Lecture 9 ARM Instruction Set Architecture

In this lecture, we will consider some aspects of ARM instruction set
architecture (ISA) in detail.

We shall consider the format of some instruction codes and their
relationship with the assembly instruction.

We start with a simple Branch or Branch with Link instruction:
31 2827 252423 0
| cond | 101 |L| 24-bit signed word offset

Note that the top 4 bits [31:28] are always used to specify the conditions
under which the instruction is executed.
The L-bit (bit 24) is set if it is a branch with link instruction.

< BL is jump to subroutine instruction - r14 <- return address

24-bit signed offset specifies destination of branch in 2's complement
form. It is shifted left by 2 bits to form a word offset.

The range of branch is +/- 32 Mbytes.

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 1

ARM condition codes fields

Opcode Mnemonic Interpretation Status flag state for
|[31:28] extension execution
0000 EQ Equal / equals zero Zset
0001 NE Not equal Z clear
0010 CS/HS Carry set / unsigned higher or same Cset
0011 CC/LO Carry clear / unsigned lower C clear
0100 MI Minus / negative Nset
0101 PL Plus / positive or zero N clear
0110 VS Overflow Vset
0111 VC No overflow Vclear
1000 HI Unsignedhigher Cset and Z clear
1001 LS Unsigned lower or same Cclear or Zset
1010 GE Signed greater than or equal Nequals V
1011 LT Signedless than Nis not equal to V
1100 GT Signed greater than Zclear and N equals V
1101 LE Signedless than or equal Zset or Nis not equal to V
1110 AL Always any
1111 NV Never (do not use!) none
pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 2

Data Processing Instructions

¢ Uses 3-address format: first operand - always register; second
operand - register/shifted register/immediate value; result - always
aregister

¢ For second register operand, it can be logical/arithmetic/rotate.
This is specified in "shift-type"

¢ How much to shift by is either a constant #shift or a register

¢ For immediate value second operand, only rotation is possible

¢ S-bit controls condition code update

% N flag - set if result is negative (N equals bit 31 of result)

» Z flag - set if result is zero

» C flag - set if there is a carry-out from ALU during arithmetic
operations, or set by shifter

%V flag - set in an arithmetic operation if there is an overflow from bit 30

to bit 31. It is significant only when operands are viewed as 2’s

complement signed values

o

B3

<

Ry

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 3

Data Processing Instruction Binary encoding

31 2827262524 212019 1615 12 11 0
[cond Jool#]opcodes] rn | ra | operand 2 |

destination register

first operand register

set condition codes

- - ————

arithmetic/logic function

1
1
1
1
|
¥
25 11 8 7 0
—————————————— ->| #rot | 8-bit immediate |
H immediate alignment — ",
! 11 76543 0
i Pmmmmm o es > [#shit Jsnfo] Rm |
25 i immediate shift length —
@ -= shift type
: second operand register T]
: i 876543 0

register shift length

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 4

ARM data processing instructions

Opcode Mnemonic Meaning Effect

[24:21]

0000 AND Logical bit-wise AND Rd:=Rn AND Op2
0001 EOR Logical bit-wise exclusive OR Rd:=Rn EOR Op2
0010 SUB Subtract Rd:=Rn-0p2

0011 RSB Reverse subtract Rd:=0p2-Rn

0100 ADD Add Rd:=Rn+0p2

0101 ADC Add with carry Rd:=Rn+0p2+C
0110 SBC Subtract with carry Rd:=Rn-0p2+C-1
0111 RSC Reverse subtract with carry Rd:=0p2-Rn+C-1
1000 TST Test Sce on Rn AND Op2
1001 TEQ Test equivalence Scc on Rn EOR Op2
1010 CMP Compare Sccon Rn - Op2

1011 CMN Compare negated Sccon Rn + Op2
1100 ORR Logical bit-wise OR Rd:=Rn OR Op2
1101 MOV Move Rd:=0p2

1110 BIC Bit clear Rd:=Rn ANDNOT Op2
1111 MVN Move negated Rd:=NOT Op2

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing

Spring Term Lecture 9- 5

Example of data processing instructions

31 2827262524 212019 1615 1211 0

| cond |00|#|opcode|8| Rn | Rd | operand 2 |
] T T T

11 76543 0

P mmmmmm e = [wshit TsnJo] rRm]

