 10-14
current context 10-7, 10-14, 10-23, 10-24, 10-25
cwrite 10-14
debugging tables 10-33
directory name 10-6
divided by zero 10-16
do 10-11
EmbeddedICE commands 10-35
examine 10-14
executing programs 10-6
expressions 10-2, 10-17, 10-26, 10-31
find 10-15
floating point 10-20, 10-31

control register 10-34
flags 10-16
mask 10-16
numbers 10-28
registers 10-8, 10-15, 10-34
status register 10-8, 10-15, 10-34

format strings 10-3, 10-20, 10-31
fpregisters 10-15
frame pointer 10-33
function calls 10-25
getfile 10-16
go 10-6
help 10-17
hexadecimal 10-8, 10-14, 10-32
host operating system 10-9, 10-10
in 10-17

interrupt enable flags 10-33
invalid operation 10-16
istep 10-17
languages 10-17, 10-25, 10-28
let 10-6, 10-15, 10-17, 10-31, 10-34
line numbers 10-7, 10-24, 10-25
link register 10-33
linking 10-33
list 10-18
load 10-18
locations 10-2, 10-11, 10-17, 10-26, 10-31
log 10-19
low-level

debugging 10-17, 10-31
symbols 10-33

lsym 10-19
memory 10-8, 10-14
obey 10-19
octal 10-32
out 10-19
overflow 10-16
pointers 10-20, 10-28, 10-31
precedence 10-26
print 10-12, 10-25, 10-31, 10-34
procedure calls 10-22
procedures 10-7, 10-11, 10-24, 10-25, 10-34
processor mode bits 10-33
profclear 10-20
profoff 10-20
profon 10-20
profwrite 10-20
program counter 10-17
program locations 10-26
putfile 10-21
quit 10-21
readsyms 10-21
records 10-22
reentrancy 10-34
register variables 10-24, 10-34
registers 10-21
reload 10-22

Index armsd.map — ARMulator

scratch register 10-34
shifts 10-28
sign bit 10-28
single stepping 10-22

EmbeddedICE 10-30
watchpoints 10-23, 10-24, 10-33
where 10-17, 10-24
while 10-22, 10-24
Index-7Reference Guide
ARM DUI 0041B

stack frame initialisation 10-33
stack limit register 10-34
stack pointer 10-33
statements 10-7, 10-22, 10-26
static base 10-34
step 10-17, 10-22
strings 10-3
symbols 10-6, 10-8, 10-10, 10-19, 10-33
table format

addresses in memory 15-6
array items 15-12
begin naming scope items 15-14
bitfield items 15-14
code and length field 15-5
debugging data items 15-4
encoding of debugging data 15-3
end naming scope items 15-14
endianness 15-3
endproc items 15-3, 15-10
enumeration items 15-13
fileinfo items 15-3, 15-14, 15-15
function declaration items 15-14
label items 15-10
macro undefinition items 15-15
offsets in file 15-6
procedure items 15-3, 15-9
representation of data types 15-4
section items 15-2, 15-3, 15-7
set items 15-13
source file positions 15-5, 15-15
struct items 15-11
subrange items 15-13
text names in items 15-6
type items 15-9
variable items 15-10

type 10-7, 10-23, 10-24
unbreak 10-23
underflow 10-16
unwatch 10-23
variables 10-3, 10-12, 10-23, 10-24, 10-25, 10-28,

10-29, 10-32

wildcard 10-19
armsd.map and ARMulator 9-9
ARMul_State 9-5
ARMulator

accessing
ARM registers 9-15
coprocessor registers 9-16
state 9-15

and armsd.map 9-9
and StrongARM 9-8
Angel and floating-point emulation 9-14
ARMul_State 9-5
ARMul_SWIHandler 9-23
basic memory interface 9-6
byte-lane memory interface 9-8
coprocessor model interface 9-10
errors 9-24
event handling 9-22
floating-point emulator 9-14
functions

ARMul_CondCheckInstr 9-24
ARMul_ConsolePrint 9-26
ARMUL_CoProAttach 9-10
ARMul_CoProAttach 9-10
ARMul_CPRead 9-16
ARMul_CPRegWords 9-16
ARMul_CPWrite 9-16
ARMul_DebugPause 9-26
ARMul_DebugPrint 9-26
ARMul_DoInstr 9-25
ARMul_DoProg 9-25
ARMul_EndCondition 9-25
ARMul_FPEAddressInEmulator 9-14
ARMul_FPEInstall 9-14
ARMul_FPEVersion 9-14
ARMul_Get15 9-15
ARMul_GetCPSR 9-16
ARMul_GetMemSize 9-23
ARMul_GetMode 9-23
ARMul_GetPC 9-15
ARMul_GetReg 9-15

Index Attributes — Attributes

ARMul_GetSPSR 9-16
ARMul_GReadByte 9-21
ARMul_HaltEmulation 9-25
ARMul_HostIf 9-26

get_cycle_length 9-8
gets 9-27
handle_swi 9-13
init 9-4, 9-5, 9-10, 9-13
Index-8 Reference Guide
ARM DUI 0041B

ARMul_HourglassSetRate 9-22
ARMul_InstallConfigChangeHandler 9-19
ARMul_InstallEventUpcall 9-29
ARMul_InstallHourGlass 9-22
ARMul_InstallInterruptHandler 9-19
ARMul_InstallModeChangeHandler 9-18
ARMul_InstallTransChangeHandler 9-18
ARMul_InstallUnkRDIInfoHandler 9-20
ARMul_PrettyPrint 9-26
ARMul_Properties 9-23
ARMul_RaiseError 9-24
ARMul_RaiseEvent 9-29
ARMul_RDILog 9-27
ARMul_ReadHalfWord 9-21
ARMul_ReadWord 9-21
ARMul_RemoveConfigChangeHandler 9-19
ARMul_RemoveEventUpcall 9-29
ARMul_RemoveExitHandler 9-17
ARMul_RemoveHourGlass 9-22
ARMul_RemoveInterruptHandler 9-19
ARMul_RemoveModeChangeHandler 9-18
ARMul_RemoveUnkRDIInfoHandler 9-21
ARMul_ScheduleEvent 9-23
ARMul_SetConfig 9-17
ARMul_SetCPSR 9-16
ARMul_SetMemSize 9-23
ARMul_SetNfiq 9-16
ARMul_SetNirq 9-16
ARMul_SetNreset 9-16
ARMul_SetPC 9-15
ARMul_SetR15 9-15
ARMul_SetReg 9-15
ARMul_SetSPSR 9-16
ARMul_Time 9-22
ARMul_WriteByte 9-21, 9-22
ARMul_WriteHalfWord 9-21
ARMul_WriteWord 9-21
cdp 9-11
dbgpause 9-26
dbgprint 9-26
exception 9-13

ldc 9-10
mcr 9-10
mem_access 9-6
mrc 9-10
read 9-12
read_clock 9-5
read_cycles 9-6
readc 9-26
stc 9-10
write 9-12, 9-26
writec 9-26

initialization 9-4, 9-5
introduction 9-2
memory model interface 9-5
model stubs 9-3
operating system interface 9-13
RDIInfo_Points 9-21
RDIInfo_SetLog 9-21
RDIInfo_Target 9-21
typedefs

ARMul_Cycles 9-6
armul_EventProc 9-23
armul_EventUpcall 9-29
armul_ExceptionUpcall 9-20
armul_ExitUpcall 9-17
armul_Hourglass 9-22
armul_InstallExitHandler 9-17
ARMul_InstallTransChangeHandler 9-18
armul_InterruptUpcall 9-19
armul_ModeChangeUpcall 9-18
armul_TransChangeUpcall 9-18
armul_UnkRDIInfoUpcall 9-20

upcalls 9-17
Attributes

32-bit PC 14-12
absolute 14-10, 14-11, 14-14, 14-19, 14-20
based 14-13
case-insensitive reference 14-19
code 14-11, 14-12, 14-14, 14-20
code datum 14-20
common 14-19

Index Based area relocation — C library

debugging table 14-12
no software stack check 14-13
position-independent 14-12
read-only 14-12

topcc issues 7-10
using libraries in ROM 4-2
validation suite 1-3

C library
Index-9Reference Guide
ARM DUI 0041B

re-entrant 14-12
shared library stub data 14-13
simple leaf function 14-20
strong 14-19, 14-20
weak 14-19, 14-20
zero-initialised 14-12

B
Based area relocation 14-16
Based attribute 14-13
Big-endian AOF 14-3
Binary format 3-3, 17-2
Boot support, Angel 8-11
Booting and parameter negotiation 8-24
Break/Watch-Point Inquiry 11-9
Breakpoint 11-3, 11-6, 11-7
Breakpoints and undefined instructions,Angel 8-9
Building a target-specific library 4-5
Byte sex 13-3, 14-3
Byte-lane memory interface 9-8

C
C

ANSI C library 1-27, 4-2
arithmetic 1-37
calling conventions 5-13
expression 1-36
function

argument evaluation 1-25
entry 5-2, 5-15–5-17, 5-19
exit 5-11, 5-18, 5-20

language extensions 1-40
library functions 1-35
minimal standalone run-time library 4-2
portability 1-11, 1-15, 1-27
recommended texts 1-2
standard headers and libraries 1-36

_clock_init 4-9
address space model 4-7
ANSI library functions 4-9
apcs variants 3-19
automatic inclusion 3-19
backtrace variants 4-6
basic choices 4-7
building 4-5
BYTESEX_EVEN 4-5
BYTESEX_ODD 4-5
clock_t 4-9
config.h 4-5
divide variants 4-6
filenames 3-19
floating-point

emulator 4-3, 4-5, 4-6
support 4-11

fp_type variants 4-6, 4-11
getenv 4-9
getenv_init 4-9
hostsys.h 4-5, 4-9
I/O

model 4-8
support 4-9

kernel 4-12
makedefs 4-4
makemake 4-2, 4-4, 4-5
memcpy variants 4-6
miscellaneous 4-13
options 4-4
remove 4-9
rename 4-9
retargetting 4-2, 4-4, 4-6
semihosted 4-2
source organisation 4-2
stack variants 4-7
stdfile_redirection variants 4-6
system 4-9
target-dependent code 4-9
time 4-9
variant selection 4-4

