Imperial College
London

Lecture 13

Memory Interface

Peter Cheung = .
Department of Electrical & Electronic Engineering E
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 1

Lecture Objectives

+ Explain how memory is connected to a microprocessor

+ Describe the sequence of events in reading from and writing to a static
RAM

+ Different ways to use memory inside FPGAs
¢ Register File
* ROM and waveform generation
e First-in-First-Out memory
+ Memory resources inside Cyclone V FPGAs
+ MOK memory block
+ Library components in Quartus (IP Catalog)

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 2

Memory interfacing is an essential topic for digital system design. In fact the
among silicon area devoted to memory in a typical digital embedded system
or a computer system is substantial. For example, in a mobile phone, the
number of transistors devoted to memory is many times more than those
used for computation. For the second year course, | will only focus on
interfacing to static memory, known as RAM (Random Access Memory) or
ROM (Read-Only Memory). There are other types of memory such as
dynamic memory (DRAM), Synchronous DRAM (SDRAM) and flash memory
(Flash RAM) which will not be covered on this course.

In this lecture, we will consider the various type of storage (memory) that
FPGAs allow us to implement. The major advantage of FPGAs is that it
contains lots of small blocks of memory modules, which can either be used
independently, or combined to form larger memory blocks. They also provide
various configurations such as multi-port or registered input/output for data
and address.

There are various useful references you can look up if you are interested to
learn more about this. For the purpose of examination, the contents in this
lecture and in the VERI experiment are sufficient.

Simplified RAM Organization

—— A typical memory has:
——] 4k x 16 As square as +N-bit address bus
possible to e This defines 2N memory
256 x 256 minimise locations
Addl’ — .
ILELLLY) parasitic #M-bit data bus
anay capacitances ¢ This defines the size of
of BL and WL data word
+Control signals to define read/write
cycles,
_16:1 mux

a4 ‘ ‘ ‘ ‘ * Asynchronous memory —

OE ——»"" postdecoders no clock in control
i i ! ¢ Synchronous memory —
Do Di D» Ds Dis every action synchronised
A typical 8-bit microprocessor typically has to a clock
¢ A 16-bit address bus, A15:0
e Can have up to 2'%=65536 memory locations

An 8-bit data bus, D7:0 - Each data word in memory has 28 = 256 possible values
In the RAM shown above uses 12-bit address and 16-bit data, i.e. 4096 locations of 16-bits each
These are arranged as 256 x 256 rows of memory cells. 4096 = 256 rows x 16 columns as shown

The address bus is therefore split into two components: 8-bit to specify which row, and 4-bit to
select the correct column.

* ¢ o o

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 3

This slide shows a typical organisation inside a RAM chip. Memory cells are
usually organised in the form of a 2-D array of RAM cells. These are
accessed first in a row, then in a column. The address bus is divided into two
components, the row address (8-bit in the example here) and the column
address (4-bit in this example). There is a decode to translate the 8-bit row
address into one-hot outputs in order to specify which row is being accessed.
Only ONE ROW will be enable at any one time (hence one-hot).

The second part of the address (normally the less significant bits) is used as
select signal into the output mux. This is because when memory is accessed,
they are normally read or written in a sequence. Using LSB for column
decoding means that one stays on the same row of memory as much as
possible. Staying in the same row uses significantly lower energy than
switching between rows in memory accesses.

In the example here, the 4-bit column address is used to select from a 16-to-1
mux to provide the correct location in memory to access. There are 16
identical blocks, each providing one-bit of the data output.

The output enable signal OE allows the selected data value be driven on the
data bus.

RAM: Read/Write Memory

CE OE WR D0:7 Action

8k x 8 Static RAM Static RAM: Data stored in bistable latches
RAM Dynamic RAM: Data stored in charged capacitors:
8192 <8 retained for only 2ms.
A12:0 A Less circuitry = denser = cheaper.
D7:0

WR {WR Ve >
OE OE v Tri-state output: Low, High or Off (High Impedance).
CE Allows outputs from several chips to be connected,;

i CE Designer must ensure only one is enabled at a time.

