Imperial College

London
Lecture 10
Experiment VERI - an Overview
Peter Cheung E i
Department of Electrical & Electronic Engineering .
Imperial College London ¥
k. et
O
URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 1

Lecture Objectives

Overall aim and objective of the Lab experiment VERI
Why keep logbook? How will this be assessed?

How to keep a good design structure and convention?
Learning outcomes of each of the FOUR PARTS in VERI
Steps required in producing a completed design

Meaning of the various View Panes

Modelsim — some details

“do” file as testbench

® 6 ¢ 6 6 0 0 0

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 2

This lecture is not the same as previous ones. | am not teaching you any new
concept, architecture or circuit. Instead, | will go through the entire VERI Lab
Experiment in order that you appreciate what | want you to learn in each of the four
parts.

| will also point out the various pitfalls that students always make each year, and
some of the useful “tricks of the trade”.

Overview of the four parts in VERI

Parts What you will learn?

Part 1 Why Verilog HDL is much better than schematic capture?

Part 2 How to design counters circuits and simple FSM? How to
cascade multistage counters in the right way?

Part 3 How does SPI serial interface works? How to use ROM,

multiplier and DAC to produce a sinewave of different
frequencies? Compare the DAC output and PWM output.

Part 4 How to perfect ADC and DAC in an audio processing
system? Create a real-time echo chamber effect.

¢ VERI is designed to teach you digital electronics in four steps.
¢ Each part is built upon the previous part.
¢ Each part has its own clearly defined learning outcomes.
¢ Each part has an optional section for those who go faster or want to do more.
¢ VERI is the ONLY WAY you learn how to design digital circuits using a hardware
description language. You will not really learn through lectures and tutorials alone!
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 3

Quartus Prime and window panes

VERI is organised in four sequential parts, each build upon the previous parts. Each
part has been designed with very clear learning outcomes in mind, and is intended
to take a 3-hour supervised laboratory session.

You need to download various files from the Experiment website in order to do this
experiment. These files can be found on:

http://www.ee.ic.ac.uk/pcheung/teaching/E2_experiment/

Status window

ivati IP
Navigation 3 Summary Catalog
window window

Message window

»oo000i

coor

Bl
e

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 4

You MUST use Quartus 16 (known as Quartus Prime) standard edition and NOT
Quartus 13 (known as Quartus Il) because version 13 does not support Cyclone V
FPGA chips. | recommend that you create a shortcut on your desktop for
convenience.

Once you started Quartus software, you will eventually see many window panes
appearing in the Quartus window:

Edit window — You should use this to edit all your source files. The editor is basic,
but it is syntax sensitive, so it will highlight Verilog keywords for your.

Message window — This is where you find all the error and warning messages.
Navigation window — This shows the hierarchy of your design and provides a quick
way of exploring various Verilog files.

Status window — This tells you the steps that the Quartus software is taking in order
to produce the final design.

Summary window — This provides a quick summary of the resources being used by
your design — useful to check for overall errors.

Report window — This is where you find out details of the compilation results such
as timing and pin allocations.

IP catalog — This allows you to pick up modules in the component library provided
by Altera, such as ROM, multiplier, FIFO etc.

You must also make sure that you have specified the exact FPGA device used on the
DE1-SoC board. It is 5CSEMAS5F31C6 and it is specified using > Assignments >
Device

Programming the FPGA chip

@ Programmer - Z',"Dycp[)cl/__):‘; Docume] DE1-SoC [USB] g_Ve o Programmer - Z:/Dropbox/_My Documents/DE2-S¢
File Edt View Processing Tools Window Hep

& Hardwase Set DE-SoC US8-1) Mode JTAG
s = & Hardware Setp DE-SoC USB-1]

Enabie el tme ISP 10 slow beckground programmng

Enable real-ime ISP 10 alow background programming when avaable

File Dewce hecksum Usercode

<none> SOCVHPS 00000000 <none>

Ao Dete o <none: SCSEMAS 00000000 <none:
¥ ound vl win shared JTAG 10 for Govce 2 Please selectyou device B Ao Deter
AsdFd
o5 X Delete
~ = Select and delete SOCVHPS
* A% Devc (Charge Py
[* Add Device

¢ Each FPGA is programmed using something called “JTAG". Here we specify
exactly which device family - 5SCSEMAS.

¢ The chip has two parts, the FPGA part and the ARM processor part (known as
HPS). You need to delete SOCVHPS in the list because we are not using this.

