
1



2

This	lecture	is	designed	to	complement	and	explain	part	4	of	the	experiment.		



3

This	slide	is	self	explanatory.		These	are	some	steps	you	should	take	in	order	
to	minimize	problems	that	you	may	encounter.



4

Here	is	a	list	of	common	mistakes	students	had	in	the	lab.



5

This	shows	the	ADC	block	diagram.		Again	the	digital	interface	obeys	the	SPI	
protocol,	with	Chip	Select	(CS),	Serial	Clock	(CLK),	Serial	Data	in	(Din)	and	
Serial	Data	Out	(Dout)	signals.		

This	ADC	uses	a	10-bit	DAC	internally,	and	the	successive	approximate	
algorithm	(SAR)	as	described	in	our	earlier	lecture	on	ADCs.		



6

The	control	of	the	ADC	is	slightly	more	complicated	than	that	for	the	DAC.		
Nevertheless,	the	idea	is	similar.		The	transfer	cycle	is	again	16	states,	going	
from	state	0	to	state	15.

Conversion	is	started	with	Chip	Select	going	low,	and	Din	bit	15	=	‘1’.		The	
next	bit	to	Din	specifies	whether	the	analogue	signal	is	single	ended	or	
differential.		(We	use	single-ended	for	our	experiment.)		
The	next	bit	selects	channel	0	or	1,	followed	by	specifying	data	to	be	returned	
least-significant	bit	first	or	most-significant	bit	first.		We	use	MSB	first.

After	these	four	“setup” bits	are	sent	to	the	ADC,	it	returns	11	bits	to	Dout.		
First	bit	is	always	0.		Then	the	next	10	bits	are	the	converted	data	MSB	first.



7

This	is	the	block	diagram	of	the	basic	framework	used	for	Part	4	of	VERI.		The	
two	main	modules	spi2dac.v	and	spi2adc.v	provide	interfacing	to	the	DAC	and	
ADC	respectively.		The	control	circuit	is	simple	– a	clock	tick	circuit	generating	
a	10	KHz	sampling	clock			The	7	segment	displays	can	be	used	to	monitor	the	
ADC	converted	data.



8

Here	is	the	top	level	specification	connecting	all	the	modules	to	the	FPGA.		
Here	the	spi2adc	instantiation	is	done	in	a	verbose,	but	secure	way.		Many	
mistakes	happen	because	the	order	of	signals	in	the	top	level	is	different	
from	that	in	the	module	level.		Therefore	we	can	associate	internal	name	
EXPLICITLY	to	external	name	with	the	syntax:			.<internal_name>	(external	
name>	as	shown	above.		For	example,	inside	spi2adc,	the	signal	sysclk	is	
connected	to	the	top	level	CLOCK_50	signal.			Now,	the	order	of	the	signals	as	
used	here	is	irrelevant.

This	shows	a	“processor” module,	which	in	this	experiment	does	an	ALL	PASS	
function.		That	is,	it	takes	a	sample	from	the	ADC	and	immediately	send	this	
sample	back	out	to	DAC.		Therefore	everything	is	simply	passed	from	input	to	
output.



9

The	ALL	PASS	module	is	slightly	more	complex	than	it	may	appear.		
Data_in[9:0]		is	used	to	represent	the	analogue	signal	input	(which	is	bipolar)	
as	offset	binary.		There	is	an	offset	of	around	385	if	the	input	is	connect	to	
zero	(no	signal).		The	output	data_out[9:0]	also	has	an	offset.		To	get	Vout	=	
0V,	you	need	to	send	the	binary	number	512.

If	you	are	to	process	the	signal	using	normal	arithmetic	operators	such	as	+,	-
and	*,	you	need	to	use	2’s	complement	number	system.		Therefor	the	ADC	
data	is	first	offset	correct	by	subtracting	the	offset	385	from	the	converted	
data	to	yield	x[9:0].			The	actual	processing	step	is	simply	the	store	this	data	
in	a	register	in	2’s	complement	form.		Then	the	output	y[9:0]	is	again	
converted	back	to	offset	binary	for	the	DAC	to	output.		This	is	done	by	adding	
512	to	y[9:0].