Index Callee saves standard — Directives

Callee saves standard, APCS 5-10
Callee-narrowing, armcc 1-9
Caller-narrowing, armcc 1-9
Case-insensitive reference attribute 14-19

attribute 14-12
decaof, command-line options 7-7, 7-8
Demon, recoding SWIs for Angel 8-3
Device drivers
Index-10 Reference Guide
ARM DUI 0041B

Channels, Angel 8-11, 8-16
Chunk file format 14-5
Code attribute 14-11, 14-12, 14-14, 14-20
Code datum attribute 14-20
CODE16 directive 2-22
CODE32 directive 2-22
Common attribute 14-19, 14-20
Conditional execution 2-12
Constants, inline assembler 1-42
Coprocessor model interface 9-10
CVS 1-3

D
DATA directive 2-22
Debug initialisation instruction 12-9
Debug tables, armcc options 1-12
Debugging

data items
array 15-12
begin naming scope 15-14
bitfield 15-14
end naming scope 15-14
endproc 15-3, 15-10
enumeration 15-13
fileinfo 15-3, 15-15
function declaration 15-14
label 15-10
macro definition item 15-14
macro undefinition item 15-15
procedure 15-3, 15-9
section 15-2, 15-3, 15-7
set 15-13
struct 15-11
subrange 15-13
text names in items 15-6
type 15-9
type field 15-4
variable 15-10

Debugging table

Angel interface 8-26, 8-28
Directives 2-17

! 2-20
2-18
% 2-17
* 2-23
^ 2-11, 2-18
ABS 2-8
ALIGN 2-7, 2-22
AREA 2-7
ASSERT 2-20
CN 2-23
CODE16 2-22
CODE32 2-22
CP 2-23
DATA 2-22
DCB 2-17
DCD 2-17
DCFD 2-17
DCFS 2-17
DCW 2-17
ELSE 2-25
END 2-10, 2-19
ENDIF 2-25
ENTRY 2-22
EQU 2-23
EXPORT 2-19
FN 2-23
GBL 2-8, 2-21, 2-23
GET 2-3, 2-19, 2-20
IF 2-25
IMPORT 2-19
INCLUDE 2-3, 2-20
KEEP 2-19
LCL 2-8, 2-21, 2-23
LTORG 2-19
MACRO 2-26
MEND 2-20, 2-26
MEXIT 2-27
NOFP 2-22
NOP 2-12

Index EmbeddedICE — NOP pseudo-instruction

OPT 2-24
ORG 2-8, 2-19
RLIST 2-22

I
Identification chunk 14-21
Index-11Reference Guide
ARM DUI 0041B

RN 2-23
ROUT 2-9
SET 2-8, 2-21, 2-24
SUBT 2-20
THUMB-specific 2-22
TTL 2-20
WEND 2-26
WHILE 2-26

E
EmbeddedICE

armsd
commands 10-35
variables 10-30

Endianness
ALF 13-3, 13-6
AOF 14-3, 14-5, 14-8

Entry point 2-22, 3-10, 12-3
Error codes (RDI) 11-19
Executable AIF 12-3, 12-4, 12-7

F
Filename conventions 1-4
Floating-point

emulator 4-3, 4-5, 4-6
ARMulator 9-14
ARMulator and Angel 9-14

instructions 2-22
support 4-11

Forever binary property 14-19
Fusion, and Angel 8-34

H
Heartbeat mechanism 8-18

IEEE 754 1-30
Image debug type 12-7
Image Format, see AIF
Image ReadOnly size 12-7
Inline assembler

armcc 1-41
Intellec Hex format 17-2
Inter-link-unit 5-4, 5-8, 5-16
interrupt-handling, Angel 8-43
Intra-link-unit 5-8, 5-16

L
Labels, inline assembler 1-42
Late debugger start-up, Angel 8-8
LDR pseudo-instruction 2-10
Library file format, see ALF
Library module inclusion 3-12
Little-endian AOF 14-3

M
Macros, predefined 1-52
makemake 4-2, 4-4, 4-5
Memory model interface, ARMulator 9-5
Memory statistics 10-29
Models, ARMulator 9-3

N
Non-executable AIF 12-3, 12-7
Non-re-entrant 5-12
NOP 2-12
NOP pseudo-instruction 2-12

Index Object code libraries — RDI

O
Object code libraries, see ALF

R
RDI
Index-12 Reference Guide
ARM DUI 0041B

Object file
format 14-5

see also AOF
type 14-8, 14-9

Object libraries 3-2
Optimizing debug tables 1-12
Overlays 3-3

dynamic 3-7
generation by armlink 3-7
generation by linker 3-7
manager 3-7

P
Packets, Angel 8-12
PC-relative relocation 14-16
PIE 4-2
Plain binary format 3-3, 17-2
Platform Independent Evaluation (PIE) 4-2
Plum-Hall C Validation Suite 1-3
Polled devices, Angel 8-21
Position-independent attribute 14-12
Pragmas

command line 1-46
controlling

optimisation 1-48
preprocessor 1-46
printf/scanf argument checking 1-48

preprocessor control 1-46
printf/scanf argument checking 1-48
specifying pragmas from the command line 1-46

Predefined macros, armcc 1-52
Processor modes, Angel 8-42
Processors, selecting 1-13
Profiler 7-3
Program exit instruction 12-8
Pseudo-instructions

ADR 2-11
LDR 2-10
NOP 2-12

add config block 11-3, 11-10
clear breakpoint 11-3, 11-7
clear watchpoint 11-3, 11-8
close and finalise debuggee 11-3, 11-4
error codes 11-19
execute 11-3, 11-9
function summary 11-3
get CPU names 11-3, 11-10
get driver names 11-3, 11-10
get error messages 11-3, 11-11
information passing errors 11-20
internal faults 11-20
load config block 11-3, 11-10
load debug agent 11-3, 11-11
miscellaneous info 11-3, 11-11
misuse of RDI 11-20
multiple step 11-3, 11-9
open and/or initialise debuggee 11-3, 11-4
RDI functions 11-3
RDI_DescribeCoPro 11-17
RDI_Profile_WriteMap 11-18
RDI_RequestCoProDesc 11-17
RDI_Vector_Catch 11-13
RDICommsChannel_FromHost 11-16
RDICommsChannel_ToHost 11-16
RDIErrorP 11-17
RDIICEBreaker_GetLoadSize 11-16
RDIICEBreaker_GetLocks 11-15
RDIICEBreaker_SetLocks 11-16
RDIInfo_CoPro 11-13
RDIInfo_Icebreaker 11-13
RDIInfo_Log 11-17
RDIInfo_MMU 11-13
RDIInfo_Points 11-11
RDIInfo_SemiHosting 11-13
RDIInfo_SetLog 11-18
RDIInfo_Step 11-12
RDIInfo_Target 11-12
RDIMemory_Access 11-14
RDIMemoryMap 11-14
RDIPointStatus_Break 11-15

Index RDP overview — Symbol table chunk

RDIPointStatus_Watch 11-15
RDIProfile_ClearCounts 11-18
RDIProfile_ReadMap 11-18

instruction sequences 3-17
inter-link-unit 3-16
intra-link-unit 3-16
Index-13Reference Guide
ARM DUI 0041B

RDIProfile_Start 11-18
RDIProfile_Stop 11-18
RDIRead_Clock 11-14
RDISemiHosting_GetState 11-15
RDISemiHosting_GetVector 11-15
RDISemiHosting_SetState 11-15
RDISemiHosting_SetVector 11-15
RDISet_CmdLine 11-17
RDISet_CPUSpeed 11-14
RDISet_RDILevel 11-17
RDISet_Thread 11-17
RDISignal_Stop 11-15
read co-processor state 11-3, 11-5
read CPU state 11-3, 11-5
read memory address 11-3, 11-4
select config block 11-3, 11-10
set breakpoint 11-3, 11-6
set watchpoint 11-3, 11-7
write co-processor state 11-3, 11-6
write CPU state 11-3, 11-5
write memory address 11-3, 11-4

RDP overview 11-21
Read-only attribute 14-12
Re-entrant 5-12

attribute 14-12
Register

marshalling 5-13
names 5-3
usage 5-2, 5-3

Register blocks, Angel 8-50
Release components vi
Relocatable object format 14-8
RelocateOnly 12-10, 12-11, 12-12
Relocation directives

absolute attribute 14-10
additive 3-17
areas 14-14
based area 3-17
handling 3-16

overview 14-15
PC-relative 3-16, 14-3
subject field 3-16
value 3-16

Remote Debug Interface, see RDI
Remote Debug Protocol 11-21
Retargetable libraries

ARM ANSI C vi
Thumb vi

Retargetting the library 4-6
ROM applications, Angel 8-8

S
Selecting processors 1-13
Self-decompressing 12-4
Self-move 12-4, 12-10
Self-relocation 12-4, 12-6, 12-8, 12-10
Semihosted

C library 4-2
operations, Angel 8-3

Semihosting SWIs 10-30
Shared library stub data attribute 14-13
Simple leaf function attribute 14-20
Software interrupts, see SWI
Stack

Angel 8-42
backtrace 5-6–5-7, 5-15–5-16, 5-19
conventions 5-2

String table chunk 14-21
Strong attribute 14-19, 14-20
StrongARM, and ARMulator 9-8
Structures, arm C compiler 1-23
SVC mode, Angel 8-47
SWI

Angel 8-3
semihosting 10-30

Symbol table chunk 14-8, 14-15, 14-18, 14-21

Index THUMB — Zero-initialised attribute

T
THUMB

W
Warning message control 1-15, 1-17
Index-14 Reference Guide
ARM DUI 0041B

Assembler directives 2-22
retargetable libraries vi

topcc
command-line options 7-9
issues 7-10
translation details 7-9

U
Upcalls 9-17

Watchpoint 11-3, 11-7, 11-8

Weak attribute 14-19, 14-20

Z
Zero-initialisation code 12-10

Zero-initialised attribute 14-12

	Preface
	About This Manual
	Overview
	• the components of the ARM Software Development T...
	• reference information on each of the ARM Softwar...
	• procedure call standards
	• file formats
	Note

	Organization

	Typographical Conventions
	Typographical conventions
	typewriter Denotes text that may be entered at the...
	typewriter Denotes a permitted abbreviation for a ...
	typewriter-italic Shows text which must be substit...
	Oblique Highlights important notes and ARM�specifi...