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 5

Quartus file types

Extension What is it?
bdf Block Design File - schematic diagram
.bsf Block Symbol File - component symbol

.cdf Chain Description File - ignore this
.do DO file - Testbench in Modelsim
.mif Memory Init File - Contents of ROM
.gpf Quartus Project File - Specify project

.qsf Quartus Setting File - Modules and pin assignments

.rpt Report File - text file reporting on various things

.sof SRAM Oject File - Bitstream file to program FPGA
v Verilog source file - your design

< Quartus uses and generates many different files associated with even then
smallest design.

¢ Here are some of the more commonly used file types and what they mean. Itis
provided here for your reference and convenience.

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 6

Once you have finished creating your design through hardware compilation, we
need to send the bit-stream to the chip via the USB cable. The method of
programming is specified in Hardware Setup, and we specify DE1-SoC [USB].

Next we use “Auto Detect” to find out what FPGA chip is connected, and specify that
we expect to find the 5CSEMAGS chip family. This is one of many different variants of
Cyclone V FPGAs. Each has a different protocol in programming the device.

Then, we have to delete the part of the chip that we are not using — this the ARM
part, known as SOCVHPS. If you were to use the ARM processor (e.g. loading it with
Linux), we would need this line in.

After that, you must select the “sof” file to send the chip.

You can find a full list of file types used by Quartus on the Experiment webpage.

House Keeping Issues

Important to keep VERI part_1 ext ex1_top
a tidy directol e |— Other files
tree.y ry part_2 T esxs Eexd for ex1

’ lib
Example shown part.3 ™
here could be part_4
used. pin_assignment.txt

Recommended you use ex1, ex2, ... etc for project names for the 20 separate
experiments in VERI (some are optional). Create these in separate directories.

Use ex1_top.v, ex2_top.v etc as the top-level module in each. Top-level modules is
the one that you connect to the pins of the FPGA.

Put those entities (modules) that you have verified into “mylib” folder. They are used to
built up the various parts of VERI.

Logbook keeping has TWO main purposes:
1. To help you plan what you want to do and to reflect what you have done;
2. To remind you what you have done and why in the future.
You can use paper logbook or electronic logbook (e.g. Github).
You will need to refer to the logbook when you have your oral in the last week of term.

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 7

Part 1 — Wean you from using schematics

* ¢ ¢ o

Ex 1 - create 7 segment decode module in schematic

Ex 2 —create 7 segment decode in Verilog — see how much easier it is!

Ex 3 — test yourself by extending this to display 10 slide switch value on three displays
Ex 4 — optional part to display the 10-bit value as decimal digits on four displays

Steps needed in creating a working design:

1. Create a new project: > File > New Project Wizard
Specify FPGA Devices: > Assignments > Device
Create Verilog specification of various modules: > New
Check for syntax errors: > Processing > Analyze Current File
Specify which module is top-level: > Project > Set as Top-Level Entity
Include all other modules used: > Project > Add/Remove Files in Project
Specify pin assignment: > Open > <top-level-file>.gsf

then: > Edit > Insert File

8. Full compilation: > Processing > Start Compilation
9. Program the device: > Tools > Programming

N o a0 s w0 N

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 8

The main goal of Part 1 is to let you get familiar with the entire design process.

Shown here is a summary of all the main steps that you have to go through to create
a working design to send to the DE1-SoC.

Part 2 — Counters & FSMs

¢ Ex5 - learning Modelsim and simulation of an 8-bit counter; how to create a
testbench as a DO file in Modelsim

¢ Ex 6 — test yourself by creating your own 16-bit counter and display the counter
output on five 7-segment displays as decimal number; check the maximum
working frequency of the counter; cascading two counters to slow clock down.

¢ Ex7 —create a linear feedback shift register (LFSR) to generate a pseudo random
binary sequence (PRBS).

+ Ex 8 —optional part to simulate Formula 1 style starting light sequence

¢ Ex9 - optional part to test your reaction time in milliseconds

Kevial | counter_16 bin2bcd_16
KEY[O]_y resetl _ BCDO [~7% hex_to_7seg +: HEX0
enable ; 16 BCD1 [~ hex_to_7seg # HEX1
E[7 B BCD2 [~ hex_to_7seg # HEX2
8 BCD3 7% hex_to_7seg |7~ HEX3
BCD4 ™7 hex_to_7seg ﬁL HEX4

CLOCK_50 > clock 4
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Side ©

Part 2 of the Lab is starting to get harder. You will first learn to use Modelsim to
simulate an 8-bit counter. On the way, you will also learn how to combine the
interactive commands your type in the command window in Modelsim into a DO-
file. You then will use this file as the testbench for your circuit.

