Imperial College
London

Lecture 3

Verilog HDL - Part 1

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk

PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 1

This and the next lectures are about Verilog HDL, which, together with another
language VHDL, are the most popular hardware languages used in industry.

Verilog is only a tool; this course is about digital electronics. Therefore, | will NOT be
going through Verilog as in a programming course - it would have been extremely
boring for both you and me if | did. Instead, you will learn about Verilog through
examples. | will then point out various language features along the way. What it
means is that the treatment of Verilog is NOT going to be systematic — there will be
lots of features you won’ t know about Verilog. However, you will learn enough to
specify and design reasonably sophisticated digital circuits, and you should gain
enough confidence to learn the rest by yourself.

There are many useful online resources available on details of Verilog syntax etc..
Look it up as you need to and you will learn how to design digital circuit using
Verilog through designing real circuits.

The problem sheets are mostly about circuits and concepts, with occasional Verilog
exercises. You will be doing lots of Verilog coding during the four weeks of Lab
Experiment in the second half of the term.




Lecture Objectives

+ By the end of this lecture, you should understand:

e Why a Hardware Description Language (HDL) is a better design
entry method than schematic entry?

e The basic structure of a module specified in Verilog HDL
e Commonly used syntax of Verilog HDL

e Continuous vs Procedural Assignments

» always block in Verilog

» Sensitivity list

* Nets vs variables

PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 2

Here is a list of lecture objectives. They are provided for you to reflect on
what you are supposed to learn, rather than an introduction to this lecture.

| want, by the end of this lecture, to give you some idea about the basic
structure and syntax of Verilog. | want to convince you that schematic
capture is NOT a good way to design digital circuits. Finally, | want you to
appreciate how to use Verilog to specify a piece of hardware at different
levels of abstraction.




Schematic vs HDL

Schematic HDL
v Good for multiple data flow v Flexible & parameterisable
v Give overview picture v Excellent input to optimisation & synthesis
v Relate directly to hardware v Direct mapping to algorithms
v Don’t need good programming skills v Excellent for datapaths
v High information density v Easy to handle electronically (only needing a

v Easy back annotations text editor)

v Useful for mixed analogue/digital

% Not good for algorithms X Serial representation
% Not good for datapaths % May not show overall picture
% Poor interface to optimiser % Need good programming skills
% Poor interface to synthesis software % Divorce from physical hardware
x  Difficult to reuse
x  Difficult to parameterise
PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 3

You are very familiar with schematic capture. However modern digital
design methods in general DO NOT use schematics. Instead an engineer
would specify the design requirement or the algorithm to be implemented in
some form of computer language specially designed to describe hardware.
These are called “Hardware Description Languages” (HDLs).

The most important advantages of HDL as a means of specifying your digital
design are: 1) You can make the design take on parameters (such as number
of bits in an adder); 2) it is much easier to use compilation and synthesis
tools with a text file than with schematic; 3) it is very difficult to express an
algorithm in diagram form, but it is very easy with a computer language; 4)
you can use various datapath operators such as +, * etc.; 5) you can easily
edit, store and transmit a text file, and much hardware with a schematic
diagram.

For digital designs, schematic is NOT an option. Always use HDL. In this
lecture, | will demonstrate to you why with an example.




Verilog HDL

+ Similar to C language to describe/specify hardware
+ Description can be at different levels:

e Behavioural level

¢ Register-Transfer Level (RTL)

e Gate Level

+ Not only a specification language, also with associated simulation
environment

+ Easier to learn and “lighter weight” than its competition: VHDL
+ Very popular with chip designers

¢ For this lecture, we will:
U Learn through examples and practical exercises
U Use two examples: 2-to-1 multiplexer and 7 segment decoder

PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 4

| have chosen to use Verilog HDL as the hardware description language for this
module. Verilog is very similar to the C language, which you should already know
from last year. However, you must always remember that YOU ARE USING IT TO
DESCRIBE HARDWARE AND NOT AS A COMPUTER PROGRAMMIE.

You can use Verilog to describe your digital hardware in three different level of
abstraction:

1) Behavioural Level — you only describe how the hardware should behave without
ANY reference to digital hardware.

2) Register-Transfer-Level (RTL) — Here the description assumes the existence of
registers and these are clocked by a clock signal. Therefore digital data is
transferred from one register to the next on successive clock cycles. Timing (in
terms of clock cycles) is therefore explicitly defined in the Verilog code. This is the
level of design we use most frequently in this course.

