Imperial College
London

Lecture 5

Counters & Shift Registers

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital
E-mail: p.cheung@imperial.ac.uk

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 1

In this lecture, we will focus on two very important digital building blocks: counters
which can either count events or keep time information, and shift registers, which is
most useful in conversion between serial and parallel data formats.

Lecture Objectives

+ Understand how digital systems may be divided into datapath and control
logic
+ Appreciate the different ways of implementing control logic

+ Understand how shift registers and counters can be used to generate
arbitrary pulse sequences

+ Understand the circumstances that give rise to output glitches
+ Able to design various types of counters and timers

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 2

Control Logic

¢ Most digital systems can be divided into
Data Path Blocks: adder, subtractor, ALU, floating point unit etc
Memory Blocks: RAM, ROM, registers etc for storing data or instructions
Control Logic Blocks: generates timing signals at the right time and in the right order
¢ Control logic can be implemented with:
0 Microprocessor/Microcontroller
=+ Cheap, very flexible, design easy (software)
= —Slow: most actions require >20 instructions = 2 us @ clock speed of 10 MHz
= Use for slow applications
0 Synchronous State Machine
=+ Fast (20 ns/action), Cheap using programmable logic
= — Hard to design complex systems. Limited data storage
= Use for fast, moderately complex systems
0 Counters/Shift Registers
=+ Fast, Cheap, Very easy design
= —Simple systems only
= Aspecial case of synchronous state machines
= Use for very simple systems (fast or slow)

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 3

Logic circuits generally consists of circuits in three categories:

¢ Datapath blocks — these are arithmetic blocks, logic units, floating point units,
digital processing blocks etc.

¢ Memory blocks — these store information for digital circuit to manipulate or store
the instructions for a microprocessor

¢ Control logic blocks — these are generally clocked and they make sure that data
goes to the right places at the right time for computation

Control logic can be implemented either in a microprocessor or a microcontroller, a
synchronous finite state machine (probably best) or using random logic with
counters and shift registers.

In this lecture, we will introduce the use of counters and shift registers for producing
control circuits.

Synchronous Counters

C"(module counter count, clk):
output 3 count;
0001 input clk 1
— count[3:0]
reg 3] count;
| always € (posedge clk)
count <= count + 1'bl
endmodule
CTR4
clk
+

azo oount[3:0]

JoR oS oSO OSONON

N
J

cT

(3)
+ An N bit binary counter has a cycle (D
length of 2V states. We can draw a state — PR)/\
diagram in which one transition is made ’H‘)‘—\"I—QHQ‘—W)‘—‘G
0 —l

for each clock

, X 0
A & =
+ Adder can be simplified: one set of inputs is fixed
so many gates can be eliminated. For example: | " & Y = J
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 4

Here is the design of a 4-bit synchronous counter in schematic form. The four D-FFs
store the current count value. The adder is used to compute the next count value
and fed to the input of the D-FFs. On every positive edge of the signal clk, the count
value count[3:0] goes up by one.

The Verilog description of this counter is shown. Note how easy it is to specify the
D-FFs (via the always block with posedge keyword in the sensitivity list). The add-
one is specified with the ‘+’ operator.

In the actual implementation, the CAD software will NOT insert a 4-bit adder circuit.
Instead the synthesis software will reduce this to an optimised gate-level
implementation because one of the operand of the adder is the constant ‘1’.
However, as a designer, you do not need to worry about this optimisation step
(except may be in answering an examination question which asks you to simplify).
The CAD software will deal with this for you. In fact, it is often much better to leave
the specification as shown here — the design is more readable and therefore easier
for others to understand what you are doing.

For example, one input to the adder is: 4’b0001. Imagine you have many AND and
OR gates inside the adder. The AND driven by 0 or 1 can be mapped to a simple
wire. Similarly simplification can be applied to OR gates.

Finally, shown here is the state transition diagram. Each bubble represents a state
(labeled with the count value) and on each rising edge of clk, it transits to the next
state.