	Filenames

	Release Components
	Programming and modeling tools
	Retargetable libraries
	• The ARM ANSI C library, supplied in both source ...
	• The ARM embedded C library, supplied in both sou...

	Feedback
	Feedback on the ARM Software Development Toolkit
	• details of which platform and release of the ARM...
	• a small sample code fragment which illustrates y...
	• precise description of your comment or suggestio...

	Feedback on this manual
	• the manual’s title
	• the manual’s document number
	• the page number(s) to which your comments refer
	• a concise explanation of the comment
	1 C Compilers 1-1
	2 Assembler 2-1
	3 Linker 3-1
	4 Rebuilding the C�Library 4-1
	5 ARM Procedure Call Standard 5-1
	6 Thumb Procedure Call Standard 6-1
	7 Toolkit Utilities 7-1
	8 Angel 8-1
	9 ARMulator 9-1
	10 ARM Debugger 10-1
	11 Remote Debugging 11-1
	12 ARM Image Format 12-1
	13 ARM Object Library Format 13-1
	14 ARM Object Format 14-1
	15 ARM Symbolic Debug Table�Format 15-1
	16 ELF File Format 16-1
	17 Other File�Formats 17-1
	Tools Reference

	C Compilers
	1.1 Introduction
	Note
	1.1.1 Recommended texts
	C programming guides
	• Kernighan, B.W. and Ritchie, D.M., The C Program...
	• Harbison, S.P. and Steele, G.L., A C Reference M...
	• Koenig, A, C Traps and Pitfalls, Addison-Wesley ...

	ANSI C reference
	• ISO/IEC 9899:1990, C Standard. This is available...

	1.2 About the ARM C Compilers
	1.2.1 Compiler variants
	1.2.2 Source language modes
	ANSI mode
	• an empty initializer for an aggregate of complet...
	• a signed integer constant overflow is not treate...

	pcc mode

	1.3 File Usage
	1.3.1 Naming conventions
	Portability
	• restrict the name of a file or directory to a ma...
	• ensure that extensions are no more than three le...
	• make embedded pathnames relative, rather than ab...
	• native filenames
	• pseudo UNIX filenames, which have the format:
	• UNIX filenames
	• a name starting with volume-name:/ is a pseudo U...
	• a name containing / is a UNIX filename, otherwis...
	• the name is a host name

	1.3.2 Specifying keyboard input
	1.3.3 Filename validity
	1.3.4 Object files
	1.3.5 Included files
	• whether the filename is an absolute filename, ra...
	• whether the filename is between angle brackets o...
	• use of the -I and -j flags and the special direc...
	The current place
	The search path
	1 the compiler’s own in-memory filing system (for ...
	2 the current place (see above) (not for filenames...
	3 arguments to -I flags, if used (for filenames en...
	4 arguments to the -j flag, if used (for filenames...
	5 the compiler’s own in-memory filing system (for ...

	1.4 Command Syntax
	• using the ARM Procedure Call Standard (APCS)
	• controlling the linker
	• selecting processors
	• using preprocessor flags
	• controlling code generation
	• controlling warning messages
	• suppressing error messages
	• controlling additional compiler features
	Getting help
	1.4.1 APCS command�line options
	Notes
	• There must be a space between -apcs and the firs...
	• At least one qualifier must be present, and ther...

	APCS qualifiers
	APCS variants
	Stack checking
	Frame pointers
	Floating�point compatibility
	ARM/Thumb interworking
	Narrow parameters

	1.4.2 Setting endianness
	1.4.3 Setting the source language
	1.4.4 Working with files
	1.4.5 Search paths
	1.4.6 Controlling the linker
	1.4.7 Controlling code generation
	1.4.8 Debug information
	-asd
	-dwarf
	-gtletters
	-gxletters
	-g+
	-g-
	Note

	1.4.9 Processor selection
	• 3
	• 3M
	• 4
	• 4T
	Halfword support

	1.4.10 Preprocessor flags
	Note

	1.4.11 Controlling warning messages
	Note

	1.4.12 Suppressing error messages
	1.4.13 Load and store options
	1.4.14 Alignment options
	1.4.15 Miscellaneous compiler features
	Note

	1.5 Implementation Details
	1.5.1 Data Elements
	1.5.2 Character sets and identifiers
	1.5.3 Arithmetic limits (limits.h and float.h)
	CHAR_BIT 8
	MB_LEN_MAX 1
	Characteristics of floating point
	Ranges of floating types
	Ranges of base two exponents
	Ranges of base ten exponents
	Decimal digits of precision
	Digits (base two) in mantissa (binary digits of pr...
	Smallest positive values such that (1.0 + x != 1.0...

	1.5.4 Structured data types
	• The alignment of a structure is the larger of:
	• Structures are arranged with the first-named com...
	• A component with a char type is packed into the ...
	• A component with a short type is aligned to the ...
	• All other arithmetic-type components are word-al...
	• Except for -strict (when the only valid types fo...
	• A bitfield whose type includes neither the signe...
	• A bitfield must be wholly contained within a cor...
	• Bitfields are allocated within words so that the...
	little�endian lowest addressed means least signifi...
	big�endian lowest addressed means most significant...

	1.5.5 Pointers
	• Adjacent bytes have addresses which differ by on...
	• The macro NULL expands to the value 0.
	• Casting between integers and pointers results in...
	• The compiler warns of casts between pointers to ...

	1.5.6 Pointer subtraction
	((int)a - (int)b) / (int)sizeof(type pointed to)

	1.5.7 Arithmetic operations
	• All signed integer arithmetic uses a two’s compl...
	• Bitwise operations on signed integral types foll...
	• Right shifts on signed quantities are arithmetic...
	• Any quantity which specifies the amount of a shi...
	• Any value to be shifted is treated as a 32-bit v...
	• Left shifts of more than 31 give a result of zer...
	• Right shifts of more than 31 give a result of ze...
	• The remainder on integer division has the same s...
	• If a value of integral type is truncated to a sh...
	• A conversion between integral types never causes...
	• Integer overflow does not raise an exception.
	• Integer division by zero raises an exception.
	• When a double or long double is converted to a f...
	• A conversion from a floating type to an integral...
	• Floating�point underflow is not detected; any op...
	• Floating�point overflow raises an exception.
	• Floating�point divide by zero raises an exceptio...

	1.5.8 Expression evaluation
	• The compiler may re-order expressions involving ...
	• Between sequence points, the compiler may evalua...
	• Similarly, the compiler may evaluate function ar...

	1.5.9 Implementation limits

	1.6 Standard Implementation Definition
	1.6.1 Translation
	1.6.2 Environment
	• main
	• interactive device
	• standard input, output, and error streams
	main()
	• a whitespace character is any character of which...
	• a double quote or backslash character (\) inside...
	• an I/O redirection will not be recognized inside...

	Interactive device
	• no buffering is done on any stream connected to ...
	• if�I/O redirection other than to :tt has taken p...

	Standard input, output and error streams

	1.6.3 Identifiers
	1.6.4 Integers
	• The result of converting an integer to a shorter...
	• Bitwise operations on signed integers yield the ...
	• The sign of the remainder on integer division is...
	• Right shift operations on signed integral types ...

	1.6.5 Characters
	• The execution character set is identical to the ...
	• There are four chars/bytes in an int. If the mem...
	• A character constant containing more than one ch...
	• There are eight bits in a character in the execu...
	• All integer character constants that contain a s...
	• Characters of the source character set in string...
	• No locale is used to convert multi-byte characte...
	• A plain char is treated as unsigned (but as sign...

	1.6.6 Floating�point types
	• when a floating�point number is converted to a s...
	• the properties of floating�point arithmetic acco...

	1.6.7 Arrays and pointers
	• The type size_t is unsigned int (signed int in P...
	• Casting pointers to integers and vice versa invo...
	• The type ptrdiff_t is defined as (signed int)

	1.6.8 Registers
	• any integer type
	• any pointer type
	• any integer-like structure (any one word struct ...
	• a floating-point type, if software floating-poin...

	1.6.9 Qualifiers
	1.6.10 Declarators
	1.6.11 Statements
	1.6.12 Structure packing
	Non-packed structs
	• members are correctly aligned
	• the structure occupies a whole number of words

	Packed structs
	Usage
	Sub-structs of packed structs

	1.6.13 Unions
	1.6.14 Enumerations
	• unsigned char
	• signed char
	• unsigned short
	• signed short
	• signed int

	1.6.15 Bitfields
	• a plain bitfield (declared without either signed...
	• a bitfield which does not fit in a correctly ali...
	• the order of allocation of bitfields within ints...
	• bitfields do not straddle storage unit (int) bou...

	1.6.16 Preprocessing directives
	1.6.17 Library functions
	• The macro NULL expands to the integer constant 0...
	• If a program redefines a reserved external ident...
	• The assert() function prints the following messa...
	Setlocale call
	Mathematical functions
	Signal function
	Generic ARM C library
	• The last line of a text stream does not require ...
	• Space characters written out to a text stream im...
	• No null characters are appended to a binary outp...
	• The file position indicator of an append mode st...
	• A write to a text stream does not cause the asso...
	• The characteristics of file buffering are as int...
	• A zero-length file (in which no characters have ...
	• The same file can be opened many times for readi...
	• Local time zones and Daylight Saving Time are no...
	• The status returned by exit() is the same value ...
	• The error messages returned by the strerror() fu...
	• If the size of area requested is zero, calloc(),...
	• abort() closes all open files, and deletes all t...
	• fprintf() prints %p arguments in hexadecimal for...
	• fscanf() treats %p arguments identically to %x a...
	• fscanf() always treats the character “-” in a %....
	• ftell() and fgetpos() set errno to the value of ...
	• perror() generates the following messages:
	• the validity of a filename
	• whether remove() can remove an open file
	• the effect of calling the rename() function when...
	• the effect of calling getenv() (the default is t...
	• the effect of calling system()
	• the value returned by clock()

	1.7 C Language Extensions
	1.7.1 // comments
	• // has no special significance inside a comment ...
	• /* has no special significance inside a comment ...