3) Gate Level —this is the lowest level description where each gate and its
interconnection are explicitly specified.

Verilog is not only a specification language which tells the CAD system what
hardware is suppose to do, it also includes a complete simulation environment. A
Verilog compiler does more than mapping your code to hardware, it also can
simulate (or execute) your design to predict the behaviour of your circuit. Itis the
predominant language used for chip design.

You will learn Verilog through examples and exercises, not through lecture.
However, | will spend just two lectures to cover the basics of Verilog.




Structure of a Module

+ \Verilog design contains interconnected

modules a sel | out
+ A module has collections of low-level gates, out
0 b
statements, and other modules b NSo— outbar 1 a
¢ Here is an example of a simple module that
describes a 2-to-1 multiplexer: sel

¢ [/ to end-of-line is comment. Can also
use /* ... */ for multiline comments

¢ Declare and name module; list its ports;

m

Function: 2-to-1 multiplexer

|module mux2tol (out, outbkar,

a, b, sel); terminate with *;’
output out, outbar; + Specify port as input, output (or inout if
input a, b, sel; bidirectional)
assign out = sel ? a : b; + Express modules behaviour; each
assign outbar = ~out; statement executes in parallel; ORDER
DOES NOT MATTER
endmodule
PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 5

This is a Verilog module that specifies a 2-to-1 multiplexer. It is rather similar
to a C function (except for the module keyword).

It is important to remember the basic structure of a Verilog module. There is
a module name: mux2tol. There is a list of interface ports: 3 inputs a, b and
sel, and 2 outputs out and outbar. Always use meaningful names for both
module name and variable names.

You must specify which port is input and which port is output, similar to the
data type declaration in a C programme.

Finally, the 2-to-1 multiplexing function is specified in the assign statement

with a construct that is found in C. This is a behavioural description of the
multiplexer — no gates are involved.

The last statement specifies the relationship between out and outbar. It
is important to remember that Verilog describes HARDWARE not instruction
code. The two assign statements specify hardware that “execute” or perform
the two hardware functions in parallel. Therefore their order does not
matter.




|module mux2tol

Continuous Assignment

(out, outbar,

s b =e1): ¢ Keyword assign specifies continuous

assignment to describe combinational logic

output out, outbar; + Right-hand expression continuously evaluated ....
input a, b, sel; responding to input changes immediately
assian oot = sel 2 & : b + Left-hand is a net driven with evaluated value
assign outbar = ~out; + Left side must be a scalar, a net or a concatenation
of nets and vector nets. (nets, vectors etc. will be
endmodule described later)
¢ All continuous assignments execute in parallel
13 TN ¢ Operators in expressions are low-level:

iz o
. q

i0

- Boolean: ~, &, |,
- Arithmetic: +, -, *

assign (s0 2 i1 :

- Conditional assignment: (cond)? vTrue: vFalse

Qperators can be nested. For example, here

i0);

PYKC 14 Oct 2019 E2.1 Digital Electronics

Lecture 3 Slide 6

Continuous assignment specifies combinational circuits — output is continuously
reflecting the operations applied to the input, just like hardware.

Remember that unlike a programming language, the two continuous assignment
statements here ARE specifying hardware in PARALLEL, not in series.

Here we also see the conditional statement that is found in C. This maps perfectly
to the function of a 2-to-1 multiplexer in hardware and is widely used in Verilog.

Furthermore, there are many other Boolean and arithmetic operators defined in
Verilog (as in C). Here is a quick summary of all the Verilog operators (used in an
expression).

(Whatis “reduction and &”? | want you to find this yourself online.)

0,40} concatenation & reduction and
+_%/ arithmetic ~& reduction nand
% modulus I reduction or
>>= <<=  relational ~ reduction nor

! logical negation A reduction xor
&& logical and ~A or A~ reduction xnor
Il logical or << left shift

== logical equality >> right shift

1= logical inequality ?: condition

=== case equality or event or

I=— case inequality

~ bit-wise negation

& bit-wise and

I bit-wise inclusive or

A bit-wise exclusive or

A~ or ~A bit-wise equivalence




Description at Gate Level

Built-in logic gate primitives:

endmodule

sel

selb

module mux gate (out, outbar O and, nand, or, nor, xor, xnor, not, buf
e B s=R) Can use arbitrary number of inputs, e.g.
output out, outbar and gate_name (out, in1, in2, in3, ...)
i A o Tri-state buffers: bufif1 and bufif0

+ Connect gates with nets using declaration

keyword wire
o and a1 (out1, a, sel);

AND gate. a1 is the name of THIS
particular AND gate.