CE Chip Enable: disabling chip cuts power by 80%.
OE Output Enable: Turns the tri-state outputs on/off.

0

1
1
1

? ? HiZ Disabled A12:0 Address: selects one of the 23 8-bit locations.
0 0 Hi Z Idl .

1 0 olut Reaed WR Write: stores new data in selected location

? 1 In Write

D7:0 Data in for write cycles or out for read cycles.

Hi Z = High impedance

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 4

Here is a 8K x 8 static RAM chip and its associated digital signals. The 13-bit
address bus A12:0, the 8-bit data bus D7:0 are mandatory. There are three
more control signals: Output Enable OE which we have seen before, Chip
Enable CE which is used to address or select this particular memory chip
(hence the name), and finally the WRITE ENABLE signal WE, which, when
set high, indicates that you are writing to the RAM chip, and is normally low
(i.e. reading).

Note that the data bus has an inverted triangle sign, indicating that this is a
tri-state bus. This means that the pin could be an input pin, output pin, or an
open-circuit pin (i.e. not connected to anything — we call the signal floating).
The truth table shown here specifies the behaviour of the data bus in one of
the three possible states.

8k x 8 Static RAM

256 Cells

¢ The 64k memory cells are arranged in a square array: A\
C Ram | (Bit 7 |7
8192 %8 ' Bit6 |«» D6
A120 |, Bit5 S 09
D7:0 8 x 32 Bit4 L «» D4
WR — 4 ' ; ' D3
{WR Vifa—n = 256 cells Bit 3
' - 1 D2
OE | P | B!t2 —4—»;
CE | Bit 1 I
CE 32 cells { Bit0 L« DO
- L J
256 cells
A N
« For each output bit, an 8192-way 32 { B FE
multiplexer selects one of the cells. The cells | E e g SasmrasiEisiii:
control signals, OE, CE and WR /
dgter.mme how it connects to the output A120 (8192-way multiplexs) :
pin via buffers:
CE-WR
v \
+ Occasionally DIN and DOUT are b1 7 1 ‘b/. r—p—a—s"
separate but = more pins / v
CE-OE-!WR
PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 5

For a 8k x 8 RAM, there are 8 data bits, and therefore 8 separate 1-bit arrays.
Let us assume that each data bit array is organised as a 256 rows x 32
column (=8192) of memory cells. Eight such array are placed next to each
other to form the 8 data bits required. This makes the memory chip roughly
square (which is generally desirable).

You can think of the row decoder and the column selector driven by the 13-bit
address as a 8192 way multiplexer, selecting one of 8192 cells organised as
256 x 32, to be accessed.

The simplified circuit of each memory cell shown here consists of two
inverters and two switches is a schematic of the read-write circuit. When
reading from the cell, A12:0 select one of 8192 cells to route its signal via the
right inverter to Dn. Now Dn is an output pin. This only happens if CE*OE*
IWR =1 (i.e. asserting CE and OE, but not asserting WR).

When writing to the memory cell, the right switch is open, Dn is an input pin
driving the left hand inverter and the output switch from that inverter is closed
because both CE and WR are asserted.

Some memory chips have separate Din and Dout pins, but that's expensive
on pins and is not particularly common nowadays.

Microprocessor 4= Memory Interface

*

uP

Memory
A15:0
L L A
Ae 16
ov Lt D7:0 Aov
18 8
Control Control
Signals Signals
CLOCK

During each memory cycle:
A15:0 selects one of 216 possible memory locations

D7:0 transfer one word (8 bits) of information either to the memory (write) or to the
microprocessor (read).
D7:0 connections to the microprocessor are tri-state (V): they can be:

— “logic 0”, “logic 1” or “high impedance” (inputs)
The control signals tell the memory what to do and when to do it.