Next you will extend the 8-bit counter to 16-bit with reset and enable input. You
will also combine this with what you have already done in Part 1 to display the
counter value as decimal number on the displays.

Next, you will find that the counter is counting too fast — you only see 88888 at the
output. You then will add another circuit known as prescaler, which is another
counter that produces a clock tick once every millisecond. This allows you to see
what you see the count value changing.

Then you will create a random number generator and test this on DE1.

Part 2 - Formula 1 starting light sequence

o ¢
8 I3
—p dk bs 2)
CLOCK_S50 . 3 .
- E+soooo } tckms | b o en_lfsr o st £ 2
I
% Bekhs § i h
KEY[3] > tsm "
FL——Cmuu >k delay
v start_delay trigger time_out
e T LEDR[9:0)
_ ledr
N\
CYCLONE V FPGA .

+ This is challenging, but will put everything you have done together to create
something quite fun to do.

+ You can extend this further by adding a counter to count the number of millisecond
after the light has gone out and you pressing KEY[0]. This reports your reaction
time.

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 10

Optional challenge is quite hard, but should be very satisfying. Do this only if you
have time.

10

Analogue I/O Card

¢ From Part 3 onwards, you will be using the Analogue 1/O card with the DE1 board.

DE1-SoC Analogue I/O Card

A120 Low-pass TP8 (red)

PWM_OUT (TP5 black) Filter
DAC_CS
AD20 To earphone
DAC_SDI L
AG18 ™9 —

wa| [PAcw0 | Mcpagny —_?,_R.__

raol_|DACSCK | 10-bit DAC D

C Cyclone’

FPGA » SoC
3.3v
ara || ADCSCK
H
AG20 ADC_CS cHo
SOMHz | s MCP3002
> ADC_SDI b
AG21 10-bit ADC ¢_| From sound source
a121l. | ADC_spo cH1 — 0
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Siide 11

Part 3 and Part 4 of VERI use the analogue 1/0 card with DE1. The I/O card contains
a DAC and a ADC, both 10-bits. These produce an audio output on the right channel
of a 3.5mm socket, and one channel of the analogue input from the other socket.

There is also a low-pass filter, which receives a PWM signal and produces an
analogue output on the left channel of the audio socket. A 5k ohm potentiometer
provides a dc voltage to the other channel of the ADC.

The I/0 card is plugged into the 40-way socket on the DE1 board — the socket is the
one that is furthest away from the board edge. Beware that you may not have
aligned the pins correctly. This will no damage anything. If the I/O board is installed
correctly, the GREEN LED will light up when the DE1 board is turned ON.

The communication between the DAC/DAC and the FPGA chip is through serial
interface known as SPI (Serial Peripheral Interface). How exactly SPI works will be
covered in another lecture later.

1

Part 3 — Serial Interface, DAC and signal
g_;enerator

Ex 10 — Testing the SPI interface to the DAC; examining timing waveforms.

Ex 11 — Using pulse-width modulation (PWM) to produce a DAC.

Ex 12 — Creating a ROM that contains one cycle of a sinewave.

Ex 13 — Use the ROM, an address counter, the DAC and the PWM DAC to produce a fixed
frequency sinewave signal on the right and left channels of the earphone socket.

+ Ex 14 - Optional challenge: produce a variable frequency sinewave with frequency controlled by
the slide switches and the frequency displayed on the 7-segment displays.

+ Ex 15 - Optional: Use the potentiometer to control the variable frequency generator.

* ¢ o 0

r add-on board
SW(9:0] data i
ata_in DAC_SDI (TP1 red)
N B MCP4911 analogue out
clktick_16 10KHz spi2dac | pac_LD (TP4 white) DAC Right channel
+5000 load (TP9 green)
I DAC_SCK (TP3 yellow),
50MHz > clk
5 P8
bt data_in
pwm analouge out
lowpass Left channel
clk pwm_out filter (TP8 red)
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 12

Part 3 will introduce you to many different useful digital components. This includes:
the SPI interface module spi2dac.v, the PWM module pwm.v, the ROM generator,
the multiplier etc. In the end, you will be able to produce at least a fixed frequency
sinewave on both channel of the output socket.