1
I
I 1
v i |
25 : immediate shift length
@ == shift type
1
1 1

second operand register

¢ ADD r5, 11, r3 E081 5003

o ADDNES 10, r0, rO, LSL #2 1090 0100

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 6

Data Transfer Instructions (LDR/STR)

2827262524 2322212019 16 15 1211

31
[cond [o1]¢]plulsi{L] Rn | R

offset |

base register
load/store

write-back (auto-index)
unsigned byte/word

source/destination register:

-

S e L T ——

up/down
pre-/post-index
1 9
.............. > [12bitimmediate |
1
t
25 1 76543 0
______________ = [#shit [snfo] rRm |

immediate shift length —I |

shift type

offset register

pykc/gac - 13-Nov-01 ISE1/ EE2 Computing

Spring Term Lecture 9- 7

Data Transfer instructions

P =1 means pre-indexed, i.e. modify the address BEFORE use
P = 0 means post-indexed, i.e. modify the address AFTER use
B = 1 selects unsigned byte transfer (default is word transfer)
<offset> may be #+/- 12-bit immediate value (i.e. constant)
<offset> may also be +/- register

write-back (or "1") = 1 if the base register is updated

All the shift parameters are the same as before

® 6 6 ¢ ¢ o o

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 8

Multiple register transfer instructions

31 2827 25242322212019 1615 0
| cond [100[plulspL] rn | register st

base register
load/store

write-back (auto-index)
restore PSR and force user bit
up/down

pre-/post-index

¢ STMIA ri3!, {r0-r2, r14} E8BAD 4007

pykc/gac - 13-Nov-01 ISE1/ EE2 Computing Spring Term Lecture 9- 9

Multiply Instructions

¢ ARM has a number of multiply instructions
< Produce product of two 32-bit binary numbers held in registers.

< Results of 32-bit*32-bit is 64 bits. Some ARM processors stores the
entire 64-bit results in registers. Other ARM processors only stores the
LOWER 32-bit products.

< Multiply-Accumulate instruction also add product to accumulator value
to form a running total.

Opcode Mnemonic

Meaning

Effect

[23:21]

000 MUL
001 MLA
100 UMULL
101 UMLAL
110 SMULL
111 SMLAL

Multiply (32-bit result)
Multiply-accumulate (32-bit result)
Unsigned multiply long

Unsigned multiply-accumulate long
Signed multiply long

Signed multiply-accumulate long

Rd:=(Rm * Rs) [31:0]
Rd:=(Rm* Rs +Rn) [31:0]
RdHi:RdlLo := Rm * Rs
RdHi:RdLo +=Rm * Rs
RdHi:RdLo :=Rm * Rs
RdHi:RdLo +=Rm * Rs

pykc/gac - 13-Nov-01

ISE1 / EE2 Computing

Spring Term Lecture 9- 10

Example of using ARM Multiplier

¢ This calculates a scalar product of two vectors, 20 long.

+ r8 and r9 points two the two vectors

¢ rllis the loop counter

¢ rl0 stores results
MOV rl1, #20 ; initialize loop counter
MOV ri0, #0 ; initialize total

LOOP LDR ro, [r8], #4 ; get first component

LDR rl, [r9], #4 ;and second
MLA r10,r0,r1,r10 ; accumulate product
SUBS ri11,ri11, #1 ; decrement loop counter
BNE LOOP

pykc/gac - 13-Nov-01 ISE1 / EE2 Computing Spring Term Lecture 9- 11

Multiplication by a constant

¢ When multiplying by a constant value, it is possible to replace the
general multiply with a fixed sequence of adds and subtracts that
have the same effect.

¢ For instance, multiply by 5 could be achieved using a single

instruction:

ADD Rd, Rm, Rm, LSL #2

;Rd=Rm+(Rm*4)=Rm*5 |

+ This is obviously better than the MUL version:

MOV Rs, #5
MUL Rd, Rm, Rs

¢ What constant multiplication is this?

ADD
RSB

ro, r0, rO, LSL #3 ;r0" =7 xr0’

ro, r0, r0, LSL #2 ;r0":=5xr0 I

pykc/gac - 13-Nov-01

ISE1 / EE2 Computing

Spring Term Lecture 9- 12