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 6

Here is a slide showing a generic interfacing between a microprocessor and a
memory sub-system. We assume that we use a 16-bit address bus and an 8-
bit data bus. The control signals go between the two to control the transfer of
information, and is in general governed by the microprocessor which acts as
the “master”.

Microprocessor Memory Map

We can tell which region of
SFFFF InputiOutput memory an address is in by
$F000 [S inspecting the top few bits:
SEFFE we Memory
ale A15:0 AR A15:12
ROM 18 16
16k words F: 111 Input/Output
E: 1110 ROM
$8000 0¥ e = Aov D: 1101 ROM
8 C: 1100 ROM
E B: 1011 ROM
K Unused Control Control A: 1010
3 Signals Signals 9: 1001
@ cLOCK 8: 1000
w STFFF 7: 0111 RAM
g 6: 0110 RAM
B 5: 0101 RAM
3 4: 0100 RAM
3: 00M RAM
RAM 2: 0010 RAM
32k words 1: 0001 RAM
0: 0000 RAM
RAM = ~A15
$0000 ROM =A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)

INOUT = A15 & A14 & A13 & A12

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 7

While we show memory as a block, in a real system, the memory address
space is divided into many different partitions. Here we use ‘$’ (instead of
16’hxxxx) to indicate that the addresses are hexadecimal numbers. The left
hand diagram shows the memory being partitioned into 32k of RAM, 16k of
ROM and 4k space for input/output devices.

A design needs to take the upper bits of the address bus and decode
these bits into enable signals for the three different partitions. In this case,
we can see that we only need to decode A15:12 according to the Boolean
equations shown here. What about A11:0? These are the address bits used
inside the RAM, ROM and input/output modules to select particular locations.

Memory Chip Selection

+ Each memory circuit has a “chip enable” input (CE)
+ The “Decoder” uses the top few address bits to decide which memory circuit should be enabled.
Each one is enabled only for the correct address range:
RAM = ~A15
ROM A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)
INOUTx A15&A14 & A13 & A12 & ~A11 &A10 & ~A9 & A8 & ~A7 & A6 & A5 & A4 &~A3 & A2
+ INOUTXx responds to addresses: $F574 to $F577
other 1/O circuits will have different addresses
+ Low n address bits select one of 27 locations within each memory circuit (value of n depends on
memory size)

uP

A15:0

>

67 16" i
Addr Range Usage L QA.M 8 S? M 8) 433;5
$F578 - $FFFF Not used 15(
$F574 - $F577 INOUTx

$F000 - $F573 Not used CE —CE

$B000 - $EFFF 16k ROM i

$8000 - SAFFF Not used

$0000 - $7FFF 32k RAM A15:0

PYKG 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Siide 8

Selecting which memory sub-system and therefore which memory chip to
enable is the job of the address decoder circuit. This circuit takes the upper
bits of the address bus, and produce enable signals for RAM, ROM and
INOUTX for a particular I/O device.

In the previous slide, we showed that the input/output occupies 4k of memory
space. This is uncommon. Typically an I/O device may take up, say, 4
memory locations.

In this example, INOUTx occupies only the address space $F574 - $F577,
i.e. 4 locations. Therefore we need to decode lots of address signals: A15:2.

Can you work out the Boolean equations for the address decoder shown
here?

The ROM CE signal is another challenge. The ROM is enable if the address
A15:A12 falls between the range 4'b1011 and 4’b1110. You should prove for
yourself that the Boolean equation to decode the address for the ROM is as
shown here.

Memory Interface Control Signals

CLOCK

P Memory

A150 Control signals vary between pProcessors

Ae el but all have:
+ Aclock signal to control the timing (can
. D7:0 . be the same as the system CLOCK)

+ Asignal to say whether the
McLock microprocessor wants to read from
memory or to write to memory
— Must make sure that D7:0 is only
driven at one end

WRITE

Read Cycle data read Write Cycle
X | data read_

r : d)
MCLOCK™|__ 1

A15:0 T XN

WRITE 1 XERXRXN

fl P : OO0

D7:0 { romH ' : \ 4

from mem — QXXX ;>

" D7:0 from memory only allowed when MCLOCK & ~WRITE true

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 9

In addition to the address decoder circuit, we need to provide the control
signals from the microprocessor to the memory chips. Here we assume there
exists at least two control signals from the microprocessor: MCLOCK which is
memory clock signal (which may be different from the system clock signal
CLOCK), and a WRITE signal, which is high when writing to memory, but low
otherwise.

