Imperial College
London

Lecture 14

Part 4 of Experiment VERI

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

af

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 1

Lecture Objectives

¢ To revisit some of the issues that came up during the 2" year laboratory
experiment VERI

To provide some guidelines on how to perform diagnosis when things
don’t work

To provide explanations on Part 4 of the experiment

To explain how the ADC works

To explain some of the major modules used in the experiment
To explain the idea of offset binary vs 2's complement

To explain the ALLPASS module and its use

To explain how echo may be synthesized

*

® ¢ 6 ¢ 0 o

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 2

This lecture is designed to complement and explain part 4 of the experiment.

How to minimize problems?

Top level module name and file name (i.e. *.v) must match. This rule only
applies to top-level module connected to physical pins.

Always check each .v file for syntax error with Processing > Analyze
Current File

Make sure that you have included ONLY the files in your design with
Project > Add/Remove files in Project

Make sure that you have specify the correct top-level entity by first open
the top-level module file, and click Project > Set as Top-level Entity
Always check for correctness of your design with Processing > Start >
Start Analysis and Synthesize, and fix any errors

Check that you have assigned top-level ports to physical pins (done by
editing the <project_name>.qgsf file).

Check that you have specified your device to be 5SCSEMAS5F31C6

Always check compilation report on resource usage — good indication on
major errors

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 3

This slide is self explanatory. These are some steps you should take in order
to minimize problems that you may encounter.

Common mistakes

1. Not using h: drive to store design (e.g. Desktop, Library etc.)

2. Bad organisation of design folder — missing versions, files, folder etc.

3. Wrong case for signal names (all names are case sensitive)

4. Wrong number or wrong order of signals when instantiating a module

5. Different number of bits used in signals at top-level and lower modules

6. Missing pin assignments or use the wrong pin names

7. Volume control on add-on board set to zero (blue potentiometers)

8. Confusing instance names with module names in ModelSim

9. Wrong use of always @ (posedge clock) — only one edge can be
specified

10. You may use multiple always @ (posedge/negedge clk) block in the
SAME module, but must not do assignment to the same signal more than
once

11. Output port at instantiation (say at top-level module) MUST be wire, and
NOT reg

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 4

Here is a list of common mistakes students had in the lab.

ADC - used in add-on card

¢ Microchip MCP3002 10-bit ADC
¢ Uses successive approximation architecture

+ Serial Peripheral Interface (SPI) |
CHO Input
- Analog inputs programmable as single-ended or CH1 :]: C'ﬁﬂ;'e' DAC
pseudo-differential pairs |
= On-chip sample and hold | ‘
- SPI serial interface (modes 0,0 and 1,1) | Sampie 10-Bit SAR
- Single supply operation: 2.7V - 5.5V and
- 200 ksps max sampling rate at Vpp = 5V | Hold
- 75 ksps max sampling rate at Vpp = 2.7V | ! Control Logic Shift
| 9 Register
Symbol Description Lo _ o .
CSISHDN Chip Select/Shutdown Input CS/SHDN Dy CLK Dourt
CHO Channel 0 Analog Input
CH1 Channel 1 Analog Input E/SHDNI: 1 ./ 8 VDD/VREF
Vgs Ground =
Diy Serial Data In CHO[2 Q 7 [0 CLK
Dout Serial Data Out CH1[] 3 § 6 [Dgyr
CLK Serial Clock VSSE 4 N 5 D
Vpo/Vrer +2.7V to 5.5V Power Supply and Reference Voltage Input IN

PYKC 26 Nov 2019

E2.1 Digital Electronics

Lecture 14 Slide 5

This shows the ADC block diagram. Again the digital interface obeys the SPI
protocol, with Chip Select (CS), Serial Clock (CLK), Serial Data in (Din) and
Serial Data Out (Dout) signals.

This ADC uses a 10-bit DAC internally, and the successive approximate
algorithm (SAR) as described in our earlier lecture on ADCs.