Synchronous counters with synchronous reset

clk
IRST

0001 z
Sk &

|—/— Q
(®) (7). RsT
IRST ;\7/ IRST
/
14 \ IRST ’r’ [RsT (3
\(\ [] RST
|
ST /

Q3.0

count <= count + 1'bl;

¢ This is a synchronous reset input:
wsr | RsT taking IRST low has no effect until the
T & | / next clock
(‘?)\RS’ \,/\J,{ + In a synchronous counter everything is
- \ o IRST done by manipulating the D inputs of
RST — .- L
b / \\S}
@ Prr —D the register
[\ RST
IRST RST |/ \\ IRST
[\
[\ \\Cg
RT [RsT \RST °
|M‘ﬁ‘® IRST (‘;\}1 IRST 7%;?
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 5

Here is a modification from the previous counter by adding a low-active reset signal

RST (shown as IRST).

The implementation is simple in Verilog — just add a if-else statement to specify that
when RST =0, reset on the next clock rising edge.

The state transition diagram is modified to include the reset action.

The symbol for the counter is worth noting. CTR4 indicates that it is a 4-bit counter.
CT means count vaue. C1/+ label on the clk signal indicates that this clock signal
controls either the action of input 1 or will increment the counter. The 1R label
indicates that it is a reset input and it is controlled by the clock signal 1. Finally the
triangle at the input of 1R says that this input is low active (i.e. low to reset).

Decade counter

CTRa module counter_divi0 (count, clk);

CLOCK output [3:0] count; // count 0 to 9

> +/C1 Q3 input clk; // clock input

S Q2 r'_eig [3:0](dcoum1:';() // need this declaration A
always @ (posedge c
Q3 2 cT 8(1) if (count == 4‘d}9)
1 count <= 4'b0;
Qo0 & 1R 0 else
— count <= count + 1°bl;
endmodule

Notation: = CT = Contents
0 = least significant bit (LSB)
Bit £ has a binary weight of 2*
1R means reset on next C1 (CLOCK edge)

o ¢ Zis high whenever Q3:0 = 1?7?71 1001 =9
1011 =11
lowest value is when 1101 =13
all the ? bits are zero 1111 =15
+ Counter resets after 9 giving a cycle length
of 10 states

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 6

What if you want a counter that only counts from 0 to 9, then back to 0 again? This
is really easy with Verilog. A simple if-else construct testing for the terminal counter
of 9 will do the trick.

The actual implementation could use of 4-bit binary counter with a simple AND gate
to detect when the counter value of 9 is reached, and then synchronously reset the
counter back to 0.

The state transition diagram is as shown. Beware of what happens when count
value is outside the range of 0 to 9.

Output Glitches

¢ If k counter bits change “simultaneously”, other logic circuits using them may briefly
see any of 2% possible values
Glitches are possible at the logic circuit output if:
1. These 2% values include any that would cause the logic circuit output to change
2. The logic circuit output is meant to remain at a constant value

CTR4
CLOCK Q3
_— T R -
P>+ 3 a2

cT

a1 >] L

0 Qo0 Q03 150 1 2 3 4 56 7 8 9101112131415 0

Q3
Q2
Q1
Qo

Y is high when Q=0000 or 0100

Y

¢ Transition 1 = 2: Q=00?7? which includes 0000
¢ Transition 5 — 6: Q=01?? which includes 0100
¢ Transition 7 — 8: Q=???? which includes both

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 7

When you use gates to combine values from a counter, beware that you will get
glitches at the output of the gates.

Here is an example where Y could contain glitches. This is because the outputs
Q[3:0] will not change exactly at the rising edge of the clock signal. Instead, there
will be some delays and the delays are likely not be the same for different Q
outputs.

For example a count value transition from 7 to 8 could temporarily go to 1111
before going 1000. (i.e. 0111 ->1111 ->1000). Similarly transitions from 5 to 6 and
0to 1 could result in glitches in Y.

