Matlab Lecture 3: Finishing with MATLAB

Solution to Lab 1 (con't)

Must use Add Path (or Set Path)

Lecture 3 - 3

pykc - 29-Jan-02

ISE1/EE2 Computing

Logical Subscripting

- The logical vectors created from logical and relational operations can be used to reference subarrays.
- Suppose X is an ordinary matrix and L is a matrix of the same size that is the result of some logical operation. Then X (L) specifies the elements of X where the elements of L are nonzero.
- Suppose:

pvkc - 29-Jan-02

 $x = 2.1 \ 1.7 \ 1.6 \ 1.5 \ NaN \ 1.9 \ 1.8 \ 1.5 \ 5.1 \ 1.8 \ 1.4 \ 2.2 \ 1.6 \ 1.8$

» x = x(finite(x)) x = 2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

ISE1/EE2 Computing

 Now there is one observation, 5.1, which seems to be very different from the others. It is an *outlier*. The following statement removes *outliers*, in this case those elements more than three standard deviations from the mean.

x = x(abs(x-mean(x)) <= 3*std(x))												
x =	2.1	1.7	1.6	1.5	1.9	1.8	1.5	1.8	1.4	2.2	1.6	1.8

pykc - 29-Jan-0	2
-----------------	---

ISE1/EE2 Computing

Lecture 3 - 6

Structures in MATLAB

Lecture 3 - 5

 Structures are multidimensional MATLAB arrays with elements accessed by textual *field designators*. For example,

```
S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'
```

• creates a scalar structure with three fields.

```
S =
```

name: 'Ed Plum' score: 83 grade: 'B+'

• an entire element can be added with a single statement.

```
S(3) = struct('name','Jerry Garcia',...
'score',70,'grade','C')
```

Assignment: Image Warping

- Image rotation
- Image shearing
- Edge detection
- Image blurring
- Deadline
 - See Assignment sheet submit to Level 6 Teaching Office
- Deliverables:-
 - Well commented listing of your MATLAB files
 - Evidence that it works (i.e. hardcopy for each of the special effects)
 - Floppy disk containing a ready-to-try copy of your programmes

Problem 1: Rotation (1)

Problem 1: Rotation (2)

Lecture 3 - 9

For each pixel in the source image {

Work out the destination pixel location using the forward mapping equation.

Paint that destination pixel with the source image value.

}

Problem 1: Rotation (2)

Lecture 3 - 11

Problem 2 & 3: Shearing & Edge Detection

ISE1/EE2 Computing

Lecture 3 - 13