Extra Lecture – Introduction to Sorting

- What is sorting?
- Sorting is an extremely well studied problem in Computing. Many algorithms exist, including
 - ➤bubble sort
 - heap sort
 - quick sort

Algorithm B (BubbleSort)

B1. [Initialize BOUND] Set BOUND := N

B2. [Loop on j] Set t := 0. Perform B3 for j=1,2,...,BOUND-1 and then go to step B4.

B3. [Compare/Exchange] If R[j] > R[j+1], interchange R[j] with R[j+1] and set t := j;

B4. [Any exchanges?] If t=0, the algorithm terminates. Otherwise set BOUND := t and return to step B2. ■

BubbleSort - Notes	Bubble Sort - Example	
 BOUND is the highest index for which the element is not known to be in its final (sorted) position. 	R[1] 43 34 34 34 34 34	
 ♦ BOUND = N ⇒ Nothing is known about ordering ♦ BOUND = 0 ⇒ Array is in perfect order 	R[2] 34 43 43 43 35 35	
	R[3] 64 64 48 35 43 43	
 t holds the last index at which an exchange was performed 	R[4] 64 48 35 48 48 48	
* t=0 \Rightarrow No exchanges were performed	R[5] 48 35 64 64 64 64	
 Algorithm as presented sorts in ascending order of R_j 	R[6] 35 64 64 64 64 64	
	R[7] 84 84 84 84 84 84	