Eliminating Output Glitches

mmodule detectlandd (y, clk):

output y; high £
input clk;
reg [3:0] q’
initial
g = 4'b0;

always @ (posedge clk)
gq<=q+ 1'bl;

wire y;

assign y = ~(q[0]+q[1]+q[3]):

endmodule

CLOCK

CTR4

CcT

Q3
 an
Q2

L — 2]

reg y:
always @ (posedge
begin

clk)

¢ We can elminate output glitches ¥,

delaying Y with a flipflop:

CTR4
CLOCK

P> + S ——
cT

0

N

10

> c1

q<=q+ 1'bl;
y <= ~(q[0]+q[1]+q[3]):
end
A
Q03 1501 2 3 45 6 7 8 9101112131415 0
Q3 7] | L
Q2
Qt] | | | J 1 | L
Z Qo
Y 11 la'él | [
z M S

PYKC 21 Oct 2019

E2.1 Digital Electronics

Lecture 5 Slide 8

Eliminating glitches can be achieved by adding an extra D-FF at Y output. Z will be
glitch free. However, beware that Z is one cycle delayed relative to Y.

If Zis instead of Y is to be used to control other circuits, we need to time
synchronous all the signals. This may involve adding D-FFs to datapaths that are
controlled by Z in order to make sure that data signals and control signals arrive at

the same clock cycle.

Gray code counter

module graycode counter(count, clk);

+ Alternatively use a count sequence where
only one bit changes at a time (e.g. Gray
code)

+ Top and bottom rows differ only in the MSB
=> any even count length can be made by
branching to the bottom row after half the
counts. Dashed line gives a +12 counter

4
$
6

2:
3:
4:
S:

[+ SN N+ N N N+ M+ N N N M N - W 9+ ¥

di
d2
d
d
d
d
a7
de
d9
di
di
di
di
di
dl
e

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 9

If the one-cycle delay is not desirable and you need to avoid any glitches, one could
use a special counter that counts in a special sequence that guarantees NOT to
produce glitches when its count outputs are gated together. The count sequence is
known as Gray code.

In a Gray code counter, successive values only have ONE bit changing. Here is a 4-
bit gray code counter and it is specified as a case statement in Verilog.

A Flexible Timer — clktick.v

+ Instead of having a counter that count 16

events, we often want a counter to provide N clktick

a measure of time. We call this a timer. enable | tick
+ Here is a useful timer component that use clkin >

a clock reference, and produces a pulse

lasting for one cycle pulse every N+1

clock cycles. ckin t t t P 1 1 1 1
+ If“enable” is low (not enabled), the clkin count [N INaln2l--- |10l |

pulses will be ignored. ik [—L

module clktick (

input clkin;
input enable;
input [N_BIT-1:0] N;

clkin, // Clock input to the design

enable, / enable clk divider

N, // Clock division factor is N+1

tick // pulse_out goes high for one cycle (n+1) clock cycles
'H // End of port Tist
parameter N_BIT = 16;

------------- INpUt POFrTS—————————————————————————————

PYKC 21 Oct 2019 E2.1 Digital Electronics

Lecture 5 Slide 10

Counters are good in counting events (e.g. clock cycles). We can also use counters

to provide some form of time measurement.

Here is a useful component which | can a clock tick circuit. We are not interested in
the actual count value. What is needed, however, is that the circuit generates a
single clock pulse (i.e. lasting for one clock period) for every N+1 rising edge of the

clock input signal clkin.

We also add an enable signal, which must be set to ‘1’ in order to enable the internal

counting circuit.

Shown below is the module interface for this circuit in Verilog.

Note that the parameter keyword is used to define the number of bits of the
internal counter (or the count value N). This makes the module easily adaptable to

different size of counter.

10

clktick.v explained

+ “count” is an internal N_BIT counter.