	1.7.2 Long long

	1.8 Inline Assembler
	1.8.1 Syntax
	1.8.2 Assembler instruction set
	Operand expressions
	Constants
	Note
	Instruction expansion
	• Arithmetic instructions set the NZCV flags corre...
	• Logical instructions:
	• TEQP, TSTP and MRS set the NZCV flags correctly....

	Labels
	Storage declarations
	Pseudo instructions

	Note
	Function calls
	• the input parameters
	• the registers which are output parameters after ...
	• the registers which corrupted by the called func...

	1.8.3 Examples
	64�bit addition
	String copying
	Function call

	1.8.4 Pitfalls
	1 C expressions with the comma operator must be br...
	2 The & operator cannot be used to denote hexadeci...
	3 When using physical registers, make sure that th...
	4 Do not use physical registers to address variabl...

	1.8.5 Restrictions
	• You cannot write PC, SP, FP, SL and SB (where ap...
	• LDM/STM instructions currently only allow physic...
	• BX is not yet implemented.
	• Changing processor modes, or altering the state ...

	1.9 Compiler-specific Features
	1.9.1 Pragmas
	1.9.2 Specifying pragmas from the command line
	1.9.3 Pragmas controlling the preprocessor
	1.9.4 Pragmas controlling printf/scanf argument ch...
	1.9.5 Pragmas controlling optimization
	1.9.6 Pragmas controlling code generation
	Stack-limit checking (ARM processors only)
	Note
	Memory access checking
	Global (program-wide) register variables

	1.9.7 Function declaration keywords
	1.9.8 Variable declaration keywords
	1.9.9 Predefined macros
	Table 1-10: Predefined macros

	Assembler
	2.1 Overview
	2.2 Command Syntax
	2.2.1 Command-line options
	• 3
	• 3M
	• 4
	• 4T
	• ARM6
	• ARM7
	• ARM7M
	• ARM7TM
	• ARM8
	• StrongARM
	Predeclared register names
	• R0–R15
	• r0–r15
	• sp and SP
	• lr and LR
	• pc and PC
	• a1–a4
	• v1–v6
	• sl
	• fp, ip, and sp

	Qualifiers
	v6� if�re�entrant
	v7 if not re�entrant

	2.3 Assembly Language Overview
	• ARM assembly language
	• Thumb assembly language
	• a mixture of both
	2.3.1 Case rules
	2.3.2 Input lines
	Line length
	Note

	2.3.3 AREAs
	• one for the code (usually marked read-only)
	• one for the data which may be written to
	AREA syntax

	2.3.4 ORG and ABS
	2.3.5 Symbols
	• Symbols must start with an uppercase or lowercas...
	• Symbols should not use the same name as instruct...
	• Symbol length is limited by the 255�character li...
	Symbol name delimiters

	2.3.6 Labels
	2.3.7 Local labels
	Beginning a local area label
	Defining local labels
	Making a reference to a local label

	2.3.8 Comments
	2.3.9 Constants
	2.3.10 The END directive
	2.3.11 Symbolic assembly
	ARM instructions
	LDR register,=expression
	opcode{cond}{B} register,label-expression
	THUMB instructions

	LDR source, label
	LDR source, =<expr>

	2.3.12 Pseudo�instructions
	ARM instructions
	THUMB instructions

	2.4 Expressions and Operators
	1 Expressions in parentheses are evaluated first.
	2 Operators are applied in precedence order.

	2.4.1 Unary operators
	Table 2-1: Operator precedence

	2.4.2 Binary operators
	Multiplicative operators
	Table 2-2: Multiplicative operators

	String manipulation operators
	Table 2-3: String manipulation operators

	Shift operators
	Table 2-4: Shift operators

	Note:
	Addition and logical operators
	Table 2-5: Addition and logical operators

	Relational operators
	• numeric
	• program-relative
	• register-relative
	• strings
	Table 2-6: Relational operators

	Boolean operators
	Table 2-7: Boolean operators

	2.5 Directives
	2.5.1 Storage reservation and initialization: DCB,...
	DCD and Thumb

	2.5.2 Floating-point store initialization: DCFS an...
	2.5.3 Describing the layout of store: ^ and #
	2.5.4 Organizational directives: END, ORG, LTORG a...
	2.5.5 Links to other object files: IMPORT and EXPO...
	2.5.6 Links to other source files: GET/INCLUDE
	2.5.7 Diagnostic generation: ASSERT, !, and INFO
	2.5.8 Titles: TTL and SUBT
	2.5.9 Dynamic listing options: OPT
	Table 2-8: OPT directive settings�

	2.5.10 Miscellaneous directives: ALIGN, NOFP, RLIS...
	2.5.11 Thumb�specific directives: CODE 16, CODE32 ...

	2.6 Symbolic Capabilities
	2.6.1 Setting constants: EQU, *, RN, FN, CP and CN...
	2.6.2 Local and global variables
	GBL and LCL
	SET
	Note

	2.6.3 Variable substitution: $
	2.6.4 Built-in variables
	• 3
	• 3M
	• 4
	• 4T

	2.7 Conditional Assembly: [, | and]
	2.8 Repetitive Assembly: WHILE and WEND
	2.9 Macros
	2.9.1 Defining a macro
	2.9.2 Setting default parameter values
	2.9.3 Macro invocation
	Note

	Linker
	3.1 Introduction
	3.1.1 Linker functions
	• resolves symbolic references between object file...
	• extracts from object libraries the object module...
	• sorts object fragments (AOF areas) according to ...
	• relocates (fully or partially) relocatable value...
	• generates an output image, possibly comprising s...

	3.1.2 Linker input
	• one or more separately�compiled or separately�as...
	• optionally, one or more object libraries in ARM ...

	3.1.3 Linker output

	3.2 Command Syntax
	3.2.1 General command�line options
	3.2.2 Output format options
	3.2.3 Scatter�loading command�line options
	Overlays
	Ignored linker options
	Output file directory
	AIF files

	3.2.4 Special command�line options
	Note:
	• the area containing the entry point, or
	• referred to from a used area

	3.3 Library Module Inclusion
	• each object file in the input list appears in th...
	• a module from a library is included in the outpu...
	1 The object files are linked together, ignoring t...
	2 The libraries are processed in the order that th...

	a) The library is searched for members containing ...
	b) Each such member is loaded, satisfying some uns...
	c) The search is repeated until no further members...

	3.4 Area Placement and Sorting Rules
	• read-only code
	• read-only based data
	• read-only data
	• read-write code
	• based data
	• other initialized data
	• zero-initialized (uninitialized) data
	• debugging tables

	3.5 Linker Predefined Symbols
	Image-related symbols
	• the -data option is used to set the image’s data...
	• either of the -shl or -overlay options is used t...

	Object/area-related symbols
	3.5.1 Notes

	3.6 Handling Relocation Directives
	3.6.1 The subject field
	• a byte
	• a halfword (2 bytes)
	• a word (4 bytes)
	• a value derived from a suitable sequence of inst...

	3.6.2 The relocation value
	3.6.3 PC-relative relocation
	3.6.4 Forcing use of an inter-link-unit entry poin...
	3.6.5 Additive relocation
	3.6.6 Based area relocation
	3.6.7 The relocation of instruction sequences
	• a B or BL
	• an LDR or STR
	• 1 to 3 ADD or SUB instructions, having a common ...
	• If the original offset in the LDR or STR can be ...
	• If the new value is negative, it is negated, ADD...
	• Each ADD or SUB instruction in turn removes the ...

	3.7 Automatic Inclusion of C libraries
	3.7.1 For ARM libraries
	Example

	3.7.2 For THUMB libraries
	Example
	Note

	Rebuilding the C�Library
	4.1 Introduction to the Runtime Libraries
	• the relevant ARM datasheet
	• section 2.3�Assembly Language Overview
	• the minimal embedded C library
	• the ANSI C library
	• source form for retargeting to your ARM-based ha...
	Using the embedded C Library
	4.1.1 Source files
	• the ARMulator
	• ARM Platform Independent Evaluation (PIE) card f...

	4.1.2 ANSI C library
	• target-independent modules written in ANSI C; fo...
	• target-independent modules written in ARM assemb...
	• target-dependent modules written in ANSI C; for ...
	• target-dependent modules written in ARM assembly...

	4.2 Constructing a Makefile
	• the name of the host directory and
	• if distinct, the name of the target directory
	Input files

	4.3 Building a Target-specific Library
	1 cd util cc -o makemake makemake.c
	2 cd .. util\makemake targetdir [hostdir]
	3 Edit the makefile now produced as hostdir\Makefi...
	4 cd hostdir make depend
	5 make

	4.4 Retargeting the Library
	4.4.1 Basic choices
	4.4.2 Address space model
	• contiguous stack
	• chunked stack
	Contiguous stack
	Figure 4-1: Chunked stack

	Chunked stack
	Figure 4-2: Contiguous stack

	4.4.3 I/O model

	4.5 Details of Target-dependent Code
	4.5.1 ANSI library functions
	4.5.2 I/O support
	4.5.3 Floating-point support
	4.5.4 Kernel
	4.5.5 Miscellaneous

	ARM Procedure Call Standard
	5.1 Introduction
	• constraints on the use of registers
	• stack conventions
	• the format of a stack-based data structure, used...
	• passing of machine-level arguments, and the retu...
	• support for the ARM shared library mechanism; a ...
	5.1.1 Design criteria
	• function calls should be fast, and it should be ...
	• the function call sequence should be as compact ...
	• extensible stacks and multiple stacks should be ...
	• the standard should encourage the production of ...
	• the standard should be simple enough to be used ...

