
1



2

This lecture is not the same as previous ones.  I am not teaching you any new 
concept, architecture or circuit.  Instead, I will go through the entire VERI Lab 
Experiment in order that you appreciate what I want you to learn in each of the four 
parts.
I will also point out the various pitfalls that students always make each year, and 
some of the useful “tricks of the trade”.
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VERI is organised in four sequential parts, each build upon the previous parts.  Each 
part has been designed with very clear learning outcomes in mind, and is intended 
to take a 3-hour supervised laboratory session.
You need to download various files from the Experiment website in order to do this 
experiment.  These files can be found on:
http://www.ee.ic.ac.uk/pcheung/teaching/E2_experiment/
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You MUST use Quartus 16 (known as Quartus Prime) standard edition and NOT 
Quartus 13 (known as Quartus II) because version 13 does not support Cyclone V 
FPGA chips.  I recommend that you create a shortcut on your desktop for 
convenience.
Once you started Quartus software, you will eventually see many window panes 
appearing in the Quartus window:
Edit window – You should use this to edit all your source files.  The editor is basic, 
but it is syntax sensitive, so it will highlight Verilog keywords for your.
Message window – This is where you find all the error and warning messages.
Navigation window – This shows the hierarchy of your design and provides a quick 
way of exploring various Verilog files.
Status window – This tells you the steps that the Quartus software is taking in order 
to produce the final design.
Summary window – This provides a quick summary of the resources being used by 
your design – useful to check for overall errors.
Report window – This is where you find out details of the compilation results such 
as timing and pin allocations.
IP catalog – This allows you to pick up modules in the component library provided 
by Altera, such as ROM, multiplier, FIFO etc.

You must also make sure that you have specified the exact FPGA device used on the 
DE1-SoC board. It is 5CSEMA5F31C6 and it is specified using  > Assignments > 
Device ….
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Once you have finished creating your design through hardware compilation, we 
need to send the bit-stream to the chip via the USB cable.  The method of 
programming is specified in Hardware Setup, and we specify DE1-SoC [USB].
Next we use “Auto Detect” to find out what FPGA chip is connected, and specify that 
we expect to find the 5CSEMA5 chip family.  This is one of many different variants of 
Cyclone V FPGAs.  Each has a different protocol in programming the device. 
Then, we have to delete the part of the chip that we are not using – this the ARM 
part, known as SOCVHPS.  If you were to use the ARM processor (e.g. loading it with 
Linux), we would need this line in.
After that, you must select the “sof” file to send the chip.  
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You can find a full list of file types used by Quartus on the Experiment webpage.
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The main goal of Part 1 is to let you get familiar with the entire design process.  
Shown here is a summary of all the main steps that you have to go through to create 
a working design to send to the DE1-SoC.
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Part 2 of the Lab is starting to get harder.  You will first learn to use Modelsim to 
simulate  an 8-bit counter.  On the way, you will also learn how to combine the 
interactive commands your type in the command window in Modelsim into a DO-
file. You then will use this file as the testbench for your circuit.
Next you will extend the 8-bit counter to 16-bit with reset and enable input.  You 
will also combine this with what you have already done in Part 1 to display the 
counter value as decimal number on the displays.
Next, you will find that the counter is counting too fast – you only see 88888 at the 
output.  You then will add another circuit known as prescaler, which is another 
counter that produces a clock tick once every millisecond.  This allows you to see 
what you see the count value changing.
Then you will create a random number generator and test this on DE1.
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Optional challenge is quite hard, but should be very satisfying.  Do this only if you 
have time.
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Part 3 and Part 4 of VERI use the analogue I/O card with DE1.  The I/O card contains 
a DAC and a ADC, both 10-bits. These produce an audio output on the right channel 
of a 3.5mm socket, and one channel of the analogue input from the other socket.

There is also a low-pass filter, which receives a PWM signal and produces an 
analogue output on the left channel of the audio socket.  A 5k ohm potentiometer 
provides a dc voltage to the other channel of the ADC.

The I/O card is plugged into the 40-way socket on the DE1 board – the socket is the 
one that is furthest away from the board edge.  Beware that you may not have 
aligned the pins correctly. This will no damage anything.  If the I/O board is installed 
correctly, the GREEN LED will light up when the DE1 board is turned ON.