. . clkin
¢ We use this as a down (instead of up) Por I___I Pt
counter. count [N [NaIN2[----[1 o]]
+ The counter value goes from N to 0, hence tick
there are N+1 clock cycles for each tick
pulse.
[/ output Ports Data Type-------—-—-—————————-
// output port can be a storage element (reg) or a wire
reg [N_BIT-1:0] count;
reg tick;
initial tick = 1'h0;
e Main Body of the module ---------moooo—-
always @ (posedge clkin)
1¥ (enag1e == 1"bl)
if (count == 0) begin
tick <= 1'bl;
count <= N;
end
else begin
tick <= 1'b0;
count <= count - 1°bl;
end
endmodule // End of Module clkticl
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 11

The actual Verilog specification for this module is shown here.

There has to be an internal counter count whose output is NOT visible external to
this module. This is created with the reg [N_BIT-1:0] count; statement.

The output tick has to be declared as reg here because its value is updated inside
the always block.

Also note that instead of adding ‘1’ on each positive edge of the clock, this design
uses a down counter. The counter counts from N to O (hence N+1 clock cycles).
When that happens, it is reset to N and the tick output is high for the next clock
cycle.

11

Cascading counters

+ By connecting clktick module in series with a counter module, we can produce a
counter that counts the number of millisecond elapsed as shown below.

16'd49999 46_ clktick counter
16
b1 —{1EN tick 1EN CT |—x= Elapsed time (in ms)
50MHz >C1/- >C1/+
1R
reset |
10172 I R N A A R A N A
ick _[] L
1ms
CT | count | count + 1 [counter + 2
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 12

Using this style of designing a clock tick circuit allows us to easily connect multiple
counters in series as shown here.

The clktick module is producing a pulse on the tick output every 50,000 cycles of the
50MHz clock. Therefore tick goes high for 20 microsecond once every 1 msec (or
1KHz).

The clktick module is sometimes called a prescaler circuit. It prescale the input
clock signal (50MHz) in order for the second counter to count at a lower frequency
(i.e. 1KHz).

The second counter is now counting the number of millisecond that has elapsed
since the last time reset signal (1R) goes high.

The design of this circuit is left as a tutorial problem for you to do.

12

A clock divider

¢ Another useful module is a clock divider circuit. kK 181 clkdiv
et
+ This produces a symmetrical clock output,
dividing the input clock frequency by a factor of enable— 1EN clkout
2%(K+1). clkin > Cil-

<[T A S R R A

count [N [N1[N2]----[1] 0 [N]
clkout | T
module clkdiv (
clkin, // Clock input signal to be divided
enable, // enable clk divider when high
K, // clock frequency divider is 2%(K+1)
clkout // symmetric clock output Fout = Fin / 2%(K+1)
H // End of port list
parameter K_BIT = 16; // change this for different number of bits divider
[/ INput POrtsS-----—-————————————————————————
input clkin;
input enable;
input [K_BIT-1:0] K;
[[/======—————e- output POrts------—-—-—-—-———————————————————
output clkout;
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 13

Here is yet another useful form of a counter. | call this a clock divider. Unlike the
clktick module, which produces a one cycle tick signal every N+1 cycle of the clock,
this produces a symmetric clock output clkout at a frequency which is the input
clock frequency divided by 2*(K+1).

Shown here is the module interface in Verilog. Again we have used the parameter
statement to make this design ease of modification for different internal counter
size.

13

clkdiv.v explained

16 :
K o] clkdiv okin 1 1 1 1

[
[

enable 1EN clkout count [N N4 N2 [-oi] N]
clkin —— C1/- clkout |
————————————— Output Ports Data Type--------—====—-——--
output port can be a storage element (reg) or a wire
reg [K_BIT-1:0] count;
reg clkout;
initial clkout = 1'b0;
———————————— mMain Body of the module ---------ccmmmmmm— -
a]wa¥s @ (gosedge clkin)
if (enable == 1'bl)
if (count == 10°'b0) begin
clkout <= ~clkout; toggle the clock output signal
count <= K; shift right one bit
end
else
count <= count - 1°bl;
endmodule End of Module clkdiv
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 14

The Verilog specification is similar to that for clktick. This also has an internal
counter that counts from K to 0, then the output clkout is toggled whenever the

count value reaches 0.