"
out1

out

outbar

out2
b — )

PYKC 14 Oct 2019

E2.1 Digital Electronics

While the previous Verilog code for the 2-to-1 mux only specifies “behaviour”, here
is one that specifies a gate implementation of the same circuit. Three types of gates
are used: and, or and not gates. There are internal nets (declared as wire) which
must also be declared and are used to connect gates together.

Keywords such as and, or and xor are special — they specify actual logic gates. They
are also special in that the number of inputs to the and-gate can be 2, 3, 4, ..... Any
length!

Note that this module uses TWO AND gates, and they have different names: al and
a2. These are TWO separate instances of the AND gate. In software, “calling” a
function simple execute the same piece of programme code. Here the two
statements “and al (out1, ...” and “and a2 (out2 ...” produce two separate piece of
hardware. We say that each line is “instantiating” an AND gate.

Wiring up the gates is through the use of ports and wires, and depends on the
positions of these “nets”. For example, outl is the output net of the AND gate al,
and it is connected to the input of the OR gate itby virtual of its location in the gate
port list.

¢ This statement is an instantiation of an

Lecture 3 Slide 7




Procedural Assignment using “always”

+ Keyword always and initial are used to define procedural assignment, similar to
procedures in software

¢ Good for behavioural description of hardware including combinational and
sequential logic

+ Support richer C-like constructs such as if, for, while, case etc.

module mux 2 to 1 (out, outbar, &, b, =el); ¢ Declarations same as before
""""""""""" + Assignment inside an always block must
be declared as variable data type such as

eg out, outbar:; /m reg (see Iater)

always @ (a or b or sel) ¢ always block runs once whenever a signal
in the sensitivity list changes value

begin .o .
if (sel) out = a; ¢ Statements inside the always block are
else out = b; executed sequentially. ORDER

. MATTERS!

outbar = ~out’;

o ¢ Sandwiched between begin/end

endmodule
PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 8

So far we have used Verilog in very hardware specific way. “assign” and using gate
specification are special to Verilog. You do not find these in C.

Here is something that is more like C—and it is called “procedural assignment”.
Typically we use something called “always” block to specify a “procedure”, i.e. a
collection of sequential statements which are sandwiched between the begin-end
construct.

The always block needs a sensitivity list — a list of signals which, if ANY of these
signals changes, the always block will be invoked. You may read this block as:

“always at any changes in nets a, b or sel, do the bits between begin and end”.

Actually, if you are defining a combinational circuit module, an even better way to
define the always block is to use:

..... always @ * ... //always at any change with any input signal

Inside the begin-end block, you are allowed to use C-like statements. In this case,
we use the if-else statement. All statements inside the begin-end block are
executed sequentially.




Verilog “register” is NOT what it appears!

Registers normally represents storage elements in digital logic, they need clock
signals to update their output value

+ In Verilog reg is NOT the same as a digital register, it is used only to declare a
variable that holds a value

¢ Values of variables (declared as reg ) can be changed anytime in a simulation, and
can be used for nets of a combinational circuit

+ In other words, in Verilog, reg is similar to declarations such as int, real etc.
When you use:
reg signal_a;
whether a physical register (or D-FF) is sythesized to store signal_a or not would
depend on the rest of the Verilog code.

*

PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 9

Note that Verilog keyword reg does not implies that there is a register created in the
hardware. It is much more like declaring a variable that holds a value. Itis a rulein
Verilog that if you perform an assignment to a variable INSIDE an always block, that
variable MUST be declared reg, and NOT a net (wire). This is one of the few
peculiarities of Verilog that can be confusing to students.




Mixing procedural & continuous assignments

¢ Procedural and continuous assignments can co-exist within a module

+ In procedural assignments, the value of variables declared as reg are changed only
once when the procedural block is invoked by changes in the sensitivity list

+ In continuous assignments, the right-hand expression is constantly evaluated and
the left-side net is updated all the time

module mux 2 to_1l(a, b, out, a
outbar, sel);
input a, b, sel; out
output out, outbar; b So— outbar
reg out;
always @ (a or b or sel) sel
begin
if (sel) out = a; procedural
S description
end
continuous
i tb = ~out b
ASSIgN OUTOAr = —outs description
endmodule
PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 10

This slide shows how the procedural statement is mapped to the basic MUX
circuit. The continuous assignment statement corresponds to the NOT gate.