Serial Peripheral Interface for ADC (SPI)

Start SGL/DIFF Channel MSBF‘
conversion 0 - single ended 0 — channel 0 0 — LSB first
1 — differential i/p 1 — channel 1 1- MSB first

(use 0) 4 (we use 1)

| l/ ot
AT A
foux (Max) = 1.2MHz (2.7V)

— "— tsuds

teve teve

oLk ol h 3.2MHz (5V)
Diy 5 BEISE) &
DOUTIQZO] = 1024*V.,,N DD
HI-Z Nl HI-Z
oo e e e
t
SAMPLE] | |
tconv - R11.2 p17-18
toaTa -
PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 6

The control of the ADC is slightly more complicated than that for the DAC.
Nevertheless, the idea is similar. The transfer cycle is again 16 states, going
from state O to state 15.

Conversion is started with Chip Select going low, and Din bit 15 = ‘1". The
next bit to Din specifies whether the analogue signal is single ended or
differential. (We use single-ended for our experiment.)

The next bit selects channel 0 or 1, followed by specifying data to be returned
least-significant bit first or most-significant bit first. We use MSB first.

After these four “setup” bits are sent to the ADC, it returns 11 bits to Dout.
First bit is always 0. Then the next 10 bits are the converted data MSB first.

Experiment 16 — All Pass circuit

¢ ADC produces a data_valid pulse at end of conversion

T) |, & 10KHz sampling frequency |, . 'ﬁl.‘l‘n,\,
385 WH*M s12 Il ,f'in — 1.65V {l”l ;

lowpass
&cyclone | filter
FPGA » SoC pwm
data_out[9:0 SPI
1d_pulse i2d interface 1' .
p— 1 MCP4911 _.|>—, =
S0MHz 10-bit DAC R
—_—
processor
‘ data_in[9:0]
Cantavaia | D ot | mcp3o02
— spi2 _ | 10-bitADC | CH1
50MHz (start . adc >
SOMHz
50MHz 10KHz

* clktick

Hex_to ["/-i/'i

_7seg matih

-
PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 7

This is the block diagram of the basic framework used for Part 4 of VERI. The
two main modules spi2dac.v and spi2adc.v provide interfacing to the DAC and
ADC respectively. The control circuit is simple — a clock tick circuit generating

a 10 KHz sampling clock The 7 segment displays can be used to monitor the
ADC converted data.

Experiment 16 — top.v

module top (CLOCKX_50, SW, HEXO_D, HEX1 D, HEX2 D,
DAC_SDI, SCK, DAC_Cs, DAC LD,
ADC_SDI, ADC_CS, ADC _SDO) :

&c . lowpass
Cyclone pwm_ [["| “fiter |[clktick_16 GEN_10K (CLOCK 50, 1'b1, 16'd4999, tick_ 10K
spi2dac SPI_DAC (CLOCK_50, data_out, tick_10k,
"*ﬁ”“‘igﬁL.‘ ‘ sPl DAC_SDI, DAC_CS, DAC_SCK, DAC_LD);
1d oulse spi2 interface _ [pwm PWM_DC(CLOCK_50, data_out, ticlkgial Duat airr).
ke ’
SOMHz | spi2adc SPI:'EC/(_//
— -sysclk GTLOCK s, [
.channel (1'b1),
processor .start (tick_10k),
.data_from_adc (data_in),
.data_valid (data_valid),
= data_in[9:0] .sdata_to_adc (ADC_SDI)
« ™ <Pl .adc_cs (ADC_CS), inslance name
data_valid ; adc_sck (ADC
: interface
—>| spi2 — .sdata_fr f
S0MHz start § adc
SOMHz processor K_50, data_in, data_out);
SOMHZ™"11 0Kz
clktick hex_to, 9 0 (HEX@, data_in[3:0]);
0 hex_to_7seg SEG1 (HEX1, data_in[7:4]);
Hex_to e f? hex_to_7seg SEG2 (HEX2, {2'b@,data_in[9:8]});
_Tseg f=r=p L)
PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 8

Here is the top level specification connecting all the modules to the FPGA.
Here the spi2adc instantiation is done in a verbose, but secure way. Many
mistakes happen because the order of signals in the top level is different
from that in the module level. Therefore we can associate internal name
EXPLICITLY to external name with the syntax: .<internal_name> (external
name> as shown above. For example, inside spi2adc, the signal sysclk is
connected to the top level CLOCK_50 signal. Now, the order of the signals as
used here is irrelevant.

