
Welcome to my second year course on Digital Electronics.  You will find that the 
slides are supported by notes embedded with the Powerpoint presentations.  All my 
teaching materials are also available on the course webpage:  
www.ee.ic.ac.uk/pcheung/teaching/ee2_digital/. The QR code here provides a 
shortcut to the course webpage. I will be updating the notes, the laboratory 
instructions and tutorial problem sheets each week after the lectures.  All my 
lectures will be recorded with Panopto.  The recordings will also be upload as soon 
as possible after the lectures.

The course consists of about 16 hours lectures interleaved with 6 problem solving 
classes.  These will be held on Monday 3pm to 4pm and Tuesday 4pm to 6pm 
starting from 8th of October 2019.

This course follows on from the first year Digital Electronics I course.  Unlike the first 
year course where all gates and flip-flops are assumed to exhibit ideal behaviour, 
this course will teach you about real-life digital circuits. 

Digital circuits are ubiquitous.  For example, there are more electronic modules in 
petrol or diesel cars these days than mechanical systems, let alone electric cars!  A 
mobile phone has many times more transistors than human alive on earth, and most 
of these transistor are digital, i.e. working as on-off switches.  Therefore this second 
year digital electronics course is fundamental to any EEE or EIE education.
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It is important for you to know at this stage what you are expected to learn (i.e. the learning 
outcomes) from this module.  Learning outcomes specify WHAT you should be able to do as 
a result of taking this module.  Let me go through the listed outcomes in some details:
1. Understand synchronous digital systems – if you are given a circuit with gates and flip-
flops, you should be able to predict how it behaves.  For example, you should be able to 
draw the timing diagrams for output signals given the input stimuli, or write down the 
sequence of states that the circuit must go through.
2. Design circuits to meet specification In real circuits, outputs response to changes in inputs 
after some delay.  In order for a digital circuit to work as intended, such delay must be taken 
into account, and you as a design engineer must be sure that there are no timing violations 
(i.e. circuit delays causing the circuit to fail).
3. A/D and D/A conversions – the physical world is generally analogue in nature and is not 
just ‘1’s and ‘0’s.  However, electronic systems are mostly digital.  Analogue to Digital (ADC) 
and Digital to Analogue (DAC) conversion provides the link between the analogue physical 
world to the digital electronics world.  You need to understand HOW analogue signals are 
converted to digital, and how to interpret the datasheet of such components.
4. Finite State Machines – Designing digital circuits involve understanding of various fields, 
and one of the field of study is known as Finite State Machine (FSM).  This is a systematic 
ways of thinking how a digital system goes through different states, and as a result, control 
the operation of a digital sub-system.
5. Field Programmable Gate Arrays – FPGAs is one of the primary technology for 
implementing digital circuits nowadays.  This has replaced most of the implementations in 
“discrete logic” (such as 16-pin packaged TTL or CMOS gates).  It has also replaced many 
Application Specific Integrated Circuits (ASICs) that the industry used to design.  FPGAs prove 
to be much lower-risk and must easier to design as compared to other approaches.  
Therefore this course will be based around the use of FPGAs.   (to continue …..)
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6. Verilog HDL – While you mostly use schematic diagrams to describe your digital 
designs in your first year, you will ABANDON this in favour of a computer 
language to specify and design your digital circuits.  You may find this odd initially 
because diagrams are generally more intuitive than a computer language.  
However, using a Hardware Description Language (HDL as it is called), and in our 
case, using Verilog,  is the way that most modern digital systems are specified and 
designed.  No matter whether you like programming or not, as a electronic 
engineer, you will have no choice but to learn such a language.  

This course will be assessed through an examination paper in June 2020.  There will also 
be an associated E2 Laboratory Experiment – VERI.

The Laboratory Experiment is EXTREMELY IMPORTANT in helping you to learn this 
subject.  It is intended to teach you how to design digital circuits using Verilog HDL 
targeting implementations on FPGAs.  The Lab sessions will run for FOUR weeks starting 
on the 11th of November, and assessment for this experiment will take place in the last 
week of term (starting 9th of December).  You may also borrow the experiment board 
(DE1-SOC) to use at home and at your leisure, one week at a time.  There will be around 
one such board for every four students to share.

There are three recommended textbook   “Fundamental of Digital Logic with Verilog 
Design 3/e” by Stephen Brown and Zvonko Vranesic.  Unfortunately this book is in short 
supply and is extremely expensive to buy new. You may be able to pick up a second 
hand copy on the internet.  Another possible book but less relevant is by Dally and 
Harting.  While it is NOT necessary to own a textbook for my course because I do not 
follow a particular textbook in my lectures or in the lab, I would recommend you to get 
hold of a second hand copy or an eBook in digital as a reference.  The third book, also 
not compulsory, is “Digital Design (Verilog)” and is very Verilog specific. It is a good book 
if you want to learn Verilog well. Again it is not compulsory.
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The practical aspects of this course module is based around a FPGA board, the DE1-
SoC.   Here is an overall block diagram of the board.  Don’t worry about the details 
for now.  I will be explaining to you the various bits on the board later when you are 
about to start the VERI experiment in the Lab in mid-November.