The interaction between the microprocessor and memory can be separated
into two types of transactions: a Read Cycle and a Write Cycle.

During Read Cycle, the microprocessor asserts the address A15:0 and the
control signals MCLOCK and WRITE. Shortly after the beginning of the Read
Cycle, the microprocessor must STOP driving the data bus D7:0, and on the
second half of the cycle, we assume that memory will then provide the data
for the microprocessor to read. Reading is actually performed at the end of
the Read Cycle, on the falling edge of MCLOCK. Note that | use red colour to
indicate the action of the microprocessor on the data bus, and blue colour for
the action by the memory chip on the data bus.

During a Write Cycle, the microprocessor drives everything. Writing also
occurs on the falling edge of MCLOCK in our case. (Note that other system
may have a different protocol than the one shown here.)

Memory Circuit Control Signals

uP to decoder RAM
) 32k x 8
A15:0 A14:0
Ae 5 A
D7:.0
ovlt Q™ — 8oy
WRITE AN
I | 1 & OE
WR
MCLOCK J &
from decoder CE
Read Cycle
MCLOCK | [|
A15:0 ROOO0O0X
WRITE :)MXXXXX
from pP I)GU0000R :
D7:0 : '
from mem

A15:0

+ Output enable: OE = MCLOCK & ~WRITE
turns on the D7:0 output from the
memory

+ Write enable: WE = MCLOCK & WRITE
writes new information into the selected
memory location with data coming from
microprocessor

+ Chip enable: comes from the decoder
and makes sure the memory only
responds to the correct addresses

Write Cycle
m
XXRXRRX
OXXR
XXX

PYKC 25 Nov 2019

E2.1 Digital Electronics

Lecture 13 Slide 10

This slide shows the control circuit used to interface the

microprocessor to the 32k x 8 RAM chip.

Chip Enable (CE) is driven by the output from the address decoder,
which we have considered in an earlier slide. Remember the colour
code | am using: RED driven by the microprocessor, BLUE driven by

memory.

10

Memory Read Cycle

CE & OE & ~WR I E—
A12:0 X ! :
D7:0 X, — %
20 : : P22 4
. <g <2 <4
. Iv ‘ ’.

Don't Care Input

~ __ High,Low (CO—— Constant, HiZ (TXXX0 { Unknown Output

Note: Time axis not to scale

@ This diagram shows the timing constraints on memory during

a read cycle.

@ All timing shown here are only indicative. Another memory
device would have totally different timing specifications.

A read cycle happens when
CE&OE&~WR is true.

@ If A12:0 changes, D7:0 remains
for at least 2 ns and goes to new
value within 8 ns. Rubbish in
between even if new and old
locations contain the same value.

@ If a read cycle ends due to OE
going low, the outputs go Hi-Z
within 2 ns

@ If a read cycle starts due to OE
going high, D7:0 stays Hi-Z for at
least another 2 ns and the
selected word appears within 4ns

€ You can use CE instead of OE but it is slower: 10 ns to turn off and 15 ns to turn on (in parentheses

on timing diagram).

€ When reading data, the propagation delay to the D7:0 outputs is called the RAM’ s access time: 8 ns

from A12:0 and 4 ns from OE.