This shows a “processor” module, which in this experiment does an ALL PASS
function. That is, it takes a sample from the ADC and immediately send this
sample back out to DAC. Therefore everything is simply passed from input to
output.

Experiment 16 — allpass.v (offset correction)

jrodule processor (sysclk, data_in, data_out):
~ N N
/ |
0 5‘1“'4;'1"""". """ input sysclk:
(! |- input [9:0] data_in;
w ” \ output [9:0] data_out;
Processor — “allpass ; ""}r n
I processin ffset correcti i UfTJﬁT'“\ - Syser
g olfset correction \ \ wire [9:0] data_in;
9:0 data_out;
data_out[9:0] (7_] -

X,y

—>

offset binary
MDC_OFFSET :

R
E
G

. A Jm% ’I.‘l ‘\‘
385 [T

(v

1
data_in[9:0]
_—
— data_valid
50MHz)
385 | data_out <= y + DAC OFFSET;
endmodule
PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 9

The ALL PASS module is slightly more complex than it may appear.
Data_in[9:0] is used to represent the analogue signal input (which is bipolar)
as offset binary. There is an offset of around 385 if the input is connect to
zero (no signal). The output data_out[9:0] also has an offset. To get Vout =
0V, you need to send the binary number 512.

If you are to process the signal using normal arithmetic operators such as +, -
and *, you need to use 2’s complement number system. Therefor the ADC
data is first offset correct by subtracting the offset 385 from the converted
data to yield x[9:0]. The actual processing step is simply the store this data
in a register in 2’s complement form. Then the output y[9:0] is again
converted back to offset binary for the DAC to output. This is done by adding
512 to y[9:0].

If allpass.v andex16_top.v are both correctly specified, you can send in the
ADC a record speech signal via the 2.5mm cable, and hear the same speech
using your earphone.

Experiment 17 — single echo synthesizer

Sound y(t)=x(t) + p x(t-T)
source x(t’) {
. > (
!
—1 data[9..0] q[9..0] =
Echo path Echo signal k| wrreq ful
B x(t-T) k— rdreq
k— clock
Sound + Output with echo
source x(t) y(t)
Delay by K samples

Z-K

Single echo of source signal

Signal flow-graph is simple: a K samples delay block, a gain block and an adder

Use First-in-First-out memory to store sample: need a status signal “full” to indicate FIFO full
Sampling frequency = 10KHz, theref a 8192 word FIFO provides 0.8192 second delay

* ¢ 0 o

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 10

The final compulsory exercise is to create an echo synthesizer. The basic idea
is simple: an echo is recreated when the listener receive the source signal via
a direct path AND a delayed echo path as shown.

In order for this to work, we need a delay component in the FPGA system.
The easiest way to achieve this is to use a first-in-first-out (FIFO). | will explain
exactly what a FIFO is in a later lecture. For now it is sufficient for you to
know that a FIFO block has data[9:0] as input, and g[9:0] as output. The
first sample that goes in is the sample the first sample that comes out. There
is a write request signal wrreg which is asserted when you want to write a
word into the FIFO. Similar a rdreq signal is asserted when you want to read
a word out from the FIFO. There is a synchronising clock signal.

Finally if the FIFO is full (in this case storing 8192 samples already), then the
full signal goes high.

This FIFO will provide 0.8192 second delay if the sampling clock is 10KHz.

10

Experiment 17 — single echo synthesizer

Processor — simple echo

Echo synthesizer (feedforward) offset correction

m. .
wlk

L h

data_out[9:0]

">

source x{t)
Delay by K samples |
S—— '

Z‘K

Sound + Output with echo

yit)

'
'
'
'
'
'
'
'
'
'
i
'
H 512
'
'
[}
'
'
'
[
1
]
'
L

" data[';!:)] . ’x[9:0] @ :+ data_in[9:0]
8192x10
>) e 385] data_valid i ift wi
¢ Computation in 2’s complement for signed integers
¢ x 0.5 = signed right-shift by 1-bit (sign-extension)
¢ \Verilog: y[9:0] = x[9:0] + {q[9], q[9:1]};
¢ Additional signal to processor module: data_valid = a high pulse whenever there is a new data_in
¢ Need to fill to First-in-First-out memory before starting to read data off it — hence D-FF to sense