12

Displaying a binary number as decimal

Shift and Add 3 algorithm [1] — shifting operation

|o

Z[SRCN. INB.0] ——s| 7se8 | OU6-01 5/ [1
Cyclggg?v decoder al |2

+ As the first part of the Lab Experiment VERI, you will be implementing the 7
segment decoder we designed in the last lecture. This will show every four binary
bits as a hexadecimal digit on the display.

¢ Hex numbers are difficult to interpret. Often we would like to see the binary value
displayed as decimal. For that we need to design a combinational circuit to
converter from binary to binary-coded decimal. For example, the value 8'hff or
8'b11111111 is converted to 8'd255 in decimal.

* & ¢ 6 0 o

(same as multiply by 28)

Truncate the lower 8 bits
(same as divide by 2°) I

Let us consider converting hexadecimal number 8'h7¢ (which is decimal 8'd124)
Shift the 8-bit binary number left by 1 bit = multiply number by 2

Shifting the number left 8 times = multiply number by 28

Now truncate the number by dropping the bottom 8 bits = divide number by 28

So far we have done nothing to the number — it has the same value

The idea is that, as we shift the number left into the BCD digit “bins”, we make the

necessary conversion to the hex number so that it conforms to the BCD rule (i.e. falls

within 0 to 9. instead of 0 to 15)
8-bit binary

Original binary number | 0111 | 1100 |

shiftleft 8times | |0111|1100||oooo|0000|

o111] 1100

PYKC 5 Nov 2019 EZ2.1 Digital Electronics Lecture 10 Slide 13

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 14

We now take another example of a relative complex combinational circuit, and see
how we can specify our design in Verilog.

The goal is to design a circuit that converts an 8-bit binary number into three x 4-bit
binary coded decimal values (i.e. 12 bit).

There is a well-known algorithm called “shift-and-add-3" algorithm to do this
conversion. For example, if we take 8-bit hexadecimal number 8’hff (i.e. all 1’s), it
has two hex digits. Once converted to binary coded decimal (BCD) it becomes 255
(3 BCD digits).

13

Before we examine this algorithm in detail, let us consider the arithmetic operation
of shifting left by one bit. This is the same as a x 2 operation.

If we do it 8 times, then we have multiplied the original number by 256 or 28.

Now if you ignore the bottom 8-bit through a truncation process, you effectively
divide the number by 256. In other words, we get back to the original number in
binary (or in hexadecimal).

14

Shift and Add 3 algorithm [2] — shift left with problem

+ If we take the original 8-bit binary number and shift this three times into the BCD
digit positions. After 3 shifts we are still OK, because the ones digit has a value of
3 (which is OK as a BCD digit).

+ If we shift again (4t time), the digit now has a value of 7. This is still OK. However,
no matter what the next bit it, another shift will make this digit illegal (either as
hexadecimal “e” or “f", both not BCD).

+ Inour case, this will be a “f"!

“so b s> it binary
Original binary number [| |] o111 1100 |
S | | | o] 1111]1000]
Mmoo | | [o1] 11110000]
e | | [o11] 1110 0000]
PN | | [o111] 12000000]
I | |] 1211 1000 0000]

PYKC 5 Nov 2019 EZ2.1 Digital Electronics Lecture 10 Slide 15

Our conversion algorithms works by shift the number left 8 times, but each time
make an adjustment (or correction) if it is NOT a valid BCD digit.

Let us consider this example. We can shift the number four time left, and it will give
a valid BCD digit of 7.

However, if we shift left again, then 7 becomes hex F, which is NOT valid. Therefore
the algorithm demands that 3 is added to 7 (7 is larger or equal to 5) before we do
the shift.

15

Shift and Add 3 algorithm [3] — shift and adjust

+ So on the fourth shift, we detect that the value is > or = 5, then we adjust this
number by adding 3 before the next shift.

+ In that way, after the shift, we move a 1 into the tens BCD digit as shown here.

Hundreth Tens Ones . pe
BCD BCD BCD 8-bit binary

| o111 [1100]

Original binary number

| |
Momonien | | o] 1111] 1000 |
¥ S M ey EYSERRTITN
il | | [o11] 1110 0000]
R | | | o111 1200 0000]
Mr..'l‘;.’."..;.".m“.‘;:.';‘."él | | 1010] 1000 [0000 |
MO | | 1] 0o101] 1200 [0000 |

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 16

The rationale of this algorithm is the following. If the number is 5 or larger, after
shift left, we will get 10 or larger, which cannot fit into a BCD digit. Therefore if the
number 5 (or larger) we add 3 to it (after shifting is adding 6), which measure we
carry forward a 1 to the next BCD digit.