10




case statement — better alternative to if-else

+ case statement can often replace if-else construct within an always block, and
provides better abstraction

¢ Here is an example using the mux_2_to_1 module:

always @ (a

or b or sel)

Notation for numbers:
<size> ‘ <base> <number>

begin
case (sel) 2610
" - . — -
1'b0: out 13- ‘610
1'bl: out = a;
31
endcase
end

_ 2 bit binary, v=2

Unsized binary 32-bit, v=2

| Unsized decimal, v=31

8-bit hex, v=175

8'hAf
\ -16'd47

else

if (sel) out = a;

out = b;

16-bit negative decimal, v=-47

PYKC 14 Oct 2019

E2.1 Digital Electronics

Lecture 3 Slide 11

This is yet another way to specify the MUX circuit. It is still a procedural assignment
with the always block. However, we replace the if-else statement with a “case”
statement. The case variable is sel. Since sel is a 1-bit signal (or net), it can only
take on O or 1.

Note that the various case values can be expressed in different number formats as
shown in the slide. For example, consider 2’b10. The 2 is the number of bits in this
number. ‘b means it is specified in binary format. The value of this number is 10 in

binary.

11




n-bit signals - buses

+ \Verilog is powerful in specifying module mux 2 to 1(a, b, out,

multi-bit signals and buses. outbar, sel);
¢ Here is an example for 8-bit input(7:0] a, b;
wide 2-to-1 multiplexer: input sel;

output [7:0] out, outbar;
reg[7:0] out;

always @ (a or b or sel)
begin

if (sel) out = a;

else out = b;
end

sel assign outbar = ~out;
endmodule

Concatenate signals using the { } operator

assign {b[7:0],b[15:8]1} = {a[15:8],a[7:0]};
effects a byte swap

PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 12

This slide demonstrates why language specification of hardware is so much better than
schematic diagram. By simply declaring the signals as a multi-bit bus (8 bits [7:0]), we
change this module to one that specifies 8 separate 2-to-1 multiplexers.

Another useful way to specify a bus is using the concatenation operator: {.... } as shown
above.

The concatenation operator is particularly useful in converting digital signals from one
word length (i.e. number of bits in a word) to another. For example, to convert an 8-bit
unsigned number a[7:0] to a 13-bit unsigned number b[12:0], you can simple do this:

assign b[12:0] = {5'b0, a[7:0]};

12




Putting everything together — 7 seg decoder

ous.| s[ea [ in(3.0] | outis:0] | Digit l in(3.0) | outis:0] | Digit |
0000 0 1000

In[3.0] ——a 758 |0 L6

decoder sl ]2 1000000 0000000 &
L3 0001 1111001 ! 1001 0010000 9
In3 :in2 0010 0100100 2 1010 0001000 A
outé 00 01 11 10 0011 0110000 3 1011 0000011 b
00 1 0 1 0 0100 0011001 4 1100 1000110 C
o
2 [t 1 o o o 0101 0010010 5 1101 0100001 d
- 0110 0000010 B 1110 0000110 £
c 11 0 1 0 0 -
- 0111 1111000 I 1111 0001110 F
10 0 0 0 0
out6 = /in3*/in2*/inl + in3*in2*/in1*/in0 + /in3*in2*in1*in0
out5 = /in3*/in2*in0 + /in3*/in2*in1 + /in3*in1*in0 + in3*in2*/in1*in0
outd = /in3*in0 + /in3*in2*/in1 + in3*/in2*/in1*in0
out3 = /in3*in2*/in1*/in0 + /in3*/in2*/in1*in0 + in2*in1*in0 + /in2*in1*/in0
out2 = /in3*/in2*in1*/in0 + in3*in2*/in0 + in3*in2*in1
outl =in3*in2*/in0 + /in3*in2*/in1*in0 + in3*in1*in0 + in2*in1*/in0
out0 = /in3*/in2*/in1*in0 + /in3*in2*/in1*/in0 + in3*in2*/in1*in0 + in3*/in2*in1*in0
PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 13

Here is a simple example: the design of a 4-bit hex code to 7 segment decoder. You
can express the function of this 7-segment decoder in three forms: 1) as a truth
table (note that the segments are low active); 2) as 7 separate K-maps (shown here
is for out[6] segment only); 3) as Boolean equations.