	5.2 Defining the APCS
	Program fragments
	5.2.1 Register names
	• 15 visible general registers
	• a program counter register
	• eight floating-point registers.

	5.2.2 General registers
	• four argument registers which can also be used a...
	• five callee-saved registers, conventionally used...
	• seven registers which have a dedicated role, at ...
	Table 5-1: ACPS registers

	5.2.3 Floating-point registers
	• registers f0 through f3 need not be preserved by...
	• registers f4 through f7, the variable registers,...
	Table 5-2: Floating-point registers

	5.2.4 The stack
	• The stack must be readable and writable by the e...
	• Each contiguous chunk of the stack must be alloc...
	• There may be multiple stack chunks, and there ar...
	Stack chunk limit
	• point at least 256 bytes above it
	• identify the current stack chunk in a system-def...
	• identify the same chunk as sp points into at all...

	5.2.5 The stack backtrace data structure
	5.2.6 Function invocations and backtrace structure...
	Table 5-3: Function exit
	Table 5-4: APCS variants

	5.2.7 Control arrival
	• pc contains the address of an entry point to the...
	• lr contains the value to restore to pc on exit f...
	• sp points at or above the current stack chunk li...
	• fp contains 0 or points to the most recently cre...
	• The space between sp and the stack chunk limit i...
	• Arguments are marshalled as described in 5.2.8 D...
	• at the intra-link-unit entry point if the caller...
	• at the inter-link-unit entry point if the caller...

	5.2.8 Data representation and argument passing
	• a word-sized, integer value, or
	• a floating-point value (of size one, two, or thr...
	• in APCS, variants which support the passing of f...
	• the first four remaining argument words (or fewe...
	• the remainder of the argument list (if any) is i...

	5.2.9 Control return
	• sp, fp, sl/v7, sb/v6, v1–v5, and f4–f7 must cont...
	• If the function returns a simple value of one wo...
	• If the function returns a simple floating-point ...

	5.3 APCS Variants
	• 32-bit PC vs 26-bit PC. This is fixed by your AR...
	• Implicit vs explicit stack-limit checking. This ...
	• Passing floating�point arguments. This supports ...
	a) the floating�point instruction set is emulated ...
	b) the floating�point instruction set is supported...
	5.3.1 32-bit PC vs 26-bit PC
	• four status flags (NZCV) and two interrupt-enabl...
	• two mode bits (m0, m1) into the least-significan...

	5.3.2 Implicit vs explicit stack-limit checking
	5.3.3 Floating-point arguments in floating-point r...
	Note

	5.3.4 Re�entrant vs non-re�entrant code

	5.4 C Language Calling Conventions
	5.4.1 Argument representation
	5.4.2 Argument list marshalling
	5.4.3 Non-simple value return

	5.5 Function Entry
	• establishing the static base (if the function is...
	• creating the stack backtrace data structure (if ...
	• saving the floating-point variable registers (if...
	• checking for stack overflow (if the stack chunk ...
	Leaf functions
	Tail calls or tail continuations
	V-registers
	• it is a leaf function, or
	• all the function calls it makes from its body ar...

	5.5.1 Establishing the static base
	• direct linking together of functions into a link...
	• indirect linking of functions with the stubs of ...

	5.5.2 Creating the stack backtrace structure
	5.5.3 Saving and restoring floating�point register...
	• Store Floating Multiple (SFM)
	• Load Floating Multiple (LFM)
	• SFM and LFM are exact inverses
	• SFM will never trap, whatever the IEEE trap mode...
	• SFM and LFM transfer 3-word internal representat...
	• any 1-4, cyclically contiguous floating-point re...
	Function entry
	Function exit

	5.5.4 Checking for stack limit violations
	• uses 256 bytes or less of stack space
	• uses more than 256 bytes of stack space, but the...
	• uses an amount of stack space unknown until runt...
	• terminate execution
	• extend the existing stack chunk, and decrement s...
	• allocate a new stack chunk, reset sp and sl to p...

	5.5.5 Stack limit checking (small, fixed frames)
	5.5.6 Stack limit checking (large, fixed frames)
	Note
	FrameSizeBound can be any convenient constant at l...
	InitFrameSize is the initial stack frame size. Sub...

	5.5.7 Stack limit checking (vari�sized frames for ...
	• the computation of the proposed new stack pointe...
	• the addressing of vari-sized objects is more com...
	• vari-sized objects have to be initialized by the...
	Stack layout
	Figure 5-1: Stack layout

	5.5.8 Function exit
	26�bit compatibility
	Note

	5.5.9 Some examples

	5.6 The APCS in Non-user ARM Modes
	• An IRQ corrupts r14_irq, so IRQ-mode code must r...
	• SWIs corrupt r14_svc, so care has to be taken wh...
	5.6.1 Aborts and pre-ARM6-based ARMs
	Data aborts
	• saving R14 on entry to every function and restor...
	• not using R14 as a temporary register in any fun...
	• avoiding page faults (stack faults) in function ...

	Prefetch aborts

	Thumb Procedure Call Standard
	6.1 Introduction
	• Disjoint stack extension (stack chunks). Under T...
	• Calling the same entry point with different sets...
	• Direct floating�point support. Thumb cannot have...

	6.2 Register Names
	• eight visible general�purpose registers (r0-r7)
	• a stack pointer (SP)
	• a link register (LR)
	• a program counter (PC)
	Table 6-1: TPCS registers

	6.3 The Stack
	Note
	6.3.1 Implicit vs explicit stack limit checking

	6.4 Control Arrival and Return
	6.4.1 Control arrival
	• pc contains the address of an entry point to the...
	• lr contains the value to restore to pc on exit f...
	• sp points at or above the current stack limit. I...
	• fp contains 0 or points to the most recently cre...
	• The space between sp and the stack limit must be...
	• Arguments are marshalled as described below.

	6.4.2 Data representation and argument passing
	• word-sized integer value, or
	• floating�point value (of size one, two, or three...
	• The first four argument words (or fewer if there...
	• The remainder of the argument list (if any) is i...

	6.4.3 Control return
	• sp, fp, sl and v1-v4 contain the same values as ...
	• If the function returns a simple value of size o...
	• If the function returns a simple floating�point ...

	6.5 C Language Calling Conventions
	6.5.1 Argument representation
	6.5.2 Argument list marshalling
	6.5.3 Non-simple value return

	6.6 Function Entry
	6.6.1 Introduction
	Note

	6.6.2 Simple function entry
	6.6.3 Function entry: checking for stack limit vio...
	• the function uses 256 bytes or less of stack spa...
	• the function uses more than 256 bytes of stack s...
	• __rt_stkovf_split_small
	• __rt_stkovf_split_big)
	• terminate execution, or
	• extend the existing stack, decrementing sl

	6.6.4 Stack limit checking: small, fixed frames
	6.6.5 Stack limit checking: large, fixed frames
	Note

	6.7 Function Exit

	Toolkit Utilities
	7.1 Introduction
	7.2 ARM Profiler
	• If only PC�sampling information is present, the ...
	• If function call count information is present, t...
	Notes
	7.2.1 Profiler command-line options
	Example

	7.2.2 Profiler output

	7.3 ARM Librarian
	• each object file in the input list appears in th...
	• a module from a library file is only included in...
	7.3.1 Librarian command�line options
	armlib options library [file-list | member-list]

	7.4 ARM Object Format Decoder
	7.4.1 Object file decoder command-line options
	decaof [-options] file [file ...]
	Example

	decaof -q test.o C$$code��4748 C$$data��152

	7.5 ARM Executable Format Decoder
	7.5.1 Executable file decoder command-line options...
	decaxf [-options] file [file ...]
	Examples

	decaxf -gst my_elf.axf
	decaxf -c test1.axf test2.axf test3.axf

	7.6 ANSI to PCC C Translator
	7.6.1 ANSI to PCC C command�line options
	topcc options [infile [outfile]]

	7.6.2 Translation details
	type foo(argument-list);
	type foo(/* argument-list */);
	type foo(type1 a1, type2 a2) {...}
	type foo(a1, a2) type1 a1; type2 a2; {...}
	type foo(void) {...
	type foo() {...
	Notes
	1 The “...’’ �declaration in a function definition...
	2 ANSI keywords const, signed, and volatile are re...
	3 Type void * is converted to VoidStar, which shou...
	4 ANSI C’s unsigned and unsigned long constants ar...
	5 After rewrites that change the number of lines i...

	7.6.3 Issues with topcc
	1 topcc takes no account of the setting of conditi...
	2 topcc cannot concatenate adjacent string literal...
	3 If topcc finds an extra closing brace and starts...
	Debug Reference

	Angel
	8.1 Introduction
	8.2 Structure
	Figure 8-1: Structure of Angel
	• the C Library itself, which is linked with the a...
	• support for the semihosted parts of the C librar...

	8.3 Angel C Library Support (SWIs)
	8.3.1 The semihosted operations
	SYS_OPEN (0x01)
	SYS_CLOSE (0x02)
	SYS_WRITEC (0x03)
	SYS_WRITE0 (0x04)
	SYS_WRITE (0x05)
	SYS_READC (0x06)
	SYS_READ (0x07)
	SYS_ISERROR (0x08)
	SYS_ISTTY (0x09)
	SYS_SEEK (0x0A)
	SYS_FLEN (0x0C)
	SYS_TMPNAM (0x0D)
	SYS_REMOVE (0x0E)
	SYS_RENAME (0xF)
	SYS_CLOCK (0x10)
	SYS_TIME (0x11)
	SYS_SYSTEM (0x12)
	SYS_ERRNO (0x13)
	SYS_GET_CMDLINE (0x15)
	SYS_HEAPINFO (0x16)

	8.3.2 Other operations

	8.4 ROM Applications and Late Debugger Start-up
	8.4.1 Flow of control
	Control for applications in ROM

	8.4.2 Late debugger startup

	8.5 Breakpoints and Undefined Instructions
	8.5.1 ARM state
	• system privilege
	• semihosting requests
	• reporting an exception to the debugger

	8.5.2 Thumb state
	Breakpoints
	Note:

	8.6 Communications Architecture for Angel
	8.6.1 Layers
	Figure 8-2: Communication layers for Angel

	8.6.2 Channels
	Table 8-1: Angel communication channels

	8.6.3 BOOT support

	8.7 Reliability and Retransmission
	8.7.1 Packets
	• the data packet
	• the renegotiation packet

	8.7.2 Transmission sequencing
	• one sequence number for the host
	• one sequence number for the target
	• the first letter is either:
	N to indicate a generic node
	M to indicate that the identifier originated in th...
	• the second letter is either:

	h for the node’s home number
	o for the opposing node’s home number

	8.7.3 Protocol
	Sending a new message Increment Nh but leave No un...
	Receiving a good message Check that:
	Receiving a bad message Send a resend message with...
	Receiving a resend message Mo and Mh indicate what...

