ISE1/EE2 Computer Architecture
Problem Sheets 1 to 6 with Solutions

Problem Sheet 1

1. Convert 51219 to a 16-bit two’s complement binary number [P&H, Ex.4.1]

2. Convert —1,02319 to a 16-bit two’s complement binary number [P&H,
Ex.4.2]

3. What hexadecimal number does the binary number 0110111, represent?
What decimal number does it represent?

4. What decimal number does the unsigned binary number 11.01 represent?
What would it represent as a signed (two’s complement) binary number?

5. If a memory has a 16-bit address bus and a 32-bit data bus, what is the
largest size the memory could be?

6. What does the ASCII hex sequence 41 52 4D represent?

7. What is the largest positive number that can be represented in (integer)
two’s complement using n bits? The largest negative number?

peterc
ISE1/EE2 Computer Architecture
Problem Sheets 1 to 6 with Solutions

Problem Sheet 1: ANSWERS

N o W

.-0000 0010 0000 0000 (NOT 1111 1110 0000 0000)

1111 1100 0000 0001 (NOT 0000 0011 1111 1111)
37, 55

3.25,-0.75

256 kbytes

ARM

2n=t 1, —2n-!

Problem Sheet 2

1. Consider the Pascal/Delphi statement
f :=(a+b) - (c+d);
Translate this statement into MUO assembly language.
2. Consider the Pascal/Delphi statement
if (a=b) f := atb else f := a-b;

Translate this statement into MUO assembly language.

3. How many clock cycles would your code for the above statements take to
complete on MUOQ?

Problem Sheet 2: ANSWERS

1. LDA
ADD
STO
LDA
ADD
SUB
STO
STP

L1:

L2:

Hh oo T o Qa0

LDA
SUB
JNE
LDA
ADD
JMP
LDA
SUB
STP

b

P NNNDNDDNDDNDN

cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycle,

F NNFEFNDNDRFEDNDDN

total = 15 cycles

cycles
cycles
cycle
cycles
cycles
cycles
cycles
cycles
cycle, total = 11 (‘if branch’) or 10 (’else branch’)

Other solutions are possible.

3. Exec times for instructions are in notes and are shown above.

Problem Sheet 3

1. MUO uses 1l-address instructions. Re-write the code from Problem Sheet
2, Question 1 for

(a) A 3-address instruction format machine with instruction set below.

ADD ml m2 m3; mem[m3] = mem[ml] + mem[m2] (Takes 4 cycles)
SUB m1 m2 m3; mem[m3] = mem[ml] - mem[m2] (Takes 4 cycles)
STP ; stop execution (Takes 1 cycle)

(b) A 2-address instruction format machine with instruction set below.

ADD ml1 m2; mem[m2] = mem[ml] + mem[m2] (Takes 4 cycles)
SUB m1 m2; mem[m2] = mem[ml] - mem[m2] (Takes 4 cycles)
STP ; stop execution (Takes 1 cycle)

2. Assume that the 3-address machine has a 4-bit opcode and three 12-bit
addresses for each instruction. Assume that the 2-address machine has
an 8-bit opcode and two 12-bit addresses for each instruction. Which
machine (including MUO) has the smallest code? Which machine runs the
code fastest?

3. Do you think these results are generalizable to other algorithms apart from
Problem Sheet 2, Question 17

Problem Sheet 3: ANSWERS

1. (a) 3-address machine:

ADD a b x; b5 bytes, 4 cycles
ADD c d y; b5 bytes, 4 cycles
SUB x y f; 5 bytes, 4 cycles
STP ; 5 bytes, 1 cycle

Totals: 20 bytes, 13 cycles.
(b) 2-address machine:

ADD a b; 4 bytes, 4 cycles
ADD c d; 4 bytes, 4 cycles
SUB b d; 4 bytes, 4 cycles
STP ; 4 bytes, 1 cycle

Totals: 16 bytes, 13 cycles. (Note that this solution destroys the
input data - preserving it would take more instructions).

(c) (MUO)
LDA ¢ ; 2 bytes, 2 cycles
ADD d ; 2 bytes, 2 cycles
STO t ; 2 bytes, 2 cycles
LDA a ; 2 bytes, 2 cycles
ADD b ; 2 bytes, 2 cycles
SUB t ; 2 bytes, 2 cycles
STO £ ; 2 bytes, 2 cycles
STP ; 2 bytes, 1 cycle

Totals: 16 bytes, 15 cycles.