If	allpass.v	andex16_top.v	are	both	correctly	specified,	you	can	send	in	the	
ADC	a	record	speech	signal	via	the	2.5mm	cable,	and	hear	the	same	speech	
using	your	earphone.



10

The	final	compulsory	exercise	is	to	create	an	echo	synthesizer.		The	basic	idea	
is	simple:		an	echo	is	recreated	when	the	listener	receive	the	source	signal	via	
a	direct	path	AND	a	delayed	echo	path	as	shown.		

In	order	for	this	to	work,	we	need	a	delay	component	in	the	FPGA	system.	
The	easiest	way	to	achieve	this	is	to	use	a	first-in-first-out	(FIFO).	I	will	explain	
exactly	what	a	FIFO	is	in	a	later	lecture.		For	now	it	is	sufficient	for	you	to	
know	that	a	FIFO	block	has	data[9:0]	as	input,	and	q[9:0]	as	output.				The	
first	sample	that	goes	in	is	the	sample	the	first	sample	that	comes	out.		There	
is	a	write	request	signal	wrreq	which	is	asserted	when	you	want	to	write	a	
word	into	the	FIFO.		Similar	a	rdreq	signal	is	asserted	when	you	want	to	read	
a	word	out	from	the	FIFO.		There	is	a	synchronising	clock	signal.

Finally	if	the	FIFO	is	full	(in	this	case	storing	8192	samples	already),	then	the	
full	signal	goes	high.

This	FIFO	will	provide	0.8192	second	delay	if	the	sampling	clock	is	10KHz.



11

Here	is	the	block	diagram	of	the	processor	module	for	a	single	echo	
synthesier.		The	FIFO	control	circuit	is	quite	simple,	the	D-FF	and	the	AND	
gate	ensure	that	during	initial	operation,	the	FIFO	is	only	written	to	until	it	is	
completely	filled.		Initially,	DFF	is	‘0’ because	full	is	‘0’.		The	AND	gate	block	
sthe	data_valid	pulse	from	the	ADC.		Therefore	for	the	first	9192	conversions,	
the	FIFO	is	only	written	to,	and	nothing	is	taken	off	it.		When	the	FIFO	is	full,	
Q	of	DFF	goes	high,	and	from	now	on,	every	data	written	into	the	FIFO,	
another	data	value	8192	samples	earlier	(ie.	Z^-8192)	is	taken	off	the	FIFO	as	
the	echo	signal.		This	is	then	scaled	by	a	constant	0.5	(which	is	an	arithmetic	
right	shift	with	sign	extension).		



12

A	slight	modification	create	a	mult-echo	synthesizer.		Here	we	put	the	delay	
element	in	a	feedback	path.		Note	that	you	MUST	perform	a	subtract	instead	
of	an	add,	otherwise	the	system	has	positive	feedback	and	will	become	
unstable.



13

This	exercise	is	optional.		Instead	of	generating	the	FIFO	block	using	the	
Megawizard	tool	in	Quartus,	you	can	produce	a	2-port	RAM	and	implement	
your	own	FIFO.		Here	we	use	a	13-bit	counter	and	an	adder	to	produce	the	
read	and	write	addresses.		Instead	of	using	the	fixed	8192	sample	delay,	by	
offseting	the	counter	value	with	a	value	from	SW[8:0],	you	can	adjust	the	
delay	of	the	echo.		There	are	extra	modules	here	to	show	the	amount	of	
delay	as	a	BCD	number	on	the	display.



14

Finally,	with	minor	modifications	to	the	processing	module,	using	TWO	delay	
components	and	a	variable	gain	(with	time),	it	is	possible	to	produce	a	pitch	
changer.		There	will	not	be	enough	time	during	the	experiment	for	you	to	do	
this	part.		However,	it	may	be	a	suitable	Christmas	project.