	8.7.4 State diagram for the protocol
	Figure 8-3: State diagram

	8.7.5 Recovering from a lost packet

	8.8 Channels Layer and Buffer Management
	8.8.1 Channel restrictions
	• one for host originated requests (Read Memory, E...
	• one for target originated requests (Thread has s...

	8.8.2 Buffer management
	• free
	• allocated to user
	• awaiting acknowledgement
	• allocated to device

	8.8.3 Long buffers
	Limited RAM

	8.8.4 Channel packet format
	Figure 8-4: Channel packet format
	CF_RELIABLE = 1<<0 reliable protocol in use
	CF_RESEND = 1<<1 renegotiation (resend request) pa...
	CF_HEARTBEAT = 1<<2 heartbeat/keepalive packet (se...

	8.8.5 Channel buffer format
	Figure 8-5: Channel buffer format

	8.8.6 Buffer life cycle
	8.8.7 Heartbeat mechanism
	Note

	8.9 Device Driver Layer
	8.9.1 Transmit and receive
	Figure 8-6: Angel Framework structure
	1 When an interrupt occurs, the generic interrupt ...
	2 This source id is used to look up and call the f...
	3 The interrupt handler for this device reads out ...
	4 The serializer sets running the device�specific ...
	5 The channel manager then dispatches the packet t...
	Polled devices

	8.9.2 Angel packet decode engine
	Figure 8-7: Angel packets
	The reception engine
	Figure 8-8: Reception engine
	• awaiting a packet
	• processing a packet
	• detected a bad packet
	• received a good packet

	Transmission engine
	Figure 8-9: Transmission engine

	8.9.3 Support for callback across all devices
	8.9.4 Transmit queueing
	8.9.5 Angel Interrupt handlers
	8.9.6 Booting and parameter negotiation
	1 The host sends a list of parameter settings that...
	2 The target examines the list, selects appropriat...
	3 The host switches to these new settings and send...
	Figure 8-10: Parameter negotiation

	8.9.7 Control calls
	• disabling and enabling the reception of data
	• initializing the device
	• resetting the device to its default state
	• setting the device config to a set of specified ...

	8.9.8 The APPL device channel
	Figure 8-11: Host channel driver interface

	8.10 Support for user application devices
	8.10.1 Full Angel with one shared and one raw seri...
	Figure 8-12: Full Angel with one shared and one ra...

	8.10.2 Minimal Angel with one raw serial port
	Figure 8-13: Minimal Angel with one raw serial por...

	8.10.3 User hooks for ADP communications in the ho...
	• install a handler for incoming shared-device app...
	• install a handler for arbitrary asynchronous pro...
	Adp_Install_DC_Appl_Handler()
	Adp_Install_Async_Callback()
	Note
	Example
	Communications when target is idle

	Note

	8.10.4 Error detection and reporting

	8.11 Fusion IP stack for Angel
	8.11.1 How Angel, Fusion and the PID hardware fit ...
	Figure 8-14: Angel, Fusion, and PID hardware
	Directories and Files
	Initialization
	1 devclnt.c:angel_InitialiseDevices() calls:
	2 ethernet.c:ethernet_init() which opens a socket....
	3 fusion:socket() notices that the fusion stack ha...
	4 Fusion stack initialization calls:
	5 olicom.c:olicom_init() calls:
	6 pcmcia.c:pcmcia_setup() detects Olicom card and ...
	7 olicom.c:olicom_card_handler() with a card inser...
	8 olicom.c:read_card_params() which registers olic...
	9 Fusion stack initialization calls:
	10 olicom.c:olicom_updown() and, via olicom_state(...
	11 82595.c:i595_bringup() to complete the initiali...
	Angel Ethernet device driver
	Interrupt handling

	1 suppasm.s:angel_DeviceInterruptHandler() calls t...
	2 pcmcia.c:angel_PCMCIAIntHandler() establishes th...
	3 olicom.c:olicom_isr() checks the interrupt, swit...
	4 olicom.c:olicom_process() identifies the reason ...
	5 olicom.c:olicom_state() calls an appropriate rou...
	6 82595.c routines control the i82595 chip and tra...
	7 olicom.c:olicom_process() checks to see whether ...
	Port numbering scheme

	8.12 Serialization, Stacks and Modes
	Figure 8-15: Serialization
	8.12.1 Serialization
	• one user mode Angel stack area, which may be use...
	• one application stack (per thread)
	• one Angel SVC mode stack for use by code which h...
	• small, temporary IRQ, FIQ and UND stacks
	Note
	SerialiseTask
	• If the lock is not taken: SerialiseTask sets the...
	• If the lock is taken: SerialiseTask calls QueueT...

	Task priorities
	IdleLoop
	AngelInitialisation
	Application The user’s application
	ApplicationCallBack Callbacks for the user’s appli...
	AngelCallBack Callbacks with Angel
	AngelWantLock Code needing the serialization lock

	QueueCallback
	• device drivers
	• breakpoint handlers
	• SWI handlers
	• or the Angel_Yield code, which is executing in S...

	BlockApplication
	NextTask
	1 NextTask must get into SVC mode and disable inte...
	2 NextTask looks at the queue of requested tasks, ...
	3 NextTask removes the task from the queue of task...
	Application callback:

	• searching for the logical parent of the callback...
	• inheriting sl and sp from the parent
	Angel CallBack
	AngelWantLock:

	• it has a lower priority than all Angel tasks exc...
	• it can be blocked
	The idle loop

	AccessApplicationRegBlock
	FlushApplicationCallbacks

	8.12.2 Processor modes and stacks
	• it is always empty when a task starts
	• once that task has finished (ie. it returns), al...

	8.12.3 Overview of Angel stacks for each mode
	• IRQ stack
	• FIQ stack (if used)
	• UND stack
	The Application stack
	The Angel USR mode stack
	Stack overflow
	IRQ/FIQ interrupt handling
	Figure 8-16: IRQ/FIQ interrupt handling

	Undefined instruction (breakpoint)
	Figure 8-17: Breakpoint callback (1)
	Figure 8-18: Breakpoint callback (2)

	Software interrupts (SWIs)
	• ReportException, which is used by the semihostin...
	• Calling veneer only, eg. semihosting support and...
	• Get into SVC mode
	ReportException
	Calling veneer SWIs
	Get into SVC mode

	• switches into SVC mode
	• disables IRQs and FIQs. There are some circumsta...
	• switches the caller’s stack pointer into the SVC...
	• leaves the caller’s CPSR in SPSR_SVC

	8.12.4 Continuing execution after a breakpoint
	Figure 8-19: Continuing after a breakpoint

	8.12.5 User interrupt requests
	Figure 8-20: User interrupt requests

	8.12.6 The yield function: Angel_Yield
	Figure 8-21: Angel_Yield

	8.12.7 Allocation and deallocation of register blo...
	Two shared register blocks: angel_MutexSharedTempR...
	• the registers at the time of an interrupt/SWI/un...
	• the registers required by a new task to be execu...

	A pool of centrally managed register blocks

	8.12.8 Reducing FIQ latency
	• In the IRQ�handling code which runs in IRQ mode,...
	• Within the SWI handler, Yield function, and also...
	• Within the undefined instruction (breakpoint) ha...
	FIQ_CannotBeOptimised
	FIQ_NeverUsesSerialiser_DoesNotReschedule_HasNoBre...

	8.12.9 Checking for “impossible” cases
	8.12.10 The device driver’s view
	Fully IRQ�driven write request
	1 Angel_EnterSVC()
	2 Note the user callback
	3 Send first byte
	4 Enable “write byte complete” interrupts on devic...
	5 Angel_ExitToUSR()
	Fully IRQ�driven read request

	1 Angel_EnterSVC()
	2 Note the user callback
	3 Enable “byte read” interrupts on device
	4 Angel_ExitToUSR()
	Half�IRQ, half�polled read request (no equivalent ...

	1 gets the first character which arrived and cause...
	2 disables read interrupts from happening from bef...
	3 gets the lock (by calling SerialiseTask) until t...
	4 calls QueueCallback for the packet
	5 return, giving back the lock
	Polled write

	1 Angel_EnterSVC()
	2 note the user callback
	3 send first byte
	4 register polling routine to be called by Angel_Y...
	5 Angel_ExitToUSR()
	6 Angel_Yield(); this gives an immediate chance fo...
	Polled read

	1 Angel_EnterSVC()
	2 note the user callback
	3 register polling routine to be called by Angel_Y...
	4 Angel_ExitToUSR()
	5 Angel_Yield() gives an immediate chance for the ...

	ARMulator
	9.1 About the ARMulator
	Note

	9.2 Modelling an ARM-based System
	• Remote Debug Interface the interface between the...
	• ARM Core Model the model of the ARM processor it...
	• Memory Model the model of the memory system outs...
	• Coprocessor Models these model ARM coprocessors ...
	• Operating System or Debug Monitor model a virtua...
	9.2.1 Model stubs
	9.2.2 Configuration
	9.2.3 ARMul_State

	9.3 Basic Model Interface
	9.3.1 Initialization function

	9.4 Memory Model Interface
	9.4.1 Initialization and other functions
	• to register any upcalls (in particular an exit u...
	• to announce itself to the user (using ARMul_Pret...
	• to attach any associated coprocessor models (a m...