2. Smallest code: Both MUO and the 2-address machine have the smallest
code.
Fastest code: Both the 3-address machine and the 2-address machine have
the fastest code.

3. This question is intended to provoke discussion.

Problem Sheet 4

1. Consider the following ARM program [Furber, p.75]. This program calls

a subroutine HexOut to convert t
screen display. SWI 0x11 exits the

he number VALUE into hexadecimal for
program and SWI 0x00 writes the char-

acter in the bottom 8-bits of r0 to the display.

AREA
SWI_WriteC EQU &0
SWI_Exit EQU &11
ENTRY
LDR rl1, VALUE
BL Hex0Out
SWI SWI_Exit
VALUE DCD &12345678
Hex0Out MOV r2, #8
LOOP MOV r0, ri, L
CMP r0, #9
ADDGT rO, r0, #
ADDLE rO, r0, #
SWI SWI_Write
MOV rl, ri, L
SUBS r2, r2, #
BNE LOOP
MOV pc, ri4d
END

Hex_0Out, CODE,READONLY

SR #28

’A’-10
707

C

SL #4
1

(a) Which registers are affected by the BL instruction?
(b) What does the instruction MOV r0, rl, LSR #28 achieve?

(c) What is the difference between the value #0 and #°0°?7 Why are the
values #’A’-10 or #’0’ added to r07

(d) What is the effect of the instruction MOV r1, r1, LSL #47

2. Re-write your answers to Problem Sheet 2, Questions 1 and 2, this time

in ARM code.

3. Fj, the ith factorial, is defined as

-

Some ARM code to calculate the

i

below.

- Fi_y,

)

i>1
i=0

1 = 3rd factorial follows.

AREA Fact_Seq, CODE, READONLY

ENTRY

LDR r0, i ;1

BL Fact ;2

STR ri1, £ ;3

SWI &11 ;4
i DCD &3 ; 5
£ DCD &0 ; 6

; Subroutine Fact
; Input: rO contains desired factorial
; Output: rl contains the result

Fact STMED ri13!, {r0,r2,r14} Y
CMP rO, #0 ; 8
MOVEQ ri1, #1 ;09
BEQ FactRet ; 10
MOV r2, r0 ; 11
SUB r0, r0, #1 ; 12
BL Fact ; 13
MUL rl, r2, ri ; 14

FactRet LDMED ri13!, {r0,r2,r14} ; 15
MOV pc, ri4d ; 16
END

How many BL instructions are executed? Illustrate the stack contents just
after each STMED instruction has completed.

Problem Sheet 4: ANSWERS

1. (a) The program counter (PC) and the link register (r14 or 1r).
(b) It moves the top 4-bits of r1 into rO.

(c) #0is
code

the value 0, #70° is the value 0x30, corresponding to the ASCII
of ‘0’. The values #’A’-10 (for digits 0xA to 0xF) or #°0° (for

digits 0x0 to 0x9) are added to convert from the number in r0 to its
equivalent ASCII code required by SWI 0x00.

(d) This
displ

2. (a) LDR
LDR
ADD
LDR
LDR
ADD
SUB
STR

(b) LDR
LDR
SUBS
ADDE
STR

instruction shifts r1 left by four bits so that the next nybble to
ay is the most significant nybble.

r0, a
rl, b
r2, r0, ril
r0, c
rl, d
r0, r0, ril
r0, r3, r0
r0, £

r0, a

rl, b

r2, r0, ril
Q r2, r0, r1

r2, £

Other solutions will probably crop up here, but this solution has the
nice use of SUBS both as a subtraction and a comparison, and the use
of ADDEQ to override the ‘else’ result with the ‘if’ case.

3. BL’s are executed in the following line number order: 2 (non-recursive),
13 (depth-1), 13 (depth-2), 13 (depth-3). Total = 4.