The communication between the DAC/DAC and the FPGA chip is through serial 
interface known as SPI (Serial Peripheral Interface).  How exactly SPI works will be 
covered in another lecture later.
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Part 3 will introduce you to many different useful digital components. This includes: 
the SPI interface module spi2dac.v, the PWM module pwm.v, the ROM generator, 
the multiplier etc.  In the end, you will be able to produce at least a fixed frequency 
sinewave on both channel of the output socket.
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We now take another example of a relative complex combinational circuit, and see 
how we can specify our design in Verilog.
The goal is to design a circuit that converts an 8-bit binary number into three x 4-bit 
binary coded decimal values (i.e. 12 bit).  
There is a well-known algorithm called “shift-and-add-3” algorithm to do this 
conversion.   For example, if we take 8-bit hexadecimal number 8’hff (i.e. all 1’s), it 
has two hex digits.  Once converted to binary coded decimal (BCD) it becomes 255 
(3 BCD digits).
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Before we examine this algorithm in detail, let us consider the arithmetic operation 
of shifting left by one bit.  This is the same as a  x 2 operation.  
If we do it 8 times, then we have multiplied the original number by 256 or 28.
Now if you ignore the bottom 8-bit through a truncation process, you effectively 
divide the number by 256.  In other words, we get back to the original number in 
binary (or in hexadecimal).
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Our conversion algorithms works by shift the number left 8 times, but each time 
make an adjustment (or correction) if it is NOT a valid BCD digit.
Let us consider this example.  We can shift the number four time left, and it will give 
a valid BCD digit of 7.
However, if we shift left again, then 7 becomes hex F, which is NOT valid.  Therefore 
the algorithm demands that 3 is added to 7 (7 is larger or equal to 5) before we do 
the shift.  
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The rationale of this algorithm is the following. If the number is 5 or larger, after 
shift left, we will get 10 or larger, which cannot fit into a BCD digit.  Therefore if the 
number 5 (or larger) we add 3 to it (after shifting is adding 6), which measure we 
carry forward a 1 to the next BCD digit.
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To recap:  the basic idea is to shift the binary number left, one bit at a time, 
into locations reserved for the BCD results.  Let us take the example of the 
binary number 8’h7C.  This is being shifted into a 12-bit/3 digital BCD result 
as shown above.  
After 8 shift operations, the three BCD digits contain respectively: hundredth 
digit = 4’b0001, tens digit = 4’b0010 and ones digit = 4’b0100, thus 
representing the BCD value of 124.
The key idea behind the algorithm can be understood as follow (see the 
diagram in the slide):
1.Each time the number is shifted left, it is multiplied by 2 as it is shifted to 
the BCD locations;
2.The values in the BCD digits are the same as as binary if its value is 9 or 
lower.  However if it is 10 or above it is not correct because for BCD, this 
should carry over to the next digit. A correction must be made by adding 6 to 
this digit value.
3.The easiest way to do this is to detect if the value in the BCD digit locations 
are 5 or above BEFORE the shift (i.e. X2).  If it is ≥5, then add 3 to the value 
(i.e. adjust by +6 after the shift). 
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In order to understand how to we may implement this converter in hardware, 
you have to understand that shifting in hardware is easy.  You just need to 
connect signals with one bit shift to the left. It DOES NOT need any gates, 
just wires!

Now we also need to do the adjust module, which simply performs the 
operation: 

if (in >= 5)  out = in + 3    else  out = in

The easiest way to implement such a module is to use a case statement.  This 
is set as a tutorial problem in Problem Sheet 1. 
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The entire full array is shown here.  The shade module is the adjust module  (which 
we call: add3_ge5).
As I said in the last slide, the easiest way to implement (specify) add3_ge5 is using a 
case statement.
The BLUE signal path traces what happens to the least significant bit of the original 
number.
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The full array is more complicated than need be.  If we propagate the ‘0’s forward in 
the array of gates, you will find those marked with ‘X’  will always have its input less 
than 5.  In which, output = input in these modules.  THIS IS JUST A SET OF 
FOUR WIRES.  
The only remaining add3_ge5 modules are those shaped in orange.
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After simplification, here are ALL the remaining add3_ge5 modules for the 8-bit 
binary to BCD conversion (bin2bcd8).  I have labeled the input ports to add3_ge3 
wn[3:0] and the output parts an[3:0] where n is 1 to 7.
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Assuming that we have designed a module “add3_ge5” to perform the adjustment as 
required, the converter can be implemented in Verilog by simply “WIRING UP” the 
various modules together.

The interconnections are specified in the wire statements.
The next block is instantiating 7 add3_ge5 modules.
The next block of code is to wire the modules together.
Finally the last statements are to connect up the signals from the modules to the 
output ports.
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The final part (Part 4) really brings everything together.  The goal is to use the FPGA 
to implement a real-time speech processing system that perform echo simulation.
To start with, you will implement a DO-NOTHING block. This just tests out the 
system and takes an analogue input sample, then output it to the earphone.  
Nevertheless there are details that need to be taken care of.  I will go into more 
details nearer the time in order to explain exactly what’s happening.

Finally, the part includes something that CANNOT be done in four lab session, but if 
you are really keen in going further it is a real challenge.

Bringing everything you have learned in VERI, you can design a voice corruptor –
some that that makes changes ones speech in a way that is unrecognizable, but it is 
still comply understandable.