	9.4.2 Basic memory interface
	ARMul_MemType_Basic supports byte and word loads a...
	ARMul_MemType_16Bit is the same as ARMul_MemType_B...
	ARMul_MemType_Thumb is the same as ARMul_MemType_1...
	Note
	Access type
	Cached versions
	ARMul_MemType_BasicCached
	ARMul_MemType_16BitCached
	ARMul_MemType_ThumbCached

	9.4.3 Byte-lane memory interface
	9.4.4 Other interfaces
	9.4.5 Memory map handling

	9.5 Coprocessor Model Interface
	9.5.1 Function parameters
	9.5.2 Debug functions
	• the first gives the number of registers
	• the remaining vector gives the minimum number of...

	9.6 Operating System or Low-level Monitor Interfac...
	9.6.1 Using the UnkRDIInfoUpcall
	9.6.2 Using the floating-point emulator (FPE)
	Note

	9.7 Accessing the ARMulator’s State
	9.7.1 Accessing ARM registers
	Note

	9.7.2 Accessing coprocessor registers
	9.7.3 Interrupts
	9.7.4 Configuration
	• the first (changed) has bits set for each bit yo...
	• the second (config) has the new values.

	9.7.5 Upcalls
	ExitUpcall
	ModeChangeUpcall
	TransChangeUpcall
	ConfigChangeUpcall
	InterruptUpcall
	ExceptionUpcall
	• the exception to be taken (as the address of the...
	• the PC value at the time the exception occurs
	• the instruction that caused the exception

	Note
	UnkRDIInfoUpcall

	9.7.6 Memory Access Functions
	9.7.7 Event handling
	• instructions
	• cycles
	Instructions
	Cycles

	9.7.8 Miscellaneous functions
	9.7.9 Initialization errors
	ARMulErr_NoError (zero) indicates a successful ini...
	an RDIError value from those in dbg_rdi.h
	an ARMulErr value from those in errors.h

	9.7.10 Running code

	9.8 Accessing the Debugger
	9.8.1 Input/output functions
	9.8.2 Miscellaneous functions

	9.9 Events
	Table 9-1: Events from ARM processor core
	Table 9-2: Events from MMU and cache (not on Stron...
	Table 9-3: Events from pre-fetch unit (ARM8-based ...

	ARM Debugger
	10.1 Command Language
	10.1.1 Names used in syntax descriptions
	• hex
	• ascii
	• string This is a sequence of characters enclosed...
	• A C printf function format descriptor. Table 10-...
	Table 10-1: Format descriptors

	10.2 Command-line Options
	10.2.1 Debuggee selection
	Using -rdp
	Port specification with RDP
	Port specification with ADP
	Automatic command execution on startup

	10.3 Commands Overview
	• Accessing and executing programs
	• Symbols
	• Controlling execution
	• Program context
	• Low�level debugging
	• Coprocessor support
	• Profiling commands
	• Miscellaneous
	10.3.1 Accessing and executing programs
	Specifying the source directory
	Command�line arguments

	10.3.2 Symbols
	10.3.3 Controlling execution
	10.3.4 Program context
	10.3.5 Low�level debugging
	10.3.6 Coprocessor support
	10.3.7 Profiling commands
	10.3.8 Miscellaneous commands

	10.4 Commands List
	!
	|
	alias
	arguments
	backtrace
	break
	• procedure entry and exit
	• lines
	• statements within a line
	Note

	call
	comment
	coproc
	context
	cregisters
	cregdef
	cwrite
	examine
	• the address associated with the current context,...
	• the address following the last address displayed...
	• if omitted, the end address is the value of the ...
	• if expression2 is preceded by +, the end address...
	• if there is no +, the end line is the value of e...

	find
	fpregisters
	F single
	D double
	E extended
	I internal format
	P packed decimal
	go
	getfile
	help
	in
	istep
	language
	let
	list
	load
	log
	Note

	lsym
	obey
	out
	Note

	pause
	print
	profclear
	profoff
	profon
	profwrite
	putfile
	expression2 - 1 if expression2 is not preceded by ...
	expression1 + expression2 - 1 if expression2 is pr...

	quit
	readsyms
	registers
	reload
	return
	Note

	step
	symbols
	type
	• the source line associated with the current cont...
	• the line following the last line displayed with ...
	• if expression2 is omitted, the end line is the s...
	• if expression2 is preceded by +, the end line is...
	• if there is no +, the end line is simply the val...

	unbreak
	Note

	unwatch
	variable
	watch
	Notes

	where
	while

	10.5 Specifying Source�level Objects
	10.5.1 Variable names and context
	10.5.2 Program locations
	• procedure entry and exit
	• program line numbers
	• statement within a line
	Procedure entry and exit
	Program line numbers
	Statement within a line

	10.5.3 Expressions
	Note

	10.5.4 Constants

	10.6 Variables
	10.6.1 Summary of armsd variables
	10.6.2 armsd internal variables
	$icebreaker_lockedpoints shows or sets locked Embe...
	$semihosting_enabled enables semihosting
	$semihosting_vector sets up semihosting SWI vector...
	Semihosting SWIs

	10.6.3 Accessing variables
	print
	let

	10.6.4 Formatting integer results
	Note

	10.6.5 Specifying the base for input of integer co...
	Note

	10.7 Low�level Debugging
	10.7.1 Low�level symbols
	Note

	10.7.2 Symbols for low�level entities
	Note

	10.8 armsd commands for EmbeddedICE
	listconfig file Lists the configurations known to ...
	loadagent Downloads a replacement EmbeddedICE ROM ...
	loadconfig file Loads an EmbeddedICE configuration...
	readsyms file Loads an image file containing debug...
	The highest�numbered version meeting the version c...
	selectconfig name version Selects an EmbeddedICE c...
	any accepts any version number (default)
	n uses version n
	n+ uses version n or later
	Debug communications channel
	ccin filename Selects a file containing Comms Chan...
	ccout filename Selects a file where Comms Channel ...

	10.9 Angel and armsd
	10.9.1 Angel SYS commands

	Remote Debugging
	11.1 ARM Remote Debug Interface
	• a controlling debug agent or debug monitor linke...
	• a debug agent executing in a separate operating ...
	• a debug monitor running on ARM-based hardware ac...
	• a debug agent controlling an ARM processor via h...

	11.2 RDI Functions
	RDI_open (open and/or initialize debuggee)
	RDI_close (close and finalize debuggee)
	RDI_read (read memory address)
	RDI_write (write memory address)
	RDI_CPUread (read CPU state)
	RDI_CPUwrite (write CPU state)
	RDI_CPread (read co-processor state)
	• Co-processor 1 (and 2 in the case of FPA) is a f...
	• Co-processor 15 is a memory management unit (eg....

	RDI_CPwrite (write co-processor state)
	• Co-processor 1 (and 2 in the case of FPA) is a f...
	• Co-processor 15 is a memory management unit (eg....

	RDI_setbreak (set breakpoint)
	RDI_clearbreak (clear breakpoint)
	RDI_setwatch (set watchpoint)
	RDI_clearwatch (clear watchpoint)
	RDI_execute (execute)
	• a breakpoint is reached
	• a watched address is accessed
	• an exception occurs
	• you press Escape

	RDI_step (multiple step)
	RDI_pointinquiry (breakpoint/watchpoint inquiry)
	Note
	RDI_addconfig (add config block)
	RDI_loadconfig (load config block)
	RDI_selectconfig (select config block)
	RDI_NameList (get driver names)
	RDI_NameList (get CPU names)
	RDI_ErrMess (get error messages)
	RDI_loadagent (load debug agent)

	11.2.1 Miscellaneous functions
	RDI_info (miscellaneous information)
	RDIInfo_Points (breakpoints and watchpoints)
	Note
	RDIInfo_Step
	RDIInfo_Target (identify target)
	RDIVector_Catch
	RDIInfo_MMU
	RDIInfo_DownLoad
	RDIInfo_SemiHosting
	RDIInfo_CoPro
	RDIInfo_Icebreaker
	RDIMemory_Access
	RDIMemoryMap
	RDISet_CPUSpeed
	RDIRead_Clock
	RDIConfig_Count
	RDIConfig_Ntl
	RDIInfo_MemoryStats
	RDIPointStatus_Watch
	RDIPointStatus_Break
	RDISignal_Stop
	RDISemiHosting_SetState
	RDISemiHosting_GetState
	RDISemiHosting_SetVector
	RDISemiHosting_GetVector
	RDIICEBreaker_GetLocks
	RDIICEBreaker_SetLocks
	RDIICEBreaker_GetLoadSize
	RDICommsChannel_ToHost
	RDICommsChannel_FromHost
	RDICycles
	RDIErrorP
	RDISet_CmdLine
	RDISet_RDILevel
	RDISet_Thread
	RDI_DescribeCoPro
	RDI_RequestCoProDesc
	RDIInfo_Log
	RDIInfo_SetLog
	RDIProfile_Stop
	RDIProfile_Start
	RDIProfile_WriteMap
	RDIProfile_ReadMap
	RDIProfile_ClearCounts

	11.3 Error Codes
	11.3.1 Information messages
	LittleEndian The debuggee is little endian
	BigEndian The debuggee is big endian

	11.3.2 Internal fault or limitation
	InsufficientPrivilege Supervisor state was not acc...
	UnimplementedMessage Debuggee cannot honour this R...
	UndefinedMessage Corrupted RDP request
	IncompatibleRDILevel There is no common RDI level ...

	11.3.3 RDI errors
	NotInitialised RDI_open must be the first call
	UnableToInitialise The target world is broken
	WrongByteSex The debuggee cannot operate with the ...
	UnableToTerminate Target world was smashed by the ...
	BadInstruction It is illegal to execute this instr...
	IllegalInstruction The effect of executing this is...
	BadCPUStateSetting Tried to set the SPSR of user m...
	UnknownCoPro This co-processor is not connected
	UnknownCoProState Cannot execute this co-processor...
	BadCoProState Recognizably broken co-pro request
	BadPointType Misuse of the RDI
	UnimplementedType Misuse of the RDI
	BadPointSize Misuse of the RDI
	UnimplementedSize Halfwords are not yet implemente...