This is probably the last time you see K-maps. In practical digital design, you would
rely heavily on CAD tools. In which case, logic simplifications are done for you
automatically — you never need to use K-maps to do Boolean simplification
manually!

13




Method 1: Schematic Entry Implementation

outb = /in3*/in2*/inl + In3*In2*/in1*/in0 + /in3*In2*in1*in0
outS = /In3*/i2%Ind + fin3*/in2%n1 + in3*In1*in0 ¢ In3*In2*/In1*in0
outd = fIn3®In0 ¢ fin3*n2*/inl ¢ In3°/i0 2% /ind 0

outd =/ i1/ + fin3*/in2%/

out2 = find*/in2*in1* i + 13%in2*/in0 + in3*n2*n1

cut] « In3%In2"/in0 ¢ /in3%n2*/in1 %0 ¢+ IK3%in1*in0 ¢ in2%in1 */in0

outd = fin3*/in2*/in1%in0 + fn3%n2*f1*/in0 + in3*In2*/in1%in0 + In3*/in2*in1*ind

TEDIOUS!!!

PYKC 14 Oct 2019

E2.1 Digital Electronics

Lecture 3 Slide 14

Here is a tedious implementation in the form of schematic diagram of the 7 segment
decoder as interconnected gates. Very hard to do and very prone to errors.

14




Method 2: Use primitive gates in Verilog

Equally TEDIOUS!!!

¢ £ outfe):
inio] s | ST
: tnstl
injaj © L BT Di.rec':tt. mapping of gates to
X : primitives
> nin[1] D— . /
T
nst2, @m (A, nin[3], nin[2], nin[1]l):
and ANDZ—{tEr—mroisty—sof2s—ITT L], 1in[0]):
and AND3 (C, in[3], in[2], nin[l], nin[0]):
or ©OR1 (out[6], A, B, C):

PYKC 14 Oct 2019

E2.1 Digital Electronics

Lecture 3 Slide 15

One could take a group of gates and specify the gates in Verilog gate primitives such
as and, or etc. Still very tedious. Here is the implementation for the out[6] output.

15




Method 3: Use continuous assignment in Verilog

in3*in2*/in1*/in0 + /in3*in2*in1*in0 ‘

Much Better?

_ Direct mapping of Boolean
Cinj3) o NDETTTTTTTT v equation using continuous
TV assignment..
x—nlnh] : . . . o
. :.E nin[0]

tnsz. 1 assign out[6] =(~in[3]&~in[2])&~in[1] |
in e &~1n[0] |

~in[3]&in[2]&in[1])&in[0];

4

PYKC 14 Oct 2019

E2.1 Digital Electronics Lecture 3 Slide 16

Instead of specifying each gate separately, here is using continuous assignment

statement, mapping the Boolean equation direction to a single Verilog statement.
This is better.

16




module & endmodule
sandwich the content of
this hardware module

seg
ion: convert 4-bit hex
ocutput 1is low active

: hex _to_7

Peter Cheun

module hex_to_7seg

~in[3]&~in[2]&~in[1]

Hex_to_7seg.v

value to drive 7 segment display

& 9ood header helps
documenting your code

specify interface to this
module as viewed from

outside

specify a 7-bit output bus,
out[6] ... out[0]

7 segment display
// 4-bit binary input of a hexademical number

| in[3]&in[2]&~in[1]&~in([0] |

~in[3]&in[2)&in[1]&in(0];

output [6:0] out
input [3:0] in;
assign out([6] =
assign out(S] =

assign
assign

out|
out(3] =
assign out(2] =
assign out[l] =
assign out(0] =

endmodule

~in(3]&~in(2]&in(0]
~in[3]&in[1]&in([0]

an[31&in([0)
~in[3]&30Y
in[2])&in[1]&in[0]
~in[3)&~in(2]&infl)&~in([0]
in(3l&in[2]&in[l];
in[3)&in[2]&~in[0]
in[3)&infl)&in(0]