There should one DE1 board for every four students to borrow and use at home.  
The basic lending duration is one week.  You can renew your borrowing period 
beyond one week if there are free ones in the Stores.

To borrow a board, bring your ID Card to Level 1 store, and you can check out a 
board to take away.  But you must return it at the end of the loan period.
This board has everything you need to do the experiment and MORE.  It consists of a 
Cyclone V FPGA (which I will explain in more details in a later lecture).  It has various 
input and output devices.  This is a very powerful board and it contains lots of 
additional hardware resources that go beyond the scope of this module and the 
experiment.  You are encouraged to explore it, particularly if you are an EIE student. 
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This is the current lecture plan for the course.  Details may change as we progress 
through the term.  There will be around 16  lectures (slightly higher than the 
nominal 15 lecture per module in the second year).  

I will cover a number of topics that form the basic course in digital electronics.  By 
the end of the course, you should be able to independently design digital circuits 
using FPGAs.  There will also be a couple of lectures on how to interface digital 
systems with the analogue system via D-to-A and A-to-D converters.

I will be linking my lectures to the Lab Experiment wherever possible.  To do well on 
this course, you really need to take the Lab seriously!
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This lecture is just partly a revision lecture, and I also want to introduce you to 
alternative notations used both in the notes and in some textbooks.  This follows the 
IEEE standard for digital schematics.

Instead of using curves for gates, one could use rectangular blocks and a symbol to 
denote the logic function.  Inversion could be on the input or output terminal.  
Instead of a circle, we could use a small triangle as shown here.

IEEE publishes the standards, and there is an excellent tutorial on this digital circuit 
notations published by Texas Instrument (see the course webpage). You don’t really 
need to spend much effort on this – just need to learn the basics so that you can 
understand the meaning of the symbols and the labels used for signals.

6



In the first year, you learned about the different ways of describing or specifying a 
digital circuit.

1. Schematic diagrams with gates – this method is the first thing you learned and it 
is easy to understand.  However, as will be seen in Lecture 3, this is not necessarily 
the best way to specify a large digital system.

2. Boolean equations – this provides a formal way to express logical relationships 
between Boolean variables.  Useful when designing on paper, but less useful in 
practice.  In particular, we rarely use Boolean algebra to perform logic simplification 
in real-life!

3. Truth Tables – this is a universal way to describe the behaviour of a circuit and we 
continue to use this in datasheets or even in actual designs.

4. Timing diagrams – this is a useful way to explain behaviour of sequential circuits 
and is used in datasheets.  However, not that useful as a method to specify a circuit 
in a CAD system.

5. Hardware Description Languages (HDLs) – this is a new method you learn this 
year (except EIE students who have already encountered this in their group project).  
This is what we will be using to specify and design digital hardware from now on. For 
this course, we will be using Verilog HDL, which is one that is very closed to the C 
language. It is also used extensively for designing integrated circuits such as ASICs 
and other type of chips.  Another popular HDL is VHDL. I personally find VHDL too 
wordy (verbose).  Finally, there are now emerging higher level languages such as 
OpenCL, which is attempting to make hardware design more like programming a 
computer.  This topic is left to later years.
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You have also learned about the various building blocks for digital electronics. 
1. Primitive gates – We have the basic AND, OR, NAND, NOR, XOR and XNOR gates.
2. Multiplexers MUXs – These are really useful component. Shown here is a 2-to-1 MUX 
with two data inputs and one select input.  The output is one or the other depending on 
the select input (sel).  We often put a number of these together to provide multiplexing 
function to a mult-bit data word (as shown here with two 3-bit numbers).
3. Arithmetic circuits – Commonly found are adders and multipliers.  Subtractor can be 
built from an adder if we use 2’s complement representation of signed integers.
4. Encoders/Decoders – These two are related.  Encoding is a logic module that reduces  
(encodes) a large number of bits and produces fewer output bits.  Decoders are the 
opposite.  Shown here is a 7-segment display decoder, where 4 input bits are decoded into 
7 logic signals to drive the seven segments of the display.  The encoder here is known as a 
priority encoder.  It produces a 3-bit output showing where the first ‘1’ is encounters from 
the most-significant bit D7 to the least significant bit D0.
5. Flipflops and Registers – These are the building blocks for all sequential circuits. As will 
be seen later, we really only use one type of flipflop – the D-FF.
These are all important components that all digital circuit designers need to be familiar 
with.  However, nowadays, we rarely design large digital systems at such low levels. 
Instead we generally try to express these building blocks in a more abstract manner in a 
hardware description language (as we will see in later lectures).
In addition to these basic blocks, we also have memory devices and microprocessors. 
These are topics that we will cover towards the end of this module.
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All digital circuits exhibit propagation delay.  Here it shows the delay table for a 
“discrete logic” CMOS NAND gate.  The delay could be in the region of nanoseconds.  
However, with the FPGA chips we use for this module, the internal “gate” 
propagation delay is approximately 100ps, which is much faster than discrete logic.  
As can be seen later, the “gate” inside the FPGA is also much more complex than a 
simple NAND gate.