PYKC 25 Nov 2019

E2.1 Digital Electronics

Lecture 13 Slide 11

Let us now consider the timing constraints imposed by memory during a
Read Cycle. First thing that happens would be a valid address A12:0 being
presented at (1). As a typical example for memory timing, it is assume that
data D7:0 holds for at least 2ns before changing, but it is guaranteed to
provide the correct D7:0 at the new address in 8ns or earlier. This is address
to data ACCESS TIME for this RAM. Note that even if new and old location
have the same data value, there will be period when D7:0 contain rubbish —
beware. Also note that memory is providing data to be read by the
microprocessor, CE, OE and ~WR must all be asserted (i.e. ‘1°).

At (2), memory is deselected or output not enabled, or we are no longer
reading from memory. D7:0 again is guaranteed to go high-impedance after

2ns.

Some time later, if member is selected again at (3), it takes 2ns before

memory start to drive D7:0, but guaranteed to provide correct data after 4ns.

The most important delay here is that from address or OE to data. They are
called address access time and output enable access time. Usually address
access timing is longer (here it is 8ns) than OE access time (4ns) because
output enable simply enable the output multiplex stage, which is close to the
data output pin. Address access involves decoding the address values to
produce the one-hot row select signal (known as the WORD line), and then
the row of memory cells needs to present its data to the column multiplexer.
Selecting which row to access is generally a much slower process than the
column multiplexer.

11

Memory Write Cycle

L2 >10 ' >2

A120 — X : X
CE&WR 1
CE&OE&~WR ~—] : ——
D7:0 ; ‘ ; X
<2l 4 i1 g i
> <>

>

€ Timing specifications that end on an output are
guarantees from the chip manufacturer (shown in
black).

€ Timing specifications that end on an input are
requirements that the designer must meet (shown
blue).

A write cycle happens whenever
CE&WR is true.

0] CE*WR must go high for at
least 10 ns.
@ To avoid writing to the wrong

locations, the address, A12:0 must
remain constant for at least 2 ns at
both ends of the write pulse.

() Input data DO:7 only matters
at the end of the write pulse. Setup &
hold times of 4 ns & 1 ns define a
window within which data must not
change.

O] When CE&OE&~WR goes
high, the memory reverts to read
mode. The input data must be removed
from D7:0 before this happens.

PYKC 25 Nov 2019 E2.1 Digital Electronics

Lecture 13 Slide 12

Here is the timing for the Write Cycle. Remember that Write Cycle timing is
particularly important — any timing error here could result in corrupting the

contents store in RAM.

(1)The write pulse is signified by CE and WR both being asserted (i.e.
TRUE). There is usually a minimum period specified — here 10ns. Also as
soon as the WR is asserted, WR = 1 and D7:0 must go high-impedance
within 2ns (i.e. memory no longer driving the data bus).

(2)The address A12:0 must be stable at least 2ns before the write pulse, and
it must hold for another 2ns after the write pulse.

(3)The data is written to memory on the falling edge of the write pulse. The
setup and hold time is 4ns and 1ns respectively.

(4)This is when the Write Cycle finishes, and we go back to Read Cycle.
Expect D7:0 stays high impedance for at least 2ns.

12

Register File

+ Register file from microprocessor

clk
|
regid -
Redfile
WE -

o Vo

regid = register identifier (address of word in memory)
sizeof(regid) = log2(# of reg)
WE = write enable

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 13

The simplest form of storage is a register file. All microprocessors have
register files, which are known as “registers” in the architectural context.

Register files are fast, large and flexible. They are generally used to store
temporary data for easy access by the ALU or floating point unit of a
microprocessor, or for computational engine of a application specify digital
system.

On the FPGA, register files are often implemented with the D-FF’s in the
Adaptive Logic Modules (ALMs). Each ALM has two D-FFs. Therefore a 32-
bit register will take up 16 ALMs. Alternatively one could also use the static
memory blocks for this purpose.

