
1

In this lecture, we will focus on two very important digital building blocks: counters 
which can either count events or keep time information, and shift registers, which is 
most useful in conversion between serial and parallel data formats.
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Logic circuits generally consists of circuits in three categories:
• Datapath blocks  – these are arithmetic blocks, logic units, floating point units, 
digital processing blocks etc.
• Memory blocks – these store information for digital circuit to manipulate or store 
the instructions for a microprocessor
• Control logic blocks – these are generally clocked and they make sure that data 
goes to the right places at the right time for computation

Control logic can be implemented either in a microprocessor or a microcontroller, a 
synchronous finite state machine (probably best) or using random logic with 
counters and shift registers. 
In this lecture, we will introduce the use of counters and shift registers for producing 
control circuits.
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Here is the design of a 4-bit synchronous counter in schematic form.  The four D-FFs 
store the current count value.  The adder is used to compute the next count value 
and fed to the input of the D-FFs.  On every positive edge of the signal clk, the count 
value count[3:0] goes up by one.  
The Verilog description of this counter is shown.  Note how easy it is to specify the 
D-FFs (via the always block with posedge keyword in the sensitivity list).  The add-
one is specified with the ‘+’ operator.
In the actual implementation, the CAD software will NOT insert a 4-bit adder circuit.  
Instead the synthesis software will reduce this to an optimised gate-level 
implementation because one of the operand of the adder is the constant ‘1’.  
However, as a designer, you do not need to worry about this optimisation step 
(except may be in answering an examination question which asks you to simplify).  
The CAD software will deal with this for you.  In fact, it is often much better to leave 
the specification as shown here – the design is more readable and therefore easier 
for others to understand what you  are doing.  
For example, one input to the adder is: 4’b0001.  Imagine you have many AND and 
OR gates inside the adder.  The AND driven by 0 or 1 can be mapped to a simple 
wire.  Similarly simplification can be applied to OR gates.
Finally, shown here is the state transition diagram.  Each bubble represents a state 
(labeled with the count value) and on each rising edge of clk, it transits to the next 
state.
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Here is a modification from the previous counter by adding a low-active reset signal 
RST (shown as !RST).
The implementation is simple in Verilog – just add a if-else statement to specify that 
when RST = 0, reset on the next clock rising edge.

The state transition diagram is modified to include the reset action.

The symbol for the counter is worth noting.  CTR4 indicates that it is a 4-bit counter.  
CT means count vaue.  C1/+ label on the clk signal indicates that this clock signal 
controls either the action of input 1 or will increment the counter.  The 1R label 
indicates that it is a reset input and it is controlled by the clock signal 1.  Finally the 
triangle at the input of  1R says that this input is low active (i.e. low to reset).   
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What if you want a counter that only counts from 0 to 9, then back to 0 again?  This 
is really easy with Verilog.  A simple if-else construct testing for the terminal counter 
of 9 will do the trick.
The actual implementation could use of 4-bit binary counter with a simple AND gate 
to detect when the counter value of 9 is reached, and then synchronously reset the 
counter back to 0. 
The state transition diagram is as shown.  Beware of what happens when count 
value is outside the range of 0 to 9.
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When you use gates to combine values from a counter, beware that you will get 
glitches at the output of the gates.
Here is an example where Y could contain glitches.  This is because the outputs 
Q[3:0] will not change exactly at the rising edge of the clock signal.  Instead, there 
will be some delays and the delays are likely not be the same for different Q 
outputs.
For example a count value transition from 7 to 8 could temporarily go to 1111 
before going 1000. (i.e.  0111 -> 1111 -> 1000).  Similarly transitions from 5 to 6 and 
0 to 1 could result in glitches in Y.
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Eliminating glitches can be achieved by adding an extra D-FF at Y output.  Z will be 
glitch free.  However, beware that Z is one cycle delayed relative to Y.  

If Z is instead of Y is to be used to control other circuits, we need to time 
synchronous all the signals.  This may involve adding D-FFs to datapaths that are 
controlled by Z in order to make sure that data signals and control signals arrive at 
the same clock cycle.
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If the one-cycle delay is not desirable and you need to avoid any glitches, one could 
use a special counter that counts in a special sequence that guarantees NOT to 
produce glitches when its count outputs are gated together.  The count sequence is 
known as Gray code.  