full

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slid

e 11

Here is the block diagram of the processor module for a single echo
synthesier. The FIFO control circuit is quite simple, the D-FF and the AND
gate ensure that during initial operation, the FIFO is only written to until it is
completely filled. Initially, DFF is ‘0" because full is ‘0’. The AND gate block
sthe data_valid pulse from the ADC. Therefore for the first 9192 conversions,
the FIFO is only written to, and nothing is taken off it. When the FIFO is full,
Q of DFF goes high, and from now on, every data written into the FIFO,
another data value 8192 samples earlier (ie. Z*-8192) is taken off the FIFO as
the echo signal. This is then scaled by a constant 0.5 (which is an arithmetic
right shift with sign extension).

11

Experiment 18 — multiple echoes synthesizer

Sound /;\ Output with echo

source x(t) A yit)
Delay by K samples
3 iz

Processor — multiple echoes

Echo synthesizer (feedback) 1 offset correction
'
- : data_out[9:0]
'
2 : —>
'
'
'
& '
' 512
'
full 1 x[9:0] + data_in[9:0)
rdreq ' e
...... M 1 -
[2 conplment. N ETEED
q9:0] "% '
— wrreq 1 ﬁ'__ data_valid
SOMHz : ==

¢ |Instead of feedforward only, this uses a feedback loop
¢ To avoid instability, you must SUBTRACT delayed echo signal instead of add
¢ FIFO now stores y[9:0] output, and NOT input

PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 12

A slight modification create a mult-echo synthesizer. Here we put the delay
element in a feedback path. Note that you MUST perform a subtract instead
of an add, otherwise the system has positive feedback and will become
unstable.

12

Experiment 19 — variable delay echoes (optional)

Processor — variable delay echoes

Echo synthesizer (feedback) offset correction

S0MHz b - "/

2
q(8:0) o oy t4
8192x9 -

rdaddr[12:0 2-port RAM wdaddr{12:0)
—
[—-b rden wren x[9:0]

/-\ j' data_in[9:0)
enable

z
_ |
LI Dy ¥

- Y'Y 50MHz
—| 13-bit AN
50MHz CIR

data_out[9:0]

data_valid

:
—> ()
\ L)

| {sW[8:0),0,0,0,0}
|

¢ Entirely optional — do this only if you have time and is truly interested (but at least test my solution)
¢ Use 2-port RAM instead of FIFO for delay block
¢ RAM - only 9-bit wide (10-bit not a option), so store most-significant 9 bits y[9:1]
¢ Write_address = Read_address + delay value from SW[8:0] (SW[9] already used)
¢ Compute delay in millisecond and display as decimal value
PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 13

This exercise is optional. Instead of generating the FIFO block using the
Megawizard tool in Quartus, you can produce a 2-port RAM and implement
your own FIFO. Here we use a 13-bit counter and an adder to produce the
read and write addresses. Instead of using the fixed 8192 sample delay, by
offseting the counter value with a value from SW[8:0], you can adjust the
delay of the echo. There are extra modules here to show the amount of
delay as a BCD number on the display.

13

Experiment 20 — voice corruptor (beyond VERI)

Delay (ms)

Delay by KA samples 383
7FA)
255 g ’
Sound' . Output with Ka Don't o
source x(t) pitch changed 12.7 L care
Delay by KB samples yit)
P 0 i
Delay (ms)

¢ This part is purely for those who are 383 ‘
enthusiastic about FPGA and digital KB 255 Don't Don't
circuits 12.7 e e

¢ Change pitch and ensure voice remains 0

intelligible 1

¢ Two delay channels with time-varying GA f\
delays KA and KB as shown 0
¢ Merge the two signal by CROSS-FADING

1
< Built upon previous experiments — two GB \ /\ /
separate delay blocks required 0
t0 t

¢ 38.3msec max delay chosen (could use 1 2 et u t
G TP, «—>
other values) AT AB b T
PYKC 26 Nov 2019 E2.1 Digital Electronics Lecture 14 Slide 14

Finally, with minor modifications to the processing module, using TWO delay
components and a variable gain (with time), it is possible to produce a pitch

changer. There will not be enough time during the experiment for you to do
this part. However, it may be a suitable Christmas project.

14