13

Register File Internals

+ For read operations, functionally the

regfile is equivalent to a 2-D array o2
of flipflops with tristate outputs on FF FF Hﬂ_ FF FF
each = 4
sel_regl
e MUX, but distributed
« Unary control > ll—:\Fi—& lij\FHi P
+ Cell with added write logic: bg b‘z b‘] b‘D
WE . :
.
RD_SELi
SELI — T E FAF > ST bit line; bidirectional wire
—2
WR_SELI :
PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 14

The circuit of a register file is simple — it consists of arrays of D-FFs,
which can be disable (and output becomes high impedance). The
register select signals sel_reg0, sel_reg1 etc. enable the correct
register to put the data on the data line (called bit line here). The
read/write control signal WE is used to determine if you are reading or
writing to the register.

14

Regid (address) Decoding

Decoder sel_reg1
T - regid ﬁ sel_reg0
" > one-hot 000 (00000001
2 . encoc‘ing 001 (00000010
. 0100000000 [—p— 1M
l . 011(00001000 '
100 (00010000 —1) 110
AI' 101|00100000 .
. 110|01000000 — 1) 101
regid 111 hooooooo ~ 100
.
» The function of the address decoder is to ™ 011
generate a one-hot code word from the ! L'
address. D 010
e Binary -> unary — 001
¢ Simplified DEMUX iy 0= 1 I a2a1e0 = 000
. . sell = ITazalav =
e The output is use for row selection. —’
* Many different circuits exist for this function. a2a1
A simple one is shown. a0
PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 15

The register identification (regid) determines which register you are
trying to access. This is achieved through a standard decoder, which
generate a one-hot code word to select the appropriate register to
access.

15

Cyclone V FPGA resources

+ The Cyclone V used in the DE1 board
(5CSEMAS5F31C6) has 31k ALMs

+ It also contains 4.45 Mbits of memory,
organised as 397 memory blocks, each
with 10 kbits of storage ALM

+ It has 87 DSP Blocks (later) \

+ It has 16 phase-locked loops for clock
generation (later)

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 16

Now let us turn to the Cyclone V FPGA. The FPGA has many different type
of resources in additional to Adaptive Logic Modules (ALMs). These are:
memory blocks, Digital Signal Processing (DSP) units, phase-locked loops
and input/output pads. In addition, there is a dual-core ARM processor and
its associated bus interface circuit (shown in light green).

Here we focus on memory. In the C5-SE-A5 series, which is the one we use
in the DE1 board, there are near 400 separate memory blocks, each with 10k
bits of storage. Together with the ALMs, there is 4.45 Mbits of flexible
memory storage available to the designer.

16

Cyclone V Embedded Memory

+ Each 10kbit memory block (M10K) can be
configured with different data width from 1 bit to 40

bit wide

+ It also has multiple operating modes (which is user
configurable), of which we will focus on the
following only: single-port, shift-register, ROM,

FIFO

m Single-port

m Simple dual-port
® True dual-port

m Shift-register

= ROM

m FIFO

MLAB 32 x16, x18, or x20
256 x40 or x32
512 x20 or x16
1K x10 or x8
M10K
2K x5or x4
4K x2

8K

x1

PYKC 25 Nov 2019

E2.1 Digital Electronics

Lecture 13 Slide 17

Each of these blocks (known as M10K) can be configured with different depth
and data width as shown in the able above.

Even more importantly, the can also be configured to act as conventional
single-port memory, or simple dual-port with one port for read and one port

for write.

Further, they can be made to be true dual-port, both ports being read/write
ports, or as a shift register, a ROM or a first-in-first-out buffer (FIFO).

17

Intialization of ROM Contents (1k x 8)

¢ Create ROM and initialize its content in a .mif file:

|-~ ROM Initialization file

) WIDTH = 10;
DEPTH = 1024;
om | ADDRESS_RADIX = HEX;
'(address[9..01 . E‘I g|9..0¥ : DATA_RADIX = HEX;
—B' CONTENT

o '_g’ BEGIN

O = 0 : 200;

— r, 1: 203;

- 2 : 206;

3 : 209;

4 : 20C;

5 : 20F;

6 : 212;

7B zaloe

8 : 219;

9 : 21C;

A : 21F;

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 18

As you have seen in the VERI experiment, if the memory block is a ROM (or
even as a RAM), its content can be configured via a memory initialization file
.mif. The format of the file is shown here. Typing the contents of a 1024
ROM module by hand is silly and impractical. | wrote two versions of a
simple programme to generate this .mif file, one in Matlab and one in Python.
Below is the code for the Matlab version.