In a Gray code counter, successive values only have ONE bit changing.  Here is a 4-
bit gray code counter and it is specified as a case statement in Verilog.
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Counters are good in counting events (e.g. clock cycles).  We can also use counters 
to provide some form of time measurement.
Here is a useful component which I can a clock tick circuit.  We are not interested in 
the actual count value.  What is needed, however, is that the circuit generates a 
single clock pulse (i.e. lasting for one clock period) for every N+1 rising edge of the 
clock input signal clkin.  
We also add an enable signal, which must be set to ‘1’ in order to enable the internal 
counting circuit.
Shown below is the module interface for this circuit in Verilog.
Note that the parameter keyword is used to define the number of bits of the 
internal counter (or the count value N).  This makes the module easily adaptable to 
different size of counter.
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The actual Verilog specification for this module is shown here.  
There has to be an internal counter count  whose output is NOT visible external to 
this module.  This is created  with the reg [N_BIT-1:0] count; statement.
The output tick has to be declared as reg here because its value is updated inside 
the always block.
Also note that instead of adding ‘1’ on each positive edge of the clock, this design 
uses a down counter.  The counter counts from N to 0 (hence N+1 clock cycles). 
When that happens, it is reset to N and the tick output is high for the next clock 
cycle.
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Using this style of designing a clock tick circuit allows us to easily connect multiple 
counters in series as shown here.
The clktick module is producing a pulse on the tick output every 50,000 cycles of the 
50MHz clock.  Therefore tick goes high for 20 microsecond once every 1 msec (or 
1KHz).  
The clktick module is sometimes called a prescaler circuit.  It prescale the input 
clock signal (50MHz) in order for the second counter to count at a lower frequency 
(i.e. 1KHz).
The second counter is now counting the number of millisecond that has elapsed 
since the last time reset signal (1R) goes high.
The design of this circuit is left as a tutorial problem for you to do.
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Here is yet another useful form of a counter.  I call this a clock divider.  Unlike the 
clktick module, which produces a one cycle tick signal every N+1 cycle of the clock, 
this produces a symmetric clock output clkout at a frequency which is the input 
clock frequency divided by 2*(K+1).  
Shown here is the module interface in Verilog.  Again we have used the parameter
statement to make this design ease of modification for different internal counter 
size.
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The Verilog specification is similar to that for clktick.  This also has an internal 
counter that counts from K to 0, then the output clkout is toggled whenever the 
count value reaches 0.
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Instead of producing binary signals using a counter, one could use a shift register to 
produce a sequence of pulses delayed relative to each other, and use gates to merge 
these together and produce different binary signals.
Shown here is a D-input to a shift register, producing P Q R and S, delayed from the 
previous signal by one clock cycle.
Using AND, NOT, OR or XOR gates, we can produce the various digital signals with 
different delays and pulse widths.
Beware that producing control signals this way may generate glitches.
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To specify a shift register in Verilog, use the code shown here (in blue box).  We use 
the  <= assignment to make sure that sreg[4:1] are updated only at the end of the 
always block.
On the right is a short-hand version of the four assignment statements:

sreg <= {sreg[3:1], data_in}

This way of specifying the right-hand side of the assignment is powerful.  We use the 
concatenation operation { …. } to make up four bits from sreg[3:1] and data_in (with 
data_in being the LSB) and assign it to sreg[4:1]. 
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We can also make a shift register count in binary, but in an interesting sequence.
Consider the above circuit with an initial state of the shift register set to 4’b0001.
The sequence that this circuit goes through is shown in the table here. It is NOT counting 
binary.  Instead it is counting in a sequence that is sort of random.  This is often called a 
pseudo random binary sequence (PRBS).
The shift register connect this way is also known as a “Linear Feedback Shift Register” or 
LFSR.  There is a whole area of mathematics devoted to this type of computation, known as 
“finite fields” which we will not consider on this course.
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The circuit shown below is effective implementing a sequence defined by a polynomial 
shown: 1 + X3 + X4.  The term “1” specifies the input to the left-most D-FF.  This signal is 
derived as an XOR function (which is the finite field ‘+’) of two signals “tapped” from stage 
3 (i.e. X3) and stage 4 (i.e. X4) of the shift register.

For a m-stage LFSR, where m is an integer, one could always find a polynomial (i.e. tap 
configuration) that will provide maximal length.  This means that the sequence will only 
repeat after 2m-1 cycles.  Such a polynomial is known as a “primitive polynomial”.

The table shown in the slide has primitive polynomial at various order.  For example, a 15-
bit LFSR that produces a maximal length PRBS can be achieved by implementing the 
primitive polynomial: 

1 +𝑋 +𝑋$%

This result in a 15-bit shift register with one XOR gate from Q1 and Q15, feeding back to 
input of FF1 (which we would label Q0).  This effective implements the equation:

𝑋& = 𝑋 +𝑋$%

Note that for a given order, the primitive polynomial shown here is NOT unique.
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Here is the Verilog specification for a 4-bit LFSR. Note how the concatenation 
operator is used in the always block. 
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