~in[3]&~in(2]&~in[1]&in[0]
in[3)&in[2)&~in[1])&in[0]

| ~in[(3l&~in[2]1&in(l] |

| in[3]&in[2]&~in[1]&in[0];
| ~in[3)&in[2)&~in[1]
hadn(116~in[0] | ~in(3]1&~in[2]&~in[l)l&in[0] |
b iin[l]&~in[0];

declaration of
input and output
ports

| in[3)&~in[2)&~in[1)&in([0];

| 19T [2]&~in[0] |

| ~in[3]&in[2]&~in[1]&in[0] |

assign used to specify
combinational circuit

| inf{2)&inf1)&~in(0];
| ~in[3]&in(2]&~in[1]&~in[0] |
| in[3]&~in[2]&in[1)&in([0];

PYKC 14 Oct 2019

E2.1 Digital Electronics

Lecture 3 Slide 17

Here is the complete specification of the hex_to_7seg module using continuous
assignment statements. It shows how one should write Verilog code with good
comments and clear documentation of input and output ports.

17




Method 4: Power of behavoural abstraction

module hex to_7seg (out,in);

output [6:0] out; // low-active output to
input [3:0] in; // 4-bit binary input o
reg [6:0] out; // make out a variable
always € (in) BEAUTIFUL !
case (in)
4'h0: out = 7'b1000000;
4'hl: out = 7'b1111001; // —— 0 ——-
4'h2: out = 7'b0100100; /70
4'h3: out = 7'b0110000; //5 1
4'h4: out = 7'b0011001; /7| |
4'h5: out = 7'b0010010; // -—— 6 ——
4'hé: out = 7'b0000010; /7| |
4'h7: out = 7'b1111000; // 4 2
4'h8: out = 7'b0000000; /7| |
4'h9: out = 7'b0011000; // —— 3 ——-
4'ha: out = 7'b0001000;
4'hb: out = 7'b0000011;\
4‘:nc: out = 7'b1000110; « Direct mapping of truth
4'hd: out 7'b0100001;

4'he: out
4'hf: out
endcase

7'b0000110;
7'b0001110;

table to case statement
Close to specification,
not implementation

endmodule

[ in3.0] | _out(6:0] | Digit |
0000 1000000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1111001
0100100
0110000
0011001
0010010
0000010
1111000
0000000
0010000
0001000
0000011
1000110
0100001
0000110
0001110

mMMoN”NoCcDTuDuouoOnLwn ~-0O

PYKC 14 Oct 2019

E2.1 Digital Electronics

Lecture 3 Slide 18

Finally the 4th method is the best

statement — easy and elegant.

. We use the case construct to specify the
behaviour of the decoder. Here one directly maps the truth table to the case

Instead of using: always @ (in), you could also use always @*

18




From Verilog code to FPGA hardware

Verilog code
.... If (sel) out = a;
else out = b;

l _______

Elaboration: checking
syntax, expanding and
creating instances etc.

Expanded Verilog
code

—

Gate netlist
AND G1(n1,n2,n3)
NOT G2(n4,n1)

l _______

Optimised netlist
NAND K1(n4,n2,n3)

Compilation:
behaviour description
to gate netlist or
internal format related
to hardware

Synthesis: optimise
logic, tradeoff amount
of hardware with
speed etc.

FPGA specific
™| hardware (LE,
memory etc)
Place & Route: Fix the
_______ locations and wirings of
all the hardware blocks
for a specific FPGAs
Physical location
of hardware and
interconnect
i Assembler: Produce the
} ------ binary bit pattern needed
to program (or configure)

Programming the FPGA
(Configuration)
bitstream

-
~—
-~
-~

Technology mapping:
map hardware to LEs,

flipflops, memory blocks,

multipliers etc.

PYKC 14 Oct 2019

E2.1 Digital Electronics Lecture 3 Slide 19

How is a Verilog description of a hardware module turned into FPGA configuration?
This flow diagram shows the various steps taken inside the Quartus Prime CAD

system.

19




Quiz

1. What are inside a Verilog module? 8. What is the value of a number written
as: 9°'hA3D? How many bits are used

2. Where does one specify the interface to present this number?

to a module?

3. What are port declarations? 9. When are case statements used?

10. Why is behavioural description

4. When a variable is declared as type
yP generally better than gate level

reg, must there always be some

registers (flipflops) in the circuit? description
5. What is the meaning of this
statement?
x=(c)?b=a+1:b=a-1;
6. What is a continuous assignment? Answers are all in the notes.
7.  How does a continuous assignment differ
from a procedural assignment?
PYKC 14 Oct 2019 E2.1 Digital Electronics Lecture 3 Slide 20

20