The ROM is produced using the IP Catalog tool. Here is a 1024 x 10 bit
ROM generated with all input and output registered and synchronised with

the clock SIgQl s Purpose: MATLAB script to produce contents of a ROM that stores
% one cycle of sinewave
% Inputs: None
% Outputs: rom_data.mif file
% Author: Peter Cheung
% Version: 1.0

% Date: 20 Nov 2011
DEPTH = 1024; % Size of ROM
WIDTH = 10; % Size of data in bits

OUTMAX = 2”WIDTH - 1; % Amplitude of sinewave

filename = 'rom_data.mif';
fid = fopen(filename, 'w');

fprintf(fid, '-— ROM Initialization file\n');
fprintf(fid, 'WIDTH = %d;\n',WIDTH);
fprintf(fid, 'DEPTH = %d;\n',DEPTH);
fprintf(fid, 'ADDRESS_RADIX = HEX;\n');
fprintf(fid, 'DATA_RADIX = HEX;\n');
fprintf(fid, 'CONTENT\nBEGIN\n');

for address = 0:1023
angle = (addressx2xpi)/DEPTH;
sine_value = sin(angle);
data = (sine_valuex0.5%0UTMAX) + OUTMAXx0.5;

fprintf(fid, '%4X : %4X;\n',address,int16(data));
end

fprintf(fid, 'END\n'); 18
fclose(fid);
disp('Finished');

Sinewave Generation

Generate any waveform or function y = F(x) using table lookup
Phase counter increment phase whenever step goes high
ROM stores one cycle of sinewave to produce F(x)

Digital-to-Analogue convert and the PWM DAC generate the analogue outputs on
L & R channels

Address A[9:0] D[9:0'
counter A 1Kx10 »p) data_in
9 (10-bit) ROM SPl interface

spi2dac to DAC
load

en > clk

— clk

50MHz . 10kHz sampling pulse
_.E +5000 load

> clk

pwm_out

pwm to LP filter

data_in

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 19

In the experiment, you have already implemented a sine wave generator
using the ROM to store one cycle of a sine wave. The counter is used to
advance the phase of the sine wave, which is specified as the address X of
the ROM. The content of the ROM, y= F(x) is the content of the ROM and is
the generated wave form. Instead of storing a sine wave, you can easily
store any other signal (such as a voice or music segment).

In order implement a variable frequency sinewave, you could modify the
address counter so that it is goes up not only by 1 count for each clock cycle,
but by N. For example if N is 2, then the address counter will skip every other
sample in the ROM and therefore the generated sinewave will be at twice the
signal frequency.

19

Single-port Memory (M10K as RAM)

w—]- | (ata] |
——-| A(IrESS|]
—P | Wren
= | byteenal]

—|addressstall Q] pr—
———— > inclock outclock <<¢
—>|inclocken outclocken lg¢———
| rden
L ——

Signal name
data[] Write data port
address|] Read/write address port
ql] Read data port
wren Write enable
rden Read enable
aclr Asynchronous clear
inclock Clock signal to control writing
outclock Clock signal to control reading
PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 20

Here is a generated single-port memory with ALL possible signals
included. The meaning of all the signals are self explanatory.