After 1st
After 2nd
After 3rd
2,1

After 4th
2,1, <ret

Here <ret

STMED: <ret-addrl>, ?, 3
STMED: <ret-addrl>, ?, 3, <ret-addr2>, 3, 2
STMED: <ret-addrl>, 7, 3, <ret-addr2>, 3, 2, <ret-addr2>,

STMED: <ret-addrl>, 7, 3, <ret-addr2>, 3, 2, <ret-addr2>,

-addr2>,1, 0

-addrl> is the address of Line 3 and <ret-addr2> is the address

of Line 14.

Problem Sheet 5

Assemble the following ARM code by hand. State the contents of each
address location (in binary or hex). You may assume that execution starts from
address 0x0.

Hint: You may wish to use the program counter as a base register for loads
and stores. Note that due to the pipelining on the ARM, the program counter
is 8 bytes ahead of the currently executing load/store instruction.

AREA Example, CODE

ENTRY

LDR r0, a

DR ri1, b

CMP r0, ril

BNE labell
ADD r0, rl, r0
labell STR 0, £

SWI 0x11
a DCD 0x40
b DCD 0x50
f DCD OxFF
END

10

Problem Sheet 5: ANSWERS

Address

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

1110
1110
1110
0001
1110
1110
1110
0000
0000
0000

Contents
01011001 1111 0000 0000 0001 0100
01011001 1111 0001 0000 0001 0100
00 0 1010 1 0000 XXXX 00000 XX 0 0001
101 0 0000 0000 0000 0000 0000 0000
00 0 0100 O 0001 0000 00000 XX 0O 0000
01011000 1111 0000 0000 0000 1000
1111 000000000000000000010001
0000 0000 0000 0000 0000 0100 0000
0000 0000 0000 0000 0000 0101 0000
0000 0000 0000 0000 0000 1111 1111

11

Assembly

LDR
LDR
CMP
BNE
ADD
STR
SWI
DCD
DCD
DCD

r0, a

r0, b

r0, ril
labell

r0, rl, r0
r0, f

0x11

0x40

0x50

OxFF

Problem Sheet 6

Consider the code fragment shown below.

for i :=1 to 10
Ali]l := 1i;

for i :=1 to 5
A[i] := A[2*%i-1] + A[2%i];

1. Assume that array A consists of 10 consecutive blocks in memory, starting
at location 0x0 (i.e. A[l] has memory location 0x0). Construct a time-
ordered list of block numbers which are accessed by the code fragment,
and indicate which is a read and which is a write.

2. If each of the above memory accesses takes 100ns, what is the time taken
for the execution of all memory accesses in this code fragment?

3. We decide to introduce a direct-mapped cache with 8 blocks. Which of
the above accesses corresponds to a ‘hit’, and which to a ‘miss’?

4. If each hit takes 10ns and each miss takes 100ns, what is the overall time
taken now that the data is cached? (you can assume a write-back cache)

12

Problem Sheet 6: ANSWERS

1. 0x0 (write)
0x1 (write)
0x2 (write)
0x3 (write)
0x4 (write)
0x5 (write)
0x6 (write)
0x7 (write)
0x8 (write)
0x9 (write)

0x0 (read)
0x1 (read)
0x0 (write)
0x2 (read)
0x3 (read)
0x1 (write)
0x4 (read)
0x5 (read)
0x2 (write)
0x6 (read)
0x7 (read)
0x3 (write)
0x8 (read)
0x9 (read)
0x4 (write)

(There will be variations in these answers depending on whether A[2%i-1]
or A[2xi] was deemed to be read first)

2. 100 * (10 + 3 % 5) = 2500ns = 2.5us

3. 0x0 (miss, block 0)
0x1 (miss, block 1)
0x2 (miss, block 2)
0x3 (miss, block 3)
0x4 (miss, block 4)
0x5 (miss, block 5)
0x6 (miss, block 6)
0x7 (miss, block 7)
0x8 (miss, block 0)
0x9 (miss, block 1)

0x0 (miss, block 0)
0x1 (miss, block 1)

13

0x0 (hit, block 2)
0x2 (hit, block 2)
0x3 (hit, block 3)
0x1 (hit, block 1)
0x4 (hit, block 4)
0x5 (hit, block 5)
0x2 (hit, block 2)
0x6 (hit, block 6)
0x7 (hit, block 7)
0x3 (hit, block 3)
0x8 (miss, block 0)
0x9 (miss, block 1)
0x4 (hit, block 4)

4. 14 %100 + 11 %10 = 1510ns = 1.51us

14

