Imperial College
London

Lecture 12
Serial-Peripheral Interface (SPI)

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk

PYKC 20 Nov 2018 E2.1 Digital Electronics

Lecture 12 Slide 1

Lecture Objectives

+ Learn about the DAC used in the Analogue 1/O card
+ Serial Peripheral Interface used by the DAC — how it works?

+ Explore in details the Verilog design of the SPI interface
module

+ Examine the ADC used in the Analogue I/O card

PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 2

The Analogue I/O Card

+ Provides analogue inputs and
outputs

+ Contains 2 channels ADC, one for a
dc voltage set by a potentiometer &
another from a socket

+ Has 1 DAC to connected to the right
channel, and a digital output to the
left channel of a headphone socket

+ Includes low-pass filter and
operational amplifiers

+ Will be using this board for
Experiment: VERI part 3 and 4

PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 3

| also provide a purpose-built ADC/DAC board to support the lab experiment. This
analogue 1/0 board in only needed for Part 3 and 4 of VERI. However | will now be
examining the digital serial interface for these converter chips.

Schematic of the Analogue 1/O Card

PWM_OUT Lowpass

A20
Filter

-
3 DAC_CS
P AD20

L] DAC_SDI

° AG18 = R

o
(1]
o o—
] S|) DACID MCP4911 | ;
| pol_DACsck | 10-bit DAC e

C Cyclone’

FPGA = SoC
3.3V
c AF21 L ADC.SCK
;' (5} ADC_CS cHo
50MHz = | B |Ac20 —
Y 3 ‘L‘: ADC_SDI MC?3002
3 | Ac21 = 10-bit ADC
AJ21 |¢__ADC_SDO cH1 [S 0
PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 4

This shows the block diagram of the analogue 1/0 card used in the VERI experiment.
It consists of a DAC (MCP4911) and a ADC (MCP3002), both using Serial Peripheral
Interface (SP1). The DAC output is buffered by a unity gain opamp connected to the
right channel of a stereo jack socket.

The ADC has two input channels, one from a potentiometer providing a dc voltage
(CHO) and another from the 3.5mm jack socket (CH1).

Finally, there is a 2" order low-pass active filter, the input of which is driven directly
from a digital output pin of the Cyclone FPGA. This is intended to provide filtering of
a pulse-width modulated DAC output from the FPGA.

DAC - used in analogue I/O card

¢ Microchip MCP4911 10-bit DAC

SDI SCK
e

¢ Uses resistor string architecture (earlier lecture)
+ Serial Peripheral Interface (SPI) N v
'ower-on (]
« Rail-to-Rail Output Reset
Voo [® 7 Ta]Vour | * SPI Interface with 20 MHz Clock Support 5 Vss
=E X Tves | Simullaneous Latching of the DAC Output
sck 3] 5 (6] Vrer with LDA(_: Pin
soi[@] = [Slipac | Fast Settling Time of 4.5 ps Register
« Selectable Unity or 2x Gain Output
« External Voltage Reference Input Vrer |, }l:;_,
« External Multiplier Mode Buffer
Symbol Description Output
Voo Supply Voltage Input (2.7V to 5.5V) Op Amp
CcS Chip Select Input
SCK | Serial Clock Input
sDI Serial Data Input Logic
LDAC DAC Output Synchronization Input. This pin is used to transfer
the input register (DAC settings) to the output register (Voyt) Pty
VRer Voltage Reference Input Vour
Vss Ground reference point for all circuitry on the device
Ve —{oAG Aoy s

PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 5

Serial Peripheral Interface for DAC (SPI)

bit15 0= Write to DAC register bit 12 ~ SHDN: Output Shutdown Control bit

1= Ignore this command 1= Active mode operation. VOUT is available.
bit 14 BUF: Vger Input Buffer Control bit 0 = Shutdown the device.

1= Buffered

Vrer = 1.23V bit 11-0 D11:D0: DAC Input Data bits. Bit x is ignored.

o = Unbuffered bit 11-2 D9:D0: DAC input data bit

bit13 GA: Output Gain Selection bit
= 1x (VOUT = VREF * D/4096)

1= Vout = Vger * (D[9:0]/1024)
0= 2x(Vour =2 * Vrer * D/4096)

cs |\ / .
Max SCK frequency is 20MHz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Mode 1,1)

|e—— config bits ——s»}e——«——————————— 12 data bits

soi_| o YBur{GA|SHDN] Do} 08 {07 D6Y 05 D4Y 03] D2 D1) DOY X Y X

Vout Vout settling time = 4.5ps, INL = =1LSB, DNL = £0.2LSB Y o <121 P23-25

PYKC 20 Nov 2018

E2.1 Digital Electronics Lecture 12 Slide 6

The DAC used with the 1/0 card is 10-bit, and it uses the Serial Peripheral interface.
Its functional block diagram is shown here. The SPI interface has four signals, which
should be drive by either the microcontroller or the FPGA. The DAC itself uses a
resistor string architecture (i.e. just a bunch of 1024 series resistors of identical
values). It has a selectable gain of 1X or 2X.