	11.4 Angel Debug Protocol (ADP)
	• a debug monitor running on ARM-based hardware ac...
	• a remote debug agent controlling an ARM processo...
	11.4.1 The protocol stack
	Figure 11-1: The protocol stack

	11.4.2 Device�level protocols
	• a start�of�packet character
	• the length of the packet
	• some flags
	• no “out of packet” characters
	• packets which are not the correct length
	• packets which have a bad checksum

	11.4.3 Channels�level protocol
	Note

	11.4.4 Debug�level protocols
	• one for Host�originated requests (eg. read memor...
	• one for Target�originated messages (gives reason...
	1 A reason code.
	2 Multi�threaded debug support fields (currently u...
	3 Data, as indicated by the reason code. There may...
	C library support protocol
	File Format Reference

	ARM Image Format
	12.1 Overview of ARM Image Format
	• a 128�byte header
	• the image's code
	• the image's initialized static data
	• The outer wrapper allows the inner layers to be ...
	• The next layer of wrapping deals with relocating...
	• Finally, the enwrapped image is entered at the (...

	12.2 AIF Flavors
	12.2.1 Executable AIF
	• an implicit property of the type of the file con...
	• read by the program loader from offset 0x28 in t...
	• given by some other means; for example, by instr...

	12.2.2 Compressed images
	12.2.3 Relocation
	• relocate to load address (the image can be loade...
	• self-move up memory, leaving a fixed amount of w...

	12.2.4 Debugging
	12.2.5 AIF output
	• no unresolved symbolic references between the in...
	• exactly one input object containing a program en...
	• either an absolute load address or the relocatab...

	12.3 The Layout of AIF
	12.3.1 Compressed AIF image
	1 Header
	2 Compressed image
	3 Decompression data (position-independent)
	4 Decompression code (position-independent)

	12.3.2 Uncompressed AIF image
	1 Header
	2 Read-only area
	3 Read-write area
	4 Debugging data (optional)
	5 Self-relocation code (position�independent)
	6 Relocation list. This is a list of byte offsets ...

	12.3.3 Debugging
	1 Header
	2 Read-only area
	3 Read-write area
	4 Debugging data (optional)
	Figure 12-1: AIF header layout
	Notes

	1 NOP is encoded as MOV r0, r0.
	2 BL is used to make the header addressable via r1...
	3 Program Exit Instruction will usually be a SWI c...
	4 Image ReadOnly Size includes the size of the AIF...
	5 An AIF image is restartable if, and only if, the...
	6 Image debug type has the following meaning:
	7 Address mode word (at offset 0x30) is 0, or cont...

	26 indicates that the image was linked for a 26-bi...
	32 indicates that the image was linked for a 32-bi...
	8 FAT AIF images. In these images, the word at 0x3...
	9 Debug Initialization Instruction (if used) is ex...

	12.4 Zero-initialization code
	12.4.1 Self-move and self-relocation code
	Note
	Note

	ARM Object Library Format
	13.1 Overview of ARM Object Library Format
	• Directory
	• Time stamp
	• Version
	• Data
	• Symbol table
	• Symbol table time stamp
	13.1.1 Terminology

	13.2 Endianness and Alignment
	13.2.1 Alignment

	13.3 Library File Format
	Chunk Chunk name
	Directory LIB_DIRY
	Time stamp LIB_TIME
	Version LIB_VSRN
	Data LIB_DATA
	Symbol table OFL_SYMT object code libraries only
	Time stamp OFL_TIME object code libraries only
	Earlier versions of ARM object library format
	• Applications which create libraries or library m...
	• Applications which read LIB_DIRY entries should ...
	• Applications which write LIB_DIRY or OFL_SYMT en...

	13.3.1 LIB_DIRY
	Figure 13-1: The LIB_DIRY chunk

	13.3.2 LIB_VSRN
	13.3.3 LIB_DATA

	13.4 Time Stamps
	• a six-byte count of centi-seconds since the star...
	• a two-byte count of microseconds since the last ...
	13.4.1 LIB_TIME

	13.5 Object Code Libraries
	• an external symbol table chunk named OFL_SYMT
	• a time stamp chunk named OFL_TIME
	13.5.1 OFL_SYMT
	13.5.2 OFL_TIME

	ARM Object Format
	14.1 ARM Object Format
	14.1.1 Areas
	• read-only
	• re-entrant
	• code
	• data
	• position�independent etc.

	14.1.2 Relocation directives
	• a non�zero base address is assigned to the area
	• a symbolic reference is resolved
	• have a definition within its containing object f...
	• have a definition within the object file which i...
	• be a reference to a symbol defined in some other...

	14.1.3 AOF and the linker
	• merges similarly named and attributed areas
	• performs PC-relative relocations between merged ...
	• rewrites symbol-relative relocation directives b...
	• minimizes the symbol table

	14.1.4 Byte sex or endianness
	14.1.5 Alignment

	14.2 Overall Structure of an AOF File
	14.2.1 Chunk file format
	• AOF header
	• AOF areas
	• producer's identification
	• symbol table
	• string table
	Figure 14-1: Chunk file layout

	Identifying data types
	• the first four characters contain a unique name ...
	• the remaining four characters can be used to ide...

	14.2.2 ARM object format
	Note

	14.3 Format of the AOF Header Chunk
	Figure 14-2: AOF header chunk
	14.3.1 Format of area headers
	Area name (offset into string table)
	Attributes + Alignment
	Area Size
	Number of Relocations
	Base Address or 0 (five words in total)
	Area Name gives the offset of that name in the str...
	Area Size gives the size of the area in bytes, whi...
	Number of Relocations specifies the number of relo...
	Base Address is unused unless the area has the abs...

	14.4 Attributes and Alignment
	• by attributes
	• by the (case-significant) lexicographic order of...
	• by position of the containing object module in t...
	Note
	Common areas

	14.4.1 Area attributes summary
	Table 14-1: Area attributes

	14.5 Format of the AREAS Chunk
	14.6 Relocation Directives
	14.6.1 R (bit 26) = 0 and B (bit 28) = 0
	14.6.2 R (bit 26) = 1 and B (bit 28) = 0
	Note

	14.6.3 R (bit 26) = 0 and B (bit 28) = 1

	14.7 Symbol Table Chunk Format (OBJ_SYMT)
	14.7.1 Symbol attributes
	14.7.2 Symbol attribute summary
	Table 14-2: Symbol attributes

	14.8 The String Table Chunk (OBJ_STRT)
	14.9 The Identification Chunk (OBJ_IDFN)

	ARM Symbolic Debug Table�Format
	15.1 Overview of ARM Symbolic Debug Table Format
	15.1.1 Terminology
	Halfwords are unused, except in the long form of L...

	15.2 Order of Debugging Data
	15.2.1 Endianness and the encoding of debugging da...

	15.3 Representation of Data Types
	• in the most significant 24 bits, a code to ident...
	• in the least significant 8 bits, a pointer count...
	15.3.1 Representation of source file positions
	15.3.2 The code and length field
	15.3.3 Text names in items
	15.3.4 Offsets in file and addresses in memory

	15.4 Section Items
	15.4.1 Lang byte
	Table 15-1: Language byte codes

	15.4.2 Flags byte
	• debugging data contains line-number information....
	• debugging data contains information about top-le...
	• both of the above

	15.4.3 asdversion byte
	Table 15-2: Linker�generated debugging data
	Note
	• a length word
	• the strings themselves, each terminated by a NUL...

	15.5 Procedure Items
	15.5.1 Type items
	15.5.2 Endproc items
	15.5.3 Label items
	15.5.4 Variable items
	1 external variables (or Fortran common)
	2 static variables private to one section
	3 automatic variables
	4 register variables
	5 Pascal 'var' arguments
	6 Fortran arguments
	7 Fortran character arguments
	• an absolute address for static and external vari...
	• a stack offset (offset from the frame pointer) f...
	• an offset into the argument list for Fortran arg...
	• a register number for register variables (the ei...

	15.5.5 Struct, union, and class items
	15.5.6 Array items
	15.5.7 Bounds
	Note

	15.5.8 Subrange items
	15.5.9 Set items
	15.5.10 Enumeration items
	15.5.11 Function declaration items
	15.5.12 Begin and end naming scope items
	15.5.13 �Bitfield item
	15.5.14 Macro definition item
	Note

	15.5.15 Macro undefinition item
	15.5.16 Fileinfo items
	Note
	Note
	Note
	Note

	15.5.17 Map fragment items

	ELF File Format
	16.1 Overview of ELF File Format
	16.1.1 Object file format
	• relocatable file
	• executable file
	• shared object file
	Linking View
	Execution View
	Figure 16-1: ELF object file organization
	Section header table
	• .bss
	• .text

	Program header table

	16.1.2 Executable ARM ELF File Layout

	16.2 Generic ELF File Layout
	• the ELF header
	• the Program Header Table
	• the Section Header Table
	16.2.1 ARM-specific ELF Header Values
	e_machine is set to EM_ARM (defined as 40)
	e_ident[EI_CLASS] is set to ELFCLASS32
	e_ident[EI_DATA] is set to:
	Note:

	16.2.2 Segments
	• Text
	• Data
	• BSS
	Text Segment
	Data Segment
	BSS Segment

	16.2.3 Sections
	• the Symbol Table Section
	• the String Table Section
	Symbol Table Section
	Note:
	String Table Section
	Section Name String Table
	Debugging Sections
	• ASD debugging tables
	• DWARF version 1.0
	• DWARF version 2.0

	Note:

	16.3 Scatter�loaded Executables
	• each Segment generated will have its own Section...
	• each Section Header Table entry will have its sh...
	Note:

	Other File�Formats
	17.1 Plain Binary Format
	• no unresolved symbolic references between the in...
	• an absolute base address (given by the -Base opt...
	• complete performance of all relocation directive...
	Note

	17.2 Extended Intellec Hex Format (IHF)
	Index