Also note that propagation delay depends on the “cause” (input rising or falling, and 
on the slope of the edge) and the “effect” (output rising or falling).  Delay also 
depends on what are connected to the output (i.e. the loading).  As can be seen in 
the example here, the rising edge A to falling edge X delay is lower than that of A 
falling to X rising.

Note that I use an arrow to indicate the cause (the blunt end) and the effect (the 
pointed end) in a timing diagram.
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You learned about various types of flipflops (FFs) in the first year.  In fact, all you 
need is the D-FF.  With a D-FF, you can construct circuits to behave like various types 
of flipflops: Toggle (T-FF), set-reset (SR-FF) or a JK-FF.

Therefore in this course, we will ONLY use D-FF for everything.  This is in fact what 
happens in practical designs.

We use the IEEE standards for the symbol here.  C mean clock input, the number 1 is 
a numerical label (as clock 1).  D is for data input, and 1D means this input is 
controlled by input 1.  Q is the flipflop output.
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Timing and delay parameters for flipflop is different from that with gates.  Shown 
here is a D-FF that responses to a rising edge on the clock signal.  A D-FF is like a 
camera, taking a “picture” from the scene (input is D).  The clock input C1 is like the 
trigger on the camera – when pressed it samples the input and take a picture.  The 
“cause” here is the rising edge of the CLOCK and the “effect” is the Q output 
sampling the D input, and keep the value until the next rising edge of the clock.

The delay here is from CLOCK rising edge to Q output changing.  However, for the D-
FF to work properly, there are two other timing parameters which are important: 
the setup time and the hold time.  I will be talking about these in a later lecture.
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Here is an example of a D-FF used in a ripple counter.  

Q0 value is first inverted (represented by the triangle) and then used as D input on 
the next clock cycle.  The flipflop is triggered on the FALLING edge of CLOCK.  
Therefore the Q output “TOGGLES” on each active edge of the clock (i.e. falling 
edge).   Q0 is therefore changing at half the rate of CLOCK, hence this flipflop acts as 
a divide-by-2 circuit.  

The Q0 signal is now used as clock input to the next D-FF.  Hence Q1 is toggling at 
half the frequency of Q0.   The circuit is effectively a binary counter. 

This is a simple finite state machine (FSM) because it has 8 states which cycles 
through in a sequence.  FSM will be covered in some later lectures in details and it is 
a very important topic in digital designs.

We then use the Q0 output as the clock input the next stage etc.    Note that 
because the 2nd stage only starts to work once the first stage is completed, the 
propagation of effects “ripples” through the circuit – hence we call this a “ripple 
counter”.

This counter is also known as an asynchronous sequential circuit.  It is 
“asynchronous” because the output signals are NOT synchronised to a single clock 
signal (since there are many clock signals), and “sequential” because its current 
output value (or state) depends on previous output values in the sequence.
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The ripple counter is potentially slow.  The delay between the active edge of the 
clock and the counter output giving the correct value is dependent on the number of 
flipflops in the circuit and therefore the size of the counter (i.e. how many stages) .  

A far better approach is to use the flipflops TOGETHER as a group, and clock them 
using THE SAME CLOCK signal as shown here.  The Logic Block is a combinatorial 
circuit which computes the next D value D2:0 from the current Q value Q2:0.  (D has 
three bits D0, D1 and D2.  We use the notation D2:0 to represent this.)  The 
relationship between D and Q is simple:  D2:0 = Q2:0 + 1.  

Since the three output bits Q2:0 change within a fraction of a nanosecond of each 
other, this circuit is:  1) faster than the ripple counter; 2) the “delay” is constant 
instead of dependent on the size of the counter.

This circuit is known as a synchronous sequential circuit because its function is 
synchronous to a single clock signal.  If you regard the Q2:0 output value as a state 
value, it follows a finite number of states in a defined sequence.  Therefore it is also 
a form of Finite State Machine.

Note the notation with the arrows.
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