To send a value to the DAC to output (i.e. produce the analogue output Vout), a 16-
bit value is sent to the DAC chip in a serial manner. The Chip Select (SC) signal going
low indicate that this is the start of the data. This establishes the beginning of the
data frame. First data bit (bit 15) is always 0. Bit 14 determines whether the
reference voltage (Vreg) is buffered or not buffered (via an internal opamp). For our
design, Vref is around 3.3V.

Bit 13 determines the gain of the DAC (x1 or x2). Bit 12 is set to 1 if you are using
the DAC, and set to 0 if you want to shutdown the device to conserve power.

Bit 11 to 2 contains the 10-bit data D[9:0] to convert into analogue voltage Vout,
MSB first. Bit 1 and O are don’t cares.

The LDAC (low active) signal can be connected to ground or used a low active strobe
signal to transfer the data to the DAC register (i.e. tell the DAC to update Vout). If
LDAC is low, DAC update happens on rising edge of CS_bar.

Interfacing the FPGA to the DAC and ADC

¢ Overview of the DAC/ADC s o0 Lowpass

+ DAC is DC coupled (no capacitor 3 o G Fitter
in signal path) A ' R
+ ADC is AC coupled (why?) 7| 8ol po »—~[:>~———__7ﬂtj

+ |Interface circuit to DAC: Coycione
¢ spi2dac.v z' . | 205500] v
¢ Interface circuit to ADC soe| 3| 8 [o] oS MCPm"‘“—ﬂ
spi2adc.v] B | AeulA0CS0L| 10.bit ADC
. A21j, ADC SO0 | o I
Important points to note gk —

+DAC and ADC function are NOT done within Cyclone V FPGA

+Conversion from/to analogue signals are done with 2 8-pin chips on Add-on card

+Why do we need serial-parallel interface circuits? To fit everything within 8-pin package
#A single serial clock is used for both ADC and DAC - set at 1MHz

+This is different from the system clock of 50MHz (fixed within DE1)

+Chip-select is low only when sending serial data to DAC chip on SDI pin

#LDA is low only when all 10-bit data sent and DAC to be loaded with new value

PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 7

This is a simplified diagram showing how the Cyclone V FPGA is interfaced to the two
data converters. There are two ADC channels and in our experiment, we are mostly
using channel 1 via the 3.5mm jack socket. You will be supplying speech signals
from the desktop computer.

There is one DAC which drives both the small speaker and, much better, drives the
ear-phone. (Please bring the ear-phone to the lab.)

The interface between the FPGA chip and the converters is through the SPI bus. You
are given the Verilog design for these two interface modules: spi2dac.v and
spi2adc.v. In the rest of this lecture, | will be going through the design of the spi2dac
module.

spi2dac design overview

¢ The components

inside spi2dac are: wtoo) spizdac st realts]
1. Clock divider Tz | 16-bit data shift register 50!
2. Load detector to 50MHz o LM *7& sk,
detect load pulse — F J
3. FSM to control the deccs ' 53
Spl interface ﬂ»_,. load detector — -
4. Parallel to serial i conoer A
shift register to shift Mz
OUT the command —
and data to the
DAC + Note that the Verilog code is designed to match
5. Various gates e.g. the block diagram shown here
inverters and AND + It consists of TWO state machines, a counter
gates and a shift register
PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 8

In order to use the DAC, you have to include the interface module “spi2dac” in your
design. This module has a schematic shown above. It takes two inputs (in addition
to the 50MHz clock signal): data[9:0] is the 10-bit digital data to be converted by the
DAC, and a load signal which is a high pulse to trigger the spi2dac module to send
the 10-bit data to the DAC.

The internal working of sp2dac can be divided into 4 main modules. The divide-by-
50 module is straight forward — it produces a 1MHz clock for the finite state
machine, and is gated through the AND gate to generate the serial clock signal (at
1MHz).

The load detector module handles the load command and produces control signals
to the SPI state machine and the shift register.

The shift register sends the control bits and the 10-bit data serially to the SDI output.

The spi controller FSM is the main control module designed as a state machine.