14

Shift Registers as control circuits

¢ Easy way to make a sequence of events happen in response to a trigger:
- P, Q, Rand S are delayed versions of D but with all transitions on

the CLOCK S
- Delay from D to P is between 0 and 1 clock cycle. o L d .
1D ~
VAEZ1 s Q
— — R
cLlock _ L LI LI L I L1 :
D | ' A l
P 1 + PR gives pulse of length
Q L B 7 2T approx T after D
R L 0 3| + IR°S gives pulse of length
s n 7 Tapprox 2%T after DV
+ Q®R gives pulses of
P-IR [] length T approx 1'4T after
IRS — D&
Q&R | 1 J |
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 15

Instead of producing binary signals using a counter, one could use a shift register to
produce a sequence of pulses delayed relative to each other, and use gates to merge
these together and produce different binary signals.

Shown here is a D-input to a shift register, producing P Q R and S, delayed from the
previous signal by one clock cycle.

Using AND, NOT, OR or XOR gates, we can produce the various digital signals with
different delays and pulse widths.

Beware that producing control signals this way may generate glitches.

15

Shift Register specification in Verilog

C1/9 Ik
o [i — g >C1/9 LECH-) LECH-) |~EC1/-)
data_in 1D data_in_1 [[[[T data_out

1D 1D 1D 1D
data_out f f f \

sreg[4]
sreg[1] sreg[2] sreg[3]
moduTe sregd (data_out, data_in, clk); 1
. DFF
output data_out; serial data output
input data_in; serial data 1input clk =>C1/9
input clk; clock input) —
data_i
req [4:1]1 sreg; 4 stage D-FF for this shift ala_in 1 1D
initial sreg = 4'h0; sreg[1]
a 3 sreg(2] d
begin sreg[3] ata_out
sreg[4] <= sreg[3];
sreg[3] <= sreg[2];
sreg[2] <= sreg[l];
sreg[1] <= data_in; \ — -
end sreg <= {sreg[3:1],data_in};

wire data_out;
assign data_out = sreg[<4];
endmodule

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 16

To specify a shift register in Verilog, use the code shown here (in blue box). We use
the <= assignment to make sure that sreg[4:1] are updated only at the end of the
always block.

On the right is a short-hand version of the four assignment statements:

sreg <= {sreg[3:1], data_in}

This way of specifying the right-hand side of the assignment is powerful. We use the
concatenation operation { } to make up four bits from sreg[3:1] and data_in (with
data_in being the LSB) and assign it to sreg[4:1].

16

Linear Feedback Shift Register (LFSR) (1)

°ﬂ_>c1 JES L>c1/-> |—>c1/-) |—>C1/-)

1 Q1 7 Q2 7 Q@ 1 - Q4

D D D D

Q4 Q3 Q2 Q1 count

XOR 0 0 0 1 1

0 0 1 0 2

0 1 0 0 4

¢ Assuming that the initial value is 4'b0001. 1 0 0 1 9

This shift register counts through the sequence as 0 0 L 1 3

shown in the table here. 0 1 1 0 6

¢ This is now acting as a 4-bit counter, whose count i (1) 2 (1) i;

value appears somewhat random. o 1 o 1 S

¢ This type of shift register circuit is called “Linear 1 0 1 1 1

Feedback Shift Register” or LFSR. 0 1 1 1 7

¢ Its value is sort of random, but repeat very 2N-1 1 1 1 1 15

cycles (where N = no of bits). 1 1 1 0 14

¢ The “taps” from the shift register feeding the XOR 1 1 0 0 12

gate(s) is defined by a polynomial as shown 1 0 0 0 8

above. 0 0 0 1 1
PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 17

We can also make a shift register count in binary, but in an interesting sequence.
Consider the above circuit with an initial state of the shift register set to 4’b0001.

The sequence that this circuit goes through is shown in the table here. It is NOT counting
binary. Instead it is counting in a sequence that is sort of random. This is often called a
pseudo random binary sequence (PRBS).