20

How to use M10K memory block? (1k x 8)

+ Use IP Catalog manager tool in Quartus to produce memory of the
correct configuration:

i catalog] xl RAM
o x| = ata[7..0
No Selection Avalsbie ~ wren _E}— u-—-,g
4 Library —————— | address[S..0] S
Clock Source // synopsys tr _G- = ;_—‘
Avalon Verification Sute s timesca ‘Le 1 p -
‘s”ir:":::s // synopsys tr ock
Brdgesl;ndAoaptors module RAM (e
Clocks, PLLs and Resets add ress,
Configuration and Programming clock ’
¥o data,
Miscellaneous wren,
4 On Chip Memol
FFO N a);
RAM initiaizer
[+ RAM: 1-PORT] input [9:0] address;
RAM: 2-PORT input clock;
ROM: 1-PORT input [7:0] data;
e
o Shiftregster (RAM-baseq) output [7:0] q;

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 21

Here is an example of using the MegaWizard manager tool in Quartus.
We are producing a 1-port RAM with 1024 x 8, all signals are clocked.
The generator produces a sample header file (a template) which
defines the interface signal to the generated block. Remember you
must tick the Verilog HDL radio button.

21

M10K Memory as Shift Register (8-bit 16 stages)

E: shiftin[7..0]

shiftout[7..0]
taps[127..0]

module SR (

clock,
shiftin,
shiftout,
taps);

input clock;

input [7:0] shiftin;
output [7:0] shiftout;
output [127:0] taps;

shiftin[7:0] shiftout[7:0]

—>{16 |15 14 [13 |- | 4
v ¥ vV v

tap[127:0]

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 22

You can also configure the MOK memory block as a shift register.
Here is an 8-bit 16 stage SR. In addition, it provides “tap” outputs for
every stage, i.e. 16 x 8 = 128 output signals. This is very useful to
implement FIR filter or perform time domain convolution.

22

First-in-first-out (FIFO) Memory

+ Used to implement queues. + Producer can perform many writes without
+ These find common use in computers consumer performing any reads (or vice
and communication circuits. versa). However, because of finite buffer

size, on average, need equal number of
reads and writes.

¢ Typical uses:

e interfacing I/O devices. Example
network interface. Data bursts from
network, then processor bursts to

32| 1p— memory buffer (or reads one word at a
time from interface). Operations not
synchronized.

e Example: Audio output. Processor
produces output samples in bursts
(during process swap-in time). Audio

after read DAC clocks it out at constant sample

rate.

¢ Generally, used for rate matching data
producer and consumer:

stating state

after write

producer
-
w
N
consumer

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 23

In the Part IV of the VERI experiment, you will be using a FIFO to
implement an echo synthesizer. The action of a FIFO is shown in the
diagram above.

23

FIFO Interfaces

| | + Address pointers are used internally to keep
—p RST CLK next write position and next read position into
N a dual-port memory.
—_— W
‘ FULL FIFO write ptr —
‘ EMPTY <—read ptr
— RE
“— Dour + If pointers equal after write = FULL:

¢ After write or read operation, FULL

and EMPTY indicate status of write ptr — <—read ptr
buffer.

+ Used by external logic to control + If pointers equal after read = EMPTY:
own reading from or writing to the
buffer. write ptr —> <—read ptr

¢ FIFO resets to EMPTY state.

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 24

Here is a generic block diagram of a FIFO with its typical interface
signals. FIFO is a form of queue. Internally there typically two
counters, one keeping track of the read address (or read pointer) and
another counter keeping track of the write address (write pointer).
There needs to be status signals such as FULL, which is asserted if
the FIFO is completely filled and writing any more words to it will
destroy stored data, or EMPTY, which signifies that there are no data
left to read.

24

M10K Memory as FIFO (8-bit x 32 word)

- module FIFO (

FIFO

clock,
data,
#— data[7..0] q[7..0] rdzeq,
sclr,
wrreq,
*— wrreq full empty,
*—{ rdreq empty f‘;‘ll'
al
>H> clock input clock;
input [7:0] data;
>(_ sclr input rdreq;
input sclr;
input wrredq;
output empty;
output full;

output [7:0] a:

endmodule

PYKC 25 Nov 2019 E2.1 Digital Electronics Lecture 13 Slide 25

FIFO can be generated using the IP Catalog manager tool. Here is an
example of a 32 word x 8 bit FIFO.

25