We will now consider each sub-module individually.

The 1MHz clock generator The load pulse detector

0:no buffer, 1:vref buffered
0:gain = 2x, 1:gain = 1x 50MHz
:power down, l:dac active ——

parameter BUF=1"bl;
parameter GA_N=1"h
parameter SHDN_N

wire [2:0] emd = {1'b0,BUF,GA_N,SHDN_N}; wire to vDD or GND

---- FSM to detect rising edge of load and falling e
.... sr_state set on posedge of load m
50MHz 1MHz 3F sr_state reset when dac_cs goes high at the end
JRE— reg [1:0 sr_state; |
parameter 0,WAIT_CSB_FALL = 2'b01, WAIT_CH oad | load detector
reg set if a DAC write is deq
initial begin QEQM
dac_cs sr_state = IDLE;
PR aa szt dac_start = 1'b0; set while sending data to DAC
: : end dac_cs
--- internal 1MHz symmetical clock generator --- load — .
reg [e:0] clk_1MHz; imhz C'l?ck derived from > load detector always @ (posedge sysclk) state transition load
reg [4:0 ctr; internal counter case (sr_state)
. dac start IDLE: if (load==l'bl) sr_state <= WAIT_CSB_FALL;
parameter TC = 5°d24; Terminal count change MR WAIT_CSB_FALL: if (dac_cs==1'b0) sr_state <= WAIT_CSB_HIGH; WAIT_CSB_FAL:
initial begin WAIT_CSB_HIGH: if (dac_cs==1'bl) sr_state <= IDLE; dac_start=1
clk_1MHZ = 03 don't need to reset - don't care default: sr_state <= IDLE; -
ctr = 5'b0; ... Initialise when FPGA is conf endcase

end
always &((") >

case (sr_state
a1:,‘2y%£r£gg§egggiﬁysclk) IDLE: dac_start = 1'bo;

ctr <= TC; WAIT_CSB_FALL: dac_start = 1'bl;
- . _— WAIT_CSB_HIGH: dac_start = 1'b0;
en§1k_1MHz < C1k_1MHZ; toggle the output clock for s defauit: dac.start = 1°bo;
else endcase

ctr <= ctr - 1'bi1;)
---- end internal 1MHz symmetical clock generator -------

!

eEnd circuit to detect start and end of conversion state machine ac_cs

PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 9 PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 10

This is a straight forward clock divider. The Terminal Count (TC) is set to 24. We have TWO signals to detect: the load pulse and the dac_cs signal.
Divide by 50 is done by toggling the output (clk_1MHz) after 25 clock cycles.

Note that | generally prefer to use a down-counter instead of an up-counter. Starting in the IDLE state, when load signal is asserted, we start the DAC cycle by

The counter (ctr) is set to 24, it then counts to zero. Output is toggled and entering the WAIT_CSB_FALL state. In this state, dac_start is asserted, and we wait

the counter (ctr) is reset to the initial value of 24 again. for DAC_CS to go low from the SPI controller circuit. In this condition, the DAC is in
the middle of accepting a new data for conversion. We go to state WAIT_CSB_HIGH
TO wait for the conversion to be completed, which is indicated by DAC_CS going
high. When that happens, we return to the IDLE state waiting for another 10-bit
data to be loaded.