16

Shift and Add 3 algorithm [4] — full conversion

+ In summary, the basic idea is to shift the binary number left, one bit at a time, into
locations reserved for the BCD results.

¢ Let us take the example of the binary number 8'h7C. This is being shifted into a
12-bit/3 digital BCD result of 12'd124 as shown below.

Hundreth Tens Ones . b
BCD BCD BCD 8bit binary

Original binary number | I I I 0111 1100
Shift left three times
11100 |

no adjust

Shift left
Ones=7, 25 1100 -
Add 3 1100
Shift left
Add 3 100
Shift left 2 times
Tens =6, >5 0
Shift left
BCD value is correct

PYKC 5 Nov 2019 EZ2.1 Digital Electronics Lecture 10 Slide 17

To recap: the basic idea is to shift the binary number left, one bit at a time,
into locations reserved for the BCD results. Let us take the example of the
binary number 8’h7C. This is being shifted into a 12-bit/3 digital BCD result
as shown above.

After 8 shift operations, the three BCD digits contain respectively: hundredth
digit = 4’b0001, tens digit = 4’b0010 and ones digit =4’b0100, thus
representing the BCD value of 124.

The key idea behind the algorithm can be understood as follow (see the
diagram in the slide):

1.Each time the number is shifted left, it is multiplied by 2 as it is shifted to
the BCD locations;

2.The values in the BCD digits are the same as as binary if its value is 9 or
lower. However if it is 10 or above it is not correct because for BCD, this
should carry over to the next digit. A correction must be made by adding 6 to
this digit value.

3.The easiest way to do this is to detect if the value in the BCD digit locations
are 5 or above BEFORE the shift (i.e. X2). If it is >5, then add 3 to the value
(i.e. adjust by +6 after the shift).

17

Hardware implementation (1) — binary to BCD

¢ The hardware to perform binary to BCD conversion is shown below.

+ Shifting is easy — just wiring all signals one position to the left.

For each of the BCD locations, we need an “adjust” module which perform the
follow operation: if the value is 25, then add 3.

Hundreth Tens Ones
BCD BCD BCD

|]]] | |
il i

8-bit binary

| Adjust H Adjust l Adjust ‘

Cadust adust adust [N
Kevv e e v ¥y

®e0cccsscsscecsssscsscsssscscsssssnee

 Adjust Adjust Adjust

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 18

In order to understand how to we may implement this converter in hardware,
you have to understand that shifting in hardware is easy. You just need to
connect signals with one bit shift to the left. It DOES NOT need any gates,
just wires!

Now we also need to do the adjust module, which simply performs the
operation:

if in>=5) out=in+3 else out=in

The easiest way to implement such a module is to use a case statement. This
is set as a tutorial problem in Problem Sheet 1.

18

Hardware implementation (2) — array of gates

+ Here is the full array of logic 0000000000 O] B7a) 8(3:0)
gates to do the conversion. J
+ After 8 shift and adjustment on | [(aoust]
the way, the result should be
three BCD digits. | I
+ Each ADJUST block perform i |
the following operation:

if (input >= 5) T | I
output = input + 3
else "
output = input | JJ 4]

222

8CD[2) 8C0(1) 8CD[0]

PYKC 5 Nov 2019 EZ2.1 Digital Electronics Lecture 10 Slide 19

The entire full array is shown here. The shade module is the adjust module (which
we call: add3_geS).

As I said in the last slide, the easiest way to implement (specify) add3_ge5 is using a
case statement.

The BLUE signal path traces what happens to the least significant bit of the original
number.

19

Hardware implementation (3) — propagate 0 to simplify

+ If we now propagate forward all 0000000000O0] sra 8(3:0)
the Os, we can eliminate all
ADJUST modules except those
in RED.

+ All the others are just wires 2 H
from input to output because | |
the input values are
GUARANTEED to be smaller L]
than 5. P
)
|
3
|
223 A2
|
12212 F]
BCD[2] BCD[1] BCD[0)
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 20

The full array is more complicated than need be. If we propagate the ‘0’s forward in
the array of gates, you will find those marked with ‘X’ will always have its input less
than 5. In which, output = input in these modules. THIS IS JUST A SET OF
FOUR WIRES.

