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In this section of the course, we will consider the design and specification of finite 
state machine (FSM).  FSM is one of the most important topics in digital electronics.  
It provides a formal methodology for a designer to translate specification of a digital 
control circuit to actual circuits.
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In the previous lecture, we examined how to use counters and shift registers to 
produce arbitrary digital signals that could be used as control signals to a digital 
system.  While such circuits could be fast (particularly with shift registers), the 
design process is not systematic.  For complicated control logic, it is far better to 
design such circuit as a synchronous (or finite) state machine.

In this lecture, we will examine how we can analyze the working of a finite state 
machine (FSM) through three different representations: state table, state diagram 
and digital waveforms.

(FSM is sometimes known as synchronous state machine or SSM.  The two are 
synonymous.)
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Here is a simplified generic diagram of a finite (or synchronous) state machine (FSM 
or SSM).  A set of D-flipflips are used to store the current state value.  The current 
state together with external inputs are fed to a combinational logic circuit to 
evaluate two things: the next state and the current outputs.  

With an n-bit register and using binary state encoding (i.e. coding states as binary 
numbers), such machine can have a maximum of 2n states.  

This is a synchronous state machine because the transition to the next state is 
synchronous with the rising edge of the clock signal.  Therefore all output signals are 
synchronized.

There are two basic rules in designing a FSM that operates reliably:
1. Do not put logic in front of the clock signal.  Doing so is likely to cause timing 
issues when the FSM is used in conjunction with the rest of the system.   
2. Do not use asynchronous SET or RESET signals.  Doing so would make the rest of 
the system NOT synchronous to the CLOCK signal.
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The combinational logic circuit in a FSM performs two separate tasks:
1. It determines what the output signals should be.  This derived by the current 

state value STATE and the current inputs.  Therefore such output signals could 
change in the middle of a clock cycle if input signals are NOT synchronized with 
the CLOCK.

2. It determines what the next state value should be, i.e. the state transition of the 
FSM.

The combinational logic block (by definition) contains no memory  (or register) 
circuit.
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Shown here is a simple FSM in details.  The upper group of gates are used to 
compute the output signal Y.  The lower group of gates are used to work out the 
next state values NS0 and NS1.

We will now analyse how this circuit works.   One powerful  tool that we can use is 
to the state transition table.  It is similar to the truth table used for combinational 
circuit, but is used to show the function of the FSM.

Each row in this table represents one state.  Since this FSM has 2 state bits, there are 
4 possible states.

There is one column devoted to each input combination.  In this case, there is only 
one input A.  There would be four columns if there were two inputs.

The contents of the table shows the next state transition, followed by the output 
signal(s) during the current state.   A ‘/’ character is used to separate the two.
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Another very powerful tool to show the function of a FSM is to use state diagram 
(one that uses “bubbles”).  For clarity, let us split the state transition table into two 
tables: one for next state NS1:0,  and another for the output signal Y.
We now draw a bubble for each state and label this with the state name (which 
happens in this case to be the same as the state value).  Transition arrows are draw 
between the states with a Boolean expression as a label to indicate the condition 
required for the transition to occur ON THE ACTIVE CLOCK EDGE (positive edge in 
this case).  The transitions are derived direclty from the next state table.  Consider 
state 0, on rising edge of CLOCK, if  A=0, go to state 3, else if A=1, go to state 2.
Inside the bubble, we now indicate the value of Y as another Boolean expression.

In this example, we perform analysis of a circuit designed by someone else.  
Therefore we derive the transition table from the circuit, then the state diagram 
from the state transition table.
When we are designing a FSM from a specification, we usual do this the other way 
round, i.e. design the state diagram from the specification, then draw up the state 
transition table as required and derive the circuit from that.
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It is important to note that the behaviour of a FSM is determined by the initial state.  
Given the state diagram and the initial state (assumed here to be state 0), and 
waveform of the input A, we can easily trace the subsequent states S1:0 and the 
output Y.
For our course, we are exclusively using FPGA.  For us, state initialization is part of 
the FPGA configuration process – we can use the Verilog “initial” statement to 
perform this initialization.  (More later.)

There are two types of state machines: 
1. Moore machine – the outputs are constant 0 or 1 while inside a state even if 
input changes. The output only changes on the active clock edge.   An example of a 
Moore machine is a counter.  For our designs with Verilog, our FSMs are usually a 
Moore machine (as will be seen in a later lecture).
2. Mealy machine – the outputs could changes if input changes even without an 
active clock edge.

The FSM here is a Mealy machine because the output Y inside state 0 and 2 are 
Boolean expressions.  If A changes in the middle of a clock cycle, the output Y will 
change immediately.  So the output is NOT dependent on the state of the machine 
alone.
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In order to make the state diagram less cluttered, you can omit the self transition 
arrows.  Therefore the rule is that a state machine stays in its current state unless 
the conditions of an exiting arrow is satisfied.  

In this example, we stay in state 2 until A = 0 on the rising edge of CLOCK.  Then we 
go to state 3.
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Instead of specifying outputs inside the state bubble, it is also possible to specify 
outputs on the transition arrow.  There are a few rules that you must follow:
1. For each state, you must specify the output either inside the bubble or on EVERY

emitted arrow from the state.  
2. You can mix the two conventions in a state diagram, but you must use only one 

method for each (and not mixing them).
3. If you use self transition, as in state 2 here, you must declare the default values 

for each outputs.
4. Output written on an arrow always applies to the state EMITTING the arrow (i.e. 

source not destination).
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Let us examine the state machines output Y in detail.  When we transit from state 1 
to state 2, it is possible that we pass through state 0 for a very short time.  This is 
because when S1:0 = 01 moves to S1:0 = 10, S1 could be slightly slower than S0 in 
the transition.  Hence S1:0 = 00 occurs temporarily.

In this case, Y could produce a short glitch (because A=1, and Y=A) during the 
transition.

In general, a glitch could be produced if:
1. Two or more state bits change values when transiting states
2. The output has the same value in both states



11

Let us consider the circuit of this FSM in detail to discover why a glitch may be 
produced at the Y output.  

Y is P XOR S1.   Since P is produce by the NOR gate, it will change later than S1.  
Therefore the XOR gate will see the short duration that P and S1 are different. 
Hence a short pulse will be produced.   

Often such glitches are NOT important unless it is used as a clock input signal to 
another circuit.  However, it is important to be aware of such glitches.

You could eliminate such glitches by putting another set of D-FF at the output 
signals.  However, this will also produce a one-cycle delay to the output.  We will 
consider this in a later lecture.
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