The SPI Controller FSM

1

~~~~~~~ spi controller FsMm

The data shift register

parameter BUF=1
parameter GA_N=.
parameter SHDON_J

wire [2:0] cmd = {1 b0,BUF,GA_N,SHDN_N};

0:no buffer, 1:vref buffered
0:gain = 2x, 1:gain = 1x
0:power down, 1:dac active

wire to VDD or GND

initial begin
a‘lwa¥s
( at_start—l bl)&&(dac_cs==1'b1))

// Assign outputs to drive SPI interface to DAC

shift register for output data
[15:0] shift_reg;

shift_reg = 16'b0; data[9:0] shift reg[15]  ¢p
end “TvraT| 16-bit data shift register '——»
@(posedge clk_1MHz)

. ift_reg <= {cmd,data_in,2 b00};
sh'lfLreg <= {shift_reg[14:0],1'b0};

SCK
dac_start E_I-I'E._'

assign dac_sck = !clk_1MHz&'dac_cs;

with 17 states (idle, and s1-516
. for Lhe 16 cycles each sending 1-bit to dac) P gv%\cz:vvggv CS >
reg [ \] state; * *
initial begin
st:(e = 5'b0; dac_1d = 1'b0; dac_cs = 1'bl;
en -
- dac_start SRU
always @(posedge clk_1MHz) FSM state transition t “ —
case (state controller LDA
5'do: if (dac_start == 1'bl) waiting to start| N
state <= state + 1 bl; FSM g
else
state
5'd17: state go back to idle state
default: state <= state + 1°061; default go to n| 1MHZ'
endcase
always @ (*) beg\n FSM output
dac_cs = 1 dac_1d = 1'b1;
case (state)
o dac_cs = 1'bl;
5 rl begin dac_cs ; dac_ld = 1°E end
defau‘lt begin dac_cs ); dac_1d = 1'b1; end |G |
endcase
end //always L..0 1 2 3 4 5 B 7 8 9 101 12 131415
--------- END of spi controller Fsm sek 1o T‘{‘H"l‘][']]”‘
;— config bits. - 12 data bits
so_J 0 JeurfGa)sron] oo ] o6 Jo7 oY os] o4} 03] o2 o1]oo] x‘(x
?
AT /]
PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 11

assign dac_sdi = shift_reg[15]; &\ /
.. '0 1 ! ° H»]‘J_lj 14 15
sex i 111 Epigiakalakkphphphyhphyiaiais
- config bits - 12 data bits
soi Jo ru;’?a}\wow‘ﬁamn 7] 06} 05) 4] 03] 02 D1]00] xﬁ
[OAC \ /]
PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 12

The controlling FSM controller is actually simpler than it first appears.

We need a FSM to have 18 states. State 0 is the idle state, waiting for a new data to
be sent to the DAC. Here DAC_CS (which is low active) is ‘1’ and we wait for the
dac_start to be asserted.

The default value of dac_cs and dac_ld are specified first. By default we always go
to the next state, i.e. state value goes up by 1.

Once the state machine moves to state 1, it just go through to state 16, which
corresponds to cycle 0 to 15 in the timing diagram here. At the end of state 16, we
de-assert dac_cs (i.e. go high), assert dac_Id (low) and go back to the IDLE state.

1

1

Finally, the data and clock output is specified here. SDI is driven through a parallel
in, serial out shift register.

We use a number of useful tricks here:

1.cmd is a 4-bit value defining the first four bits of the SDI data values. We use
symbolic variable names to make the code easy to read.

2.Shift_reg <= {cmd, data_in, 2’b00} - parallel load the 16-bit value into the shift
register.

3.Shift_reg <= {shift_reg[14:0], 1’'b0} - perform left shift

The SDI is taken from the MSB of the shift register. The serial clock Is !dac_cs (low
active) ANDed with the inverter version of the clock (making the rising edge of the
SCK signal in the middle of the data bit).

12




Part 3 (ex10 & 11) - Testing DAC, SPl and PWM

@ data[9:0]

50MHz [—] 5000 tick_10k

spi2dac

=1

120 PWM_OUT Lowpass
- Filter
3 DAC_CS
s AD20 ]
2| 8 DAC_SDI

S | AG18 —————

10 !'é Ax21|___DAC_LD MC?4911

Af20|__DAC_SCK 10-bit DAC

‘Cyclpne'

¢ Use the 10 slider switches to set data value to converter to analogue voltage
¢ Continuously loading the switch value to DAC at 10KHz rate
¢ You need: clktick_16, pwm and spi2dac

PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 13

ex 11 - PWM DAC in Verilog (Lecture 9, slide 15)

CTR /
EOMP
_%
> n
data_in AsB b pwm_out
- REG B
n %
n >
> 1o J
clk I
load
module pwm (clk, data_in, load, pwm_out);
input clk; ystem clock nitial count = 10'b0;
input [2:0] data_in: data for convq
11"‘3"“’: loa‘j’" klways @ (posedge clk) begin
output pWm_out; count <= count + 1'bl;
o if (count > d)
reg [9:0] d: pwm out <= 1'b0;
reg [9:0] count; else -
reg pwm_outsy pwm_out <= 1'bl;
end
always @ (posedge clk)
if (load == 1'bl) d <= data_in; hodule
PYKC 20 Nov 2018 E2.1 Digital Electronics Lecture 12 Slide 14

In the Lab experiment, you will test the spi2dac.v module both with the simulator
and on the hardware (with a scope) by inspecting the output signals on the test pins
(located at the top of the I/0 board).

Ex 10 and 11 are simple, but will give you confidence that the interface module
works.

13

Here is the same slide as that found in Lecture 9. Just a reminder for you on how the PWM
module works. It is very simple, but very effective. You should compare the DAC output and
PWM output, and see that the two methods are equally effective in producing an analogue
voltage.

14