The shift register connect this way is also known as a “Linear Feedback Shift Register” or
LFSR. There is a whole area of mathematics devoted to this type of computation, known as
“finite fields” which we will not consider on this course.

17

Primitive Polynomial

o ’—::»01/-) —>C1/9 | ~Ec1/-) ‘ —kcw-) | Primitive polynomial: 1 + X? + X*
SR BN ey o SN e o < BN g e
1D 11D - TD —71 11D -
XOR |—

¢ This circuit implements the LFSR based on this primitive polynomial: 14 X3 + X
¢ The polynomial is of order 4 (highest power of x)

¢ This produces a pseudo random binary sequence (PRBS) of length 24-1 =15

¢ Here is a table showing primitive polynomials at different sizes (or orders)

m m

3 1+ X+X° 14 L+ X+ X0+ X1 x4
4 L+ X+ X 15 1+ X+X¥

5 1+ X2+ X° 16 1+ X+ X4+ X124 X0
6 1+X+X° 17 1+ X+ X7

7 1+X+ X7 18 1+ X7+ X®

8 1+ X+ X+ X'+ X% 19 1+ X+ X+ X+ X
9 L+ X'+ X° 20 1+ X+ X®
10 L+ X4 X® 21 1+ X204 X%
11 L+ X2+ X" 22 1+ X+ X%
12 L+ X+ X X0 4 X2 23 1+ X5+ X%

13 L+ X+ X+ X0+ 42 24 L+ X+ X2+ X+ X%

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 18

The circuit shown below is effective implementing a sequence defined by a polynomial
shown: 1 + X3 + X*. The term “1” specifies the input to the left-most D-FF. This signal is
derived as an XOR function (which is the finite field ‘+’) of two signals “tapped” from stage
3 (i.e. X3) and stage 4 (i.e. X*) of the shift register.

For a m-stage LFSR, where m is an integer, one could always find a polynomial (i.e. tap
configuration) that will provide maximal length. This means that the sequence will only
repeat after 2M-1 cycles. Such a polynomial is known as a “primitive polynomial”.

The table shown in the slide has primitive polynomial at various order. For example, a 15-
bit LFSR that produces a maximal length PRBS can be achieved by implementing the
primitive polynomial:

1+ X +X%

This result in a 15-bit shift register with one XOR gate from Q1 and Q15, feeding back to
input of FF1 (which we would label Q0). This effective implements the equation:

X0 =X+x1°

Note that for a given order, the primitive polynomial shown here is NOT unique.

18

Ifsrd4.v

Primitive polynomial: 1 + X3 + X4
* s] Tpors] [povs | Lpors] Pimitvepol
.| Q1 — Q2 — Q3 — Q4

1D 1D 1D 1D

XOR

module 1fsr4 (data_out, clk);

output [4:1] data_out; // four bit random output
input clk; // clock input
reg [4:1] sreg; '/ 4 stage D-FF for this shift register

initial sreg = 4'bl;

always @ (posedge clk)
sreg <= {sreg[3:1], sreg[4] A sreg[3]};

assi?n data_out = sreg;
endmodule

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 19

Here is the Verilog specification for a 4-bit LFSR. Note how the concatenation
operator is used in the always block.

always @ (posedge clk)
sreqg <= {sreg[3:1], sreg[4] A sreg[3]};

19

Quiz Questions

. Ifthe CLOCK period is T, what is the range of possible time delays between a
change in the DATA input of a shift register and the resultant change in the output
of the first stage?

. How do you combine the outputs of a shift register to generate a pulse for both the
rising and the falling edges of its input signal?

. In order to guarantee that a shift register will notice a pulse on its DATA input, how
long must a pulse last?

. If an AND gate is used to combine 2 of the outputs from a 4-bit counter, how many
different count values will make the AND gate output go high?

. Why do output glitches not occur when a counter counts from 6 to 7?
. Name two ways in which output glitches may be avoided.

Answers are all in the notes.

PYKC 21 Oct 2019 E2.1 Digital Electronics Lecture 5 Slide 20

20