The only remaining add3_ge5 modules are those shaped in orange.

20

Putting things together

+ Once you have specified the adjust module (A,) in Verilog, you can wire up the
entire converter as shown here:

B7 B6 B5 B4 B3 B2 Bl BO

Al w,[3:0]

A2 IR

0
1 v 4 a,[3:0]
I A4 | AS |
l L

o o || A6 I A7 |

Vo vl IBEEERE

D11 D10 DS D8 D7 D6 D5 D4 D3 D2 D1 DO

PYKC 5 Nov 2018 E2.1 Digital Electronics Lecture 10 Slide 21

After simplification, here are ALL the remaining add3_ge5 modules for the 8-bit
binary to BCD conversion (bin2bcd8). I have labeled the input ports to add3_ge3
wn([3:0] and the output parts an[3:0] where nis 1 to 7.

21

Binary to BCD conversion in Verilog

+ Here is the Verilog code to perform the 8-bit binary to BCD conversion:
module bin2bcd8 (B, BCD_O, BCD_1, BCD.2);

input [7:0] _8; binary input number an[3'0]
output [3:0] BCD_O, BCD_1, BCD_2; BCD digit LSD to MSD ‘ ‘ l *

wire [3:0] wl,w2,w3,wd, w5 ,w6,w7;

wire [3:0] al,a2,a3,ad,as,a6,a7;
Instantiate a tree of add3-if-greater than or equal to 5 cells n

... input is w_n, and output is a_n
2643963 A2 (w2, a2)!

a _geS A w2,a2); .
3dd3-ge5 A3 (w3,a3): a,[3:0]
add3_ge5 A4 H
add3_ge5 AS
add3_ge5 A6 H
add3_ge5 A7 (w7,a7);

wire the tree of add3 modules together
assign wl = {1°'b0, B[7:5]}; wn is the input port to module An
assign w2 = {a1[2:0], B[4
assign w3 = 2: B[3
assign w4 = i. a2[3], a3[31h
assign wS = {a3[2:0], B[2]
assign wé = {ad[2:0], aS[3]};
assign w7 = {a5[2:0], B[1]

connect up to four BCD digit outputs
assign BCD_O = §a7 2:].B[]%
assign BCO_1 = {a6[2:0],a7[3]};
assign BCD_2 = {2'b0,ad4[3],a6[3]};
endmodule
PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 22

Assuming that we have designed a module “add3_ge5” to perform the adjustment as
required, the converter can be implemented in Verilog by simply “WIRING UP” the
various modules together.

The interconnections are specified in the wire statements.
The next block is instantiating 7 add3_geS modules.
The next block of code is to wire the modules together.

Finally the last statements are to connect up the signals from the modules to the
output ports.

22

Part 4 — Echo Chamber Simulator

¢ Ex 16 —Audio In and Out without doing anything (allpass.v). This provides the overall framework
to take an input sample and then output it.

+ Ex 17 - Simple echo, just provide the simplest form of single echo. You will also learn about
delay buffer of audio samples — a First-in-First-Out (FIFO) buffer.

+ Ex 18 — A multiple echo with feedback path. This will the slide switches and the frequency
displayed on the 7-segment displays.

+ Ex 19 - Optional challenge: A variable echo simulator, where you control the echo delay
with the slide switches.

+ Ex 20 - Really hard challenge: This is something for those who are really really keen to do
over Christmas break. You will produce a voice corruptor - it changes the pitch of your
voice without changing the speed of the signal.

Sound y(t) = x(t) + B x(t-T)
source x(t’)

4 | | -
=

&

Echo path

B x(t-T)

PYKC 5 Nov 2019 E2.1 Digital Electronics Lecture 10 Slide 23

The final part (Part 4) really brings everything together. The goal is to use the FPGA
to implement a real-time speech processing system that perform echo simulation.
To start with, you will implement a DO-NOTHING block. This just tests out the
system and takes an analogue input sample, then output it to the earphone.
Nevertheless there are details that need to be taken care of. | will go into more
details nearer the time in order to explain exactly what’s happening.

Finally, the part includes something that CANNOT be done in four lab session, but if
you are really keen in going further it is a real challenge.

Bringing everything you have learned in VERI, you can design a voice corruptor —
some that that makes changes ones speech in a way that is unrecognizable, but it is
still comply understandable